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Abstract. The entanglement spectrum of a pure state of a bipartite system is
the full set of eigenvalues of the reduced density matrix obtained from tracing
out one part. Such spectra are known in several cases to contain important
information beyond that in the entanglement entropy. This paper studies the
entanglement spectrum for a variety of critical and near-critical quantum lattice
models in one dimension, chiefly by the infinite time evolving block decimation
(iTEBD) numerical method, which enables both integrable and non-integrable
models to be studied. We find that the distribution of eigenvalues in the
entanglement spectra agrees with an approximate result derived by Calabrese
and Lefevre to an accuracy of a few per cent for all models studied. This result
applies whether the correlation length is intrinsic or generated by the finite matrix
size accessible in iTEBD. For the transverse Ising model, the known exact results
from Peschel and Eisler for the entanglement spectrum are used to confirm the
validity of the iTEBD approach. For more general models, no exact result is
available but the iTEBD results directly test the hypothesis that all moments of
the reduced density matrix are determined by a single parameter.
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1. Introduction

The past decade has seen a fruitful interplay between problems in condensed matter physics and
concepts from quantum information theory. Entanglement entropy, as reviewed below, has been
studied for a wide variety of quantum many-particle systems and has given some considerable
insight into both quantum criticality and quantum topological phases. More recently it has
become clear that for some purposes the entanglement entropy is an insufficient characterization
of the quantum information in a quantum state. Both for topological phases and for quantum
critical systems, several recent studies have shown that more information about entanglement,
the full ‘entanglement spectrum’, is required to describe important physical properties. The
purpose of this paper is to examine entanglement spectra at and near several quantum critical
points in one dimension (1D), chiefly by numerical methods. This serves as a test of existing
theoretical predictions. The main subject of this paper is a set of numerical tests of the validity
of the approximate distribution of eigenvalues in the entanglement spectra derived by Calabrese
and Lefevre [1].

The entanglement entropy of a pure state |9〉 of a bipartite system AB is defined as the
von Neumann entropy of reduced density matrix ρA, obtained by tracing out subsystem B. The
result is symmetric with respect to A and B:

SA = −Tr ρA log ρA = −Tr ρB log ρB = SB . (1)

This symmetry follows from the Schmidt decomposition, which is convenient for our later
discussion. The Schmidt decomposition [3] for a bipartite system expresses the original
wavefunction as a sum of product states of wavefunctions for the two parts of the system,
with the bases chosen for those two parts so that the terms in the sum involve orthogonal
wavefunctions:

|9〉 =

∞∑
n=1

λn|8n A〉|8nB〉. (2)
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The |8n A〉 and |8nB〉 form orthonormal bases for the Hilbert spaces of the subsystems A and B,
and the λn are positive. The Schmidt decomposition contains more than one term for entangled
states, and the entanglement entropy is

S = −

∑
n

ωn logωn. (3)

Note that the eigenvalues of the reduced density matrix are the squares of the coefficients
appearing in the Schmidt decomposition and ωn = λ2

n.
Clearly the entanglement entropy is a particular combination of the eigenvalues of the

reduced density matrix. The ‘entanglement spectrum’, i.e. the full set of eigenvalues of the
reduced density matrix, clearly contains additional information in principle. For topological
phases arising in the quantum Hall effect, the entanglement spectrum has been argued to
contain information about topological order [4, 5] beyond that of the entropy, which contains
information about the ‘quantum dimensions’ of the topological phase [6, 7]. The entropy has
been a powerful tool in numerical studies to identify topological phases [8, 9].

