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Abstract. Charge transport through a short DNA oligomer (Dickerson
dodecamer (DD)) in the presence of structural fluctuations is investigated using
a hybrid computational methodology based on a combination of quantum
mechanical electronic structure calculations and classical molecular dynamics
(MD) simulations with a model Hamiltonian approach. Based on a fragment
orbital description, the DNA electronic structure can be coarse-grained in a
very efficient way. The influence of dynamical fluctuations, arising either from
the solvent fluctuations or from base-pair vibrational modes, can be taken
into account in a straightforward way through the time series of the effective
DNA electronic parameters, evaluated at snapshots along the MD trajectory.
We show that charge transport can be promoted through the coupling to solvent
fluctuations, which gate the on-site energies along the DNA wire.
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1. Introduction

The electrical response of DNA oligomers to an applied voltage is a highly topical issue
that has attracted the attention of scientists belonging to different research communities.
Experimentally, a variety of results have been achieved predicting DNA to be an insulator [1],
a semiconductor [2, 3] or a metallic-like system [4, 5]. This fact hints not only at the
difficulties encountered in carrying out well-controlled single-molecule experiments but also
at the dramatic sensitivity of charge migration through DNA molecules to intrinsic, system-
related, or extrinsic, set-up-mediated factors: the specific base pair sequence, internal vibrational
excitations, solvent fluctuations, the electrode–molecule interface topology, among others. As
a result, the theoretical modeling of DNA quantum transport remains a very challenging issue
that has been approached from many different sides, see e.g. [6]–[9] for recent reviews.

Most of the models originally proposed to deal with charge transport through DNA
oligomers started from a static picture of the DNA structure and of the corresponding
electronic properties, see e.g. [10]–[13]. However, hole transfer experiments [14]–[20] as well
as related theoretical work [21]–[25] in the chemical physics community strongly suggested
that charge migration through DNA oligomers can be understood only in the context of a
dynamical approach that includes the coupling of the electronic system to conformational
degrees of freedom, resulting in fully or partially incoherent charge propagation. Indeed,
strong conformational dynamics and a related spectrum of different time scales seem to be
ubiquitous for biomolecules, as shown, for example, in the modulation of the kinetics of electron
transfer during the early stages of the photosynthetic reaction cycle [26, 27], by the analysis
of dispersed kinetics [28]–[30] or by fluorescence correlation spectroscopy [31]. In light of
these experimental and theoretical studies, it seems natural to expect that dynamical effects
would also play a determining role in charge transport processes for biomolecular systems like
DNA contacted by metallic electrodes. However, the relatively small number of well-controlled
electrical transport experiments [3]–[5], [32] makes it difficult to arrive at a conclusive answer
about the degree to which dynamical effects dominate charge transport, although the strong
temperature dependence of the electrical current observed, for example, in [5] suggests that the
influence is important. Several theoretical studies have considered the influence of structural
fluctuations on electrical transport from different perspectives [33]–[41]; a realistic inclusion of
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the influence of dynamical effects on the transport properties can, however, only be achieved,
in our view, via hybrid methodologies combining a reliable description of the biomolecular
dynamics and electronic structure with quantum transport calculations. Ab initio approaches for
static biomolecular structures can provide a very valuable starting point for the parameterization
of model Hamiltonians [42]–[50]; however, a full first-principle treatment of both the dynamics
and electronic structure lies outside the capabilities of state-of-the-art methodologies.

In this paper, we will elaborate on a recent study on homogeneous DNA sequences [36]
by addressing in detail some methodological issues. Our focus will be on the Dickerson
dodecamer (DD) [51] with the sequence 5′-CGCGAATTCGCG-3′ for which the effect of
the dynamical fluctuations becomes very clear. Our approach combines classical molecular
dynamics (MD) simulations with electronic structure calculations to provide a realistic starting
point for the description of the influence of structural fluctuations on the electronic structure of
a biomolecule. Further, the information drawn from such calculations will be used to formulate
low-dimensional effective Hamiltonians to describe charge transport. A central point is the use
of the concept of fragment orbitals [24], [52]–[54], which allows for a very efficient and flexible
mapping of the electronic structure of a complex system onto a much simpler effective model.
Taking a single base pair as a fragment and considering only one relevant fragment orbital
per base pair, we end up in a tight-binding Hamiltonian for a linear chain where both on-site
energies ε j(t) and electronic coupling terms V j, j+1(t) are time-dependent variables:

H =

∑
j

ε j(t)d
†
j d j +

∑
j

V j, j+1(t) (d†
j d j+1 + h.c.). (1)

The dynamic information provided in this way builds the starting point of our treatment of
quantum transport through biomolecular wires. In the next section, we briefly describe the
computational methodology used to obtain the effective electronic parameters of the model
Hamiltonian, which will then be introduced in section 3, where we also illustrate how to
relate the Hamiltonian of equation (1) to a different model describing the coupling of a time-
independent electronic system to a bosonic bath. Further, expressions for the electrical current
as well as the relation between the auto-correlation function of the on-site energy fluctuations
and the spectral density of the bosonic bath will be derived. Finally, in section 3, we discuss
the transport properties of the DD in vacuum and in the presence of a solvent. We stress
that in contrast to other models that explicitly contain the coupling to vibrational excitations
or to an environment [38]–[41], [55] at the price of introducing several free parameters,
our methodology potentially contains the full dynamical complexity of the biomolecule as
obtained from the MD simulations. One main advantage of our approach is the possibility of
progressively improving the degree of coarse-graining by an appropriate re-definition of the
molecular fragments.

2. MD and model Hamiltonian formulation

2.1. Computational methodology

We will first give an overview of the fragment-orbital approach used in our computations; further
details can be found elsewhere [52, 53, 56].

The core of our method is based on a combination of a self-consistent-charge density-
functional tight-binding approach (SCC-DFTB) and the fragment orbital concept [56]; both
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Figure 1. Left panel: schematic representation of the fragment orbital method
used to perform a coarse-graining of the DNA electronic structure. A fragment
consists of a single base pair (not including the sugar-phosphate backbones).
As explained in the text, the hopping matrix elements V j, j+1 between nearest-
neighbor fragments are computed using the molecular orbital basis of the isolated
base pairs. These calculations are then carried out at snapshots along the MD
trajectory, hence leading to time-dependent electronic structure parameters. By
keeping only one relevant orbital per fragment, the electronic structure can be
mapped onto that of a linear chain (right panel). Transport observables can be
computed at each simulation time step. Alternatively, the time dependence of
the electronic structure (related to structural and solvent fluctuations) can be
transferred to a bosonic bath as done in this paper.

are used to compute the electronic parameters ε j(t) and V j, j+1(t) for the effective tight-
binding model introduced in equation (1) in a very efficient way; see figure 1 for a schematic
representation. The V j, j+1 are calculated using the highest occupied molecular orbital 8i

computed for isolated bases as V j, j+1 = 〈8 j |H |8 j+1〉, where the 8 j ’s can be expanded in
a valence atomic orbital basis ηµ on a given fragment: 8 j =

∑
µ c j

µηµ. The real expansion
coefficients c j

µ are obtained from calculations on isolated bases and stored for subsequent use to
calculate V j, j+1. Therefore, one can write

V j, j+1 =

∑
µ

∑
ν

c j
µc j+1

ν

〈
ηµ|H |ην

〉
. (2)