The value of entanglement spectrum for critical points, as studied in this paper, is slightly
different from its use in measuring topological order. It has been argued by Calabrese and
Lefevre [1] that quantum critical points have an entanglement spectrum with a universal
one-parameter dependence; since this one parameter can be taken to be the entanglement
entropy, one might think that for quantum critical points, the entanglement spectrum contains
no more useful information than the entanglement entropy. However, the detailed form of
the entanglement spectrum is important; as an example, the Calabrese–Lefevre approximate
form of the entanglement spectrum was used recently as the basis of a theory for ‘finite-
entanglement scaling’, i.e. how the finite entanglement available in a matrix product state (MPS)
representation affects the observed behavior at quantum critical points. For this application,
understanding not just the entanglement entropy but the full spectrum is essential, and the nature
of this spectrum near a 1D quantum critical point is the subject of this paper.

The focus on 1D quantum critical points results from two technical considerations, one
numerical and one analytical. Numerically, the MPS class of numerical methods (density matrix
renormalization group (DMRG) and its descendants), reviewed in the following section, are
especially powerful in 1D and capable of giving essentially exact ground-state properties for
many systems away from criticality. Analytically, conformal invariance of the d + 1D path
integral applies at most interesting critical points in any spatial dimension d, but only for
d = 1 is the (local) conformal algebra infinite-dimensional. This infinite-dimensional algebra
closely constrains the behavior of 1D systems close to critical points and has led to numerous
predictions about entanglement entropy at such critical points, many of which have been
confirmed numerically.

In the following section, we review the relevant analytical results on entanglement entropy
and entanglement spectrum at 1D critical points. Section 3, briefly reviews MPS and the
infinite time-evolved block decimation [10] (iTEBD) and presents our numerical results on
several quantum critical points, including some integrable cases as a check and also some non-
integrable cases.

2. Entanglement entropy and entanglement spectrum

An important early example of overlap between condensed matter physics and quantum
information was the realization that ‘most’ quantum critical points in 1D (those with conformal
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invariance) have universal entanglement entropy determined by the central charge of the
conformal field theory (CFT). Since central charge was already known to determine properties
of the critical point related to entropy, such as the free energy at small nonzero temperature,
it is intuitively plausible that the entanglement entropy is also related to this quantity. For a
partition of an infinite 1D chain into a contiguous region of N sites and the infinite remainder,
the entanglement entropy scales for large N as [11]–[13]

SN ∼
c

3
log N . (4)

When the system is away from criticality, this logarithmic divergence is cut off by the correlation
length ξ , measured in units of the lattice spacing a:

SN →
c

3
log

(
ξ

a

)
. (5)

These entanglement entropies are universal since they depend only on central charge; different
critical points in the same universality class have the same entanglement entropy. An elegant
derivation of these results [13] is via a replica trick that obtains the entanglement entropy using
the theory defined on a particular Riemann surface; the central charge then appears via the
mapping of an ordinary plane to this Riemann surface. It is believed that the full entanglement
spectrum that leads to this entropy is not universal but nearly so [1], as now explained. Since
the entanglement spectrum is not universal, it should not follow from the conformal mapping
method that makes clear the universality of the entropy.

There are only a few results on the behavior of entanglement entropy at translation-
invariant critical points above one spatial dimension [14]–[21] and in general the entanglement
spectrum has not been considered. Hence we focus on the entanglement spectrum at or near a 1D
quantum critical point with conformal invariance. The entanglement spectrum can be obtained
from traces of all powers of the reduced density matrix:

Rα ≡ Tr ραA. (6)

In order to make the entanglement spectrum well defined, we have to introduce a length scale
Leff coming from either a block size or a correlation length, just as for the entanglement entropy.
When this length scale is much larger than any microscopic scale, a scaling analysis [13]
predicts

Rα = cαL−c(α−1/α)/6
eff , (7)

where cα are nonuniversal constants. Following [1], we introduce the parameter b and rewrite
this as

Rα = cαe−b(α−1/α), b =
c

6
log Leff (8)

and can obtain the form of the entanglement spectrum immediately under the assumption that
the cα are constant. This assumption of constant cα was shown to be a good approximation for
the X X model and even on the whole X X Z line (more details are given later). However, it
seems valuable to evaluate the validity of this assumption more generally, including for models
that are not integrable. Note that the parameter b is simply related to the entanglement entropy
S obtained for this distribution: b = S/2. For conformally invariant models, b is related to
the largest eigenvalue of the density matrix b = −logωmax. This is the so-called single-copy
entanglement [22]–[24]. We found numerically, that this relation holds in good approximation
if we slightly detune the system from criticality.
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Under the assumption of constant cα, a Laplace transform leads to a universal one-
parameter distribution of density matrix eigenvalues near the critical point [1]. The parameter
appearing in the distribution, which we take to be b, combines both an ‘intrinsic’ property of
the critical point (the central charge) and an ‘extrinsic’ one (either the correlation length or the
block size, whichever is smaller). An intuitive way to express this distribution is via the mean
number of eigenvalues larger than a given value ω,

n(ω)=

∫ ωmax

ω

dω P(ω)= I0(2
√

b log(ωmax/ω)). (9)

Here the largest eigenvalue ωmax is determined by the one parameter b: b = −logωmax. As b
increases, the tail of the distribution becomes longer. Examples of this distribution are shown
in figures 2–4 below. The entanglement spectrum of 1D systems away from criticality has also
been discussed in the context of majorization theory in [25] and using a corner transfer matrix
(CTM) approach in [26]. The entanglement spectra of the XX and XY models have been studied
in detail in [27, 28].

3. Numerical methods and results

3.1. Methods

Our main results are obtained using the iTEBD algorithm [10] to study several 1D Hamiltonians
with translationally invariant ground states. This algorithm can be viewed as a descendant of
the DMRG algorithm [29]. Both DMRG and iTEBD construct trial wavefunctions that are
‘MPS’ [30]. We review the basics of such states in order to understand their connection to
the entanglement spectrum.

We consider a system with N sites and periodic boundary conditions, where each site has
d orthogonal states. Any pure state of the system is a superposition of the product basis states
|s1s2 . . . sN 〉 = |{s}〉, where 16 si 6 d . A MPS for such a system has the form

|ψ〉 =

d∑
s1,...,sN =1

Tr
[
A[1]

s1
. . . A[N ]

sN

]
|s1〉 . . . |sN 〉. (10)

For each site i there are d matrices Ai
si

of a finite dimension χ ×χ . A product (unentangled)
wavefunction for a chain of particles/spins is obtained by multiplying together scalar amplitudes
for the particle/spin state at each site. The MPS generates entanglement by using matrices for
each site and can store an increasing amount of information as the matrix dimension χ increases.
For fixed χ , there are at most χ nonzero eigenvalues of the reduced density matrix, and hence
the maximum possible entanglement is logχ .

The advantage of requiring translational invariance is that there are only finitely many
different matrices Ai

si
. The iTEBD algorithm finds an approximation of the ground state by

performing an imaginary time evolution of a randomly chosen initial MPS |ψ
χ

init〉 with fixed
dimension χ . It is therefore required that |ψ

χ

init〉 has a nonzero overlap with the ground state.
Because this method always constructs wavefunctions for the infinite system, its errors result
from finite entanglement rather than finite size, and one application of the entanglement
spectrum was to develop a theory [31] for the ‘finite-entanglement scaling’ of resulting
errors [32]: the effective correlation length induced by finite entanglement for a critical
Hamiltonian scales as ξ ∝ χ κ , where the exponent κ is determined by the central charge at the
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critical point. For the iTEBD simulations presented in this paper, we used a second order Trotter
decomposition for the imaginary time evolution with decreasing time steps δt = 10−1, . . . , 10−8.
We perform the evolution until the energy is converged up to 12 digits and the entanglement
entropy up to 6 digits. The run times of the algorithm depends very strongly on the model and
the parameters used [10].

We will limit ourselves in this paper to cases in which the iTEBD algorithm converges
effectively to the matrices of a given dimension that are the best approximation of the ground
state. In a gapped phase, the entanglement entropy of the exact wavefunction is finite, and the
approximation by MPS’s converges rapidly [33]. The iTEBD result should therefore converge
to the physically correct distribution if the correlation length ξ (i.e. the correlation length in the
physical system, not the finite-entanglement approximation) satisfies

a � ξ � logχ, (11)

where a is the correlation length and χ is the matrix size. When these conditions are satisfied,
the iTEBD result is not evolving rapidly with χ , and the numerical spectrum should be that of
the physical system. The approach of the numerical spectrum to the physical one is somewhat
subtle, because the physical spectrum even at finite correlation length has an infinite number
of nonzero eigenvalues, while the numerical spectrum has at most χ . However, the fraction of
total probability in the tail of small eigenvalues becomes very small with increasing χ away
from criticality, unlike at the critical point.

Note that this limit is different from the finite-entanglement scaling limit logχ � ξ , where
the physical correlation length is effectively infinite but there is an apparent correlation length in
numerics. Hence a different type of result is expected when the correlation length satisfies ξ �

logχ . It was observed previously [31] that the Calabrese–Lefevre distribution approximately
describes the spectra obtained in this limit, where the correlation length is generated by finite χ .
In the following section, we compare numerical spectra to the Calabrese–Lefevre distribution
and in some cases to exact results.

4. Numerical results

4.1. Transverse Ising model

We start by considering the quantum Ising model whose Hamiltonian is

H = −

∑
i

(σ x
i σ

x
i+1 + gσ z

i ),

with the Pauli matrices σ αi and g > 0. The model is critical at g = 1 with central charge c = 1/2.
This model belongs to a class for which, the entanglement spectrum can be calculated by
exploiting the relation between quantum chains and 2D classical models [2, 34, 35]. Using a
CTM approach, it can be shown that the reduced density matrix has a diagonal form

ρ = K exp

−

∑
j>0

ε j c
†
j c j

 (12)

with fermionic operators c†
j , c j and single particle eigenvalues

ε j =

{
(2l + 1)ε, g > 1,
2lε, g < 1,

(13)
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Figure 1. Entanglement (Schmidt) spectra of the transverse field Ising model for
different parameter. Panel (a) compares the numerical iTEBD-results (×) with
the entanglement spectrum obtained by the CTM approach (◦) [2, 34]. Panel (b)
compares directly the single particle eigenvalues.

where l = 0, 1, 2, . . .. The value of ε is given by

ε = π I (k ′)/I (k), (14)

where I (k) is the complete elliptic integral of the first kind and k ′
=

√
1 − k2. The parameter k

is, for the case of the transverse Ising model, simply given by

k =


1

g
, g > 1,

g, g < 1.
(15)

We compare the eigenspectrum ωn of the reduced density matrix ρ in equation (12) with
our numerical results. Figure 1(a) shows the good agreement of the entanglement spectra
obtained from equation (12) and the numerical results which we obtained using the iTEBD
algorithm. Figure 1(b) shows single particle eigenvalues and compares the analytic results from
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Figure 2. Comparison of the prediction by the formula n(λ)=

I0(2
√

b log(λmax/λ)) with the results obtained by the iTEBD algorithm
and the CTM approach for the transverse Ising model near the critical point at
g = 1.

equation (12) with the numerical results. In particular, we observe a linear dispersion which
is predicted by the CTM approach. If we approach the critical point, the value of χ has to be
chosen increasingly large to get a good agreement. Our findings agree with previous numerical
studies for these models in [10, 25, 35].

Next we calculate the distribution function n(ω) using the iTEBD algorithm and the CTM
approach. The results are shown in figure 2. At the critical point (g = 1), the correlation length
ξ diverges and the actual distribution of the eigenvalues is flat. The iTEBD algorithm, however,
truncates the entanglement spectrum, thereby generating a finite correlation length. Thus the
entanglement entropy is finite [31] and we use the resulting b = S/2 as a parameter in n(ω). If
we detune the system from criticality, the correlation length is finite and the iTEBD is essentially
exact for a χ which is large enough. Consequently, the iTEBD algorithm and the CTM approach
give the same results. The distribution function n(α) in equation (9) agrees well with the
iTEBD results, independent of whether the correlation length is induced by the truncation or an
actual finite correlation length. If the systems is strongly detuned from criticality, the discrete
structure of the entanglement spectrum—which is not captured by equation (9)—becomes more
pronounced.

4.2. XXZ model

The X X Z spin chain is described by the Hamiltonian

H =

∑
i

(σ x
i σ

x
i+1 + σ y

i σ
y

i+1 + γ σ z
i σ

z
i+1)

and is critical in the entire range γ ∈ [0, 1] with central charge c = 1. Critical exponents change
continuously with γ [36]. The results for the distribution function n(ω) near the Heisenberg
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Figure 3. Comparison of the prediction by the formula n(ω)=

I0(2
√

b log(ωmax/ω)) with the results obtained by the iTEBD algorithm
for the XXZ model near the critical point at γ = 1.

(XXX) point at γ = 1 are shown in figure 3. For all parameters, the distribution functions
equation (9) describes the iTEBD results well. A detailed study of the entanglement spectrum
of XXZ chains can be found in [37].

4.3. Spin-1 model

The two models we have studied so far are integrable models. Now we consider the S = 1
Heisenberg chain with a biquadratic term,

H =

∑
i

[cos θ(Si · Si+1)+ sin θ(Si · Si+1)
2],

which is generally non-integrable. This system is known to have two exactly solvable critical
points, the SU(2)2 point at θ = −π/4 with c = 3/2 [38] and the SU(3)1 point at θ = π/4 with
c = 2 [39]. The entire region θ ∈ [π/4, π/2) is critical with c = 2 [40]. A detailed study of
critical SU(N ) can be found in [41]. The distribution functions n(ω) near the critical point
at θ = −π/4 are shown in figure 4. For all parameters, the distribution functions equation (9)
describes the iTEBD results well.

4.4. Moments of the reduced density matrix

The derivation of the distribution function n(ω) in equation (9) has been made under the
assumption that the moments of the reduced density can be expressed as Rα = cαe−b(α−1/α)

with cα being constant. In order to check the validity of this assumption, we calculated the
moments Rα = Tr ρα explicitly using the iTEBD algorithm. The results for cα = Rα/e−b(α−1/α)

and χ = 100 are shown in figure 5. We find cα = 1 in two cases: (i) If α = 1 because Tr ρ = 1
(ii) For α → ∞ because in this case, Rα = ωαmax = e−αb. In between, the cα deviate from unity
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Figure 4. Comparison of the prediction by the formula n(ω)=
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Figure 5. The quantity cα = Rα/e−b(α−1/α) with b = −logωmax calculated
numerically for critical points of different models.

by at most 10%. This explains the good agreements of the iTEBD results and the distribution
function in equation (9).

5. Summary

For all considered models, the distribution function n(ω) derived by Calabrese and Lefevre
agrees at the few percent level with the iTEBD results, independent of whether the correlation
length is induced by the truncation or an actual finite correlation length. A direct calculation of
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the moments cα suggests that the assumption cα = const is a good approximation. For future
work, it would be interesting to understand theoretically why this is the case. In general,
one would expect nonuniversal quantities such as the cα not to have any constraint on their
variation, in which case it is puzzling why the standard models we have studied all have roughly
constant cα. Conversely, if there are actually bounds on the cα that explain the observed behavior
(that they are not constant but nearly so), then understanding the origin of those bounds is
an important problem. It is interesting to note in figure 5 that the model with the strongest
deviations from the constant behavior of moments cα is the spin-1 model, which is the most
complicated analytically and also the most difficult numerically (in part because of its higher
central charge, which means that more degrees of freedom are critical).

The results of this paper show that the Calabrese–Lefevre distribution is indeed a good
starting point, at least for a number of integrable and non-integrable models, for applications of
the entanglement spectrum at critical points. They also place constraints on the ultimate theory
of this entanglement spectrum including non-universal effects.
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