The Hamilton matrix in the atomic orbital basis Hµν = 〈ηµ|H |ην〉 evaluated using the SCC-
DFTB Hamiltonian matrix is pre-calculated and stored, thus making this step extremely
efficient, i.e. it can be calculated for geometry snapshots generated by a classical MD simu-
lation even for several nanoseconds. Additionally, the minimal linear combination of atomic
orbitals (LCAO) basis set used in the standard SCC-DFTB code has been optimized for
the calculation of the hopping matrix elements [52, 53], and the results are in very good
agreement with other approaches [43, 56]. Concerning now the coupling to the solvent, a
hybrid quantum mechanics/molecular mechanics (QM/MM) approach has been used, and
implemented in the SCC-DFTB code [57], leading to the following Hamiltonian matrix in the
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valence atomic orbital basis ην:

H QM/MM
µν = H SCC-DFTB

µν +
1

2
Sµν

{∑
δ

Qδ

(
1

Rαδ

+
1

Rβδ

)
+

∑
A

Q A

(
1

rAα

+
1

rAβ

)}
. (3)

Here, Qδ are the Mulliken charges of the quantum-mechanical region and the Q A are the
charges in the MM region (backbone, counter-ions and water), Sµν is the atomic orbital overlap
matrix, H SCC-DFTB

µν is the corresponding zero-order Hamiltonian matrix and Rαδ is the distance
between the DNA atom where the AO orbital ηµ is located and the MM atom in the solvent with
charge Qδ. The last term explicitly takes into account the coupling to the environment (solvent).
The ε j and V j, j±1 from equation (2) using equation (3) can now be calculated along the MD
trajectories [37, 53]. The off-diagonal matrix elements strongly depend on structural fluctuations
of the DNA base pairs, but they are only weakly affected by the solvent dynamics, the opposite
holding for the on-site energies that are considerably modified by solvent fluctuations [37, 53].
The Fourier transform of the on-site energies auto-correlation function provides information
about the spectral ranges that are more strongly contributing to the fluctuations of the electronic
parameters, see also the next sections. Thus, we have found that the apparently most important
modes are located around 1600 cm−1 corresponding to a base skeleton mode and at 800 cm−1

related to the water modes [53]. Both contributions modulate the on-site energies significantly
on a short time scale and a long time scale of about 1 ps, respectively.

2.2. Model Hamiltonian for electronic transport

Using equation (1) directly for quantum transport calculations may mask to some degree
different contributions (solvent, base dynamics) to charge propagation through the DNA
π -stack. Moreover, since equation (1) contains random variables through the time series, we
are confronted with the problem of dealing with charge transport in a stochastic Hamiltonian.
This is a more complex task that has been addressed, for example, in the context of exciton
transport [58]–[61], but also to some degree in electron transfer theories [62]–[64]. Here, we
adopt a different point of view and formulate a model Hamiltonian, where the relevant electronic
system, in this case the fragment orbital-derived effective DNA electronic system, is coupled
explicitly to a bosonic bath. The latter will encode through its spectral density the dynamical
information drawn from the MD simulations on internal base dynamics as well as solvent
fluctuations. The Hamiltonian can be written in the following way:

H =

∑
j

〈
ε j

〉
t
d†

j d j −

∑
j

〈
V j, j+1

〉
t
(d†

j d j+1 +h.c.)+ Hbath + Hel-bath + Htunnel + Hleads, (4)

Hbath =

∑
α

�α B†
α Bα,

Hel-bath =

∑
α, j

λαd†
j d j(Bα + B†

α),

Htunnel =

∑
k,s, j

(
tks, j c

†
ksd j + h.c.

)
,

Hleads =

∑
k,s

εksc
†
kscks.
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Figure 2. Normalized auto-correlation function [65] Ci(t)=〈δεi(t)δεi(0)〉/〈δε2
i 〉

and averaged nearest-neighbor correlation function Ci,i+1(t) = 〈δεi(t)δεi+1(0)〉/

〈δεiδεi+1〉 (inset) of the on-site energy fluctuations. Solid lines are fits to stretched
exponentials, which suggests the existence of different time scales, a typical
situation in the dynamics of biomolecules [67]. On average, the decay of Ci,i+1(t)
occurs on a much shorter time scale than that of Ci(t), so that our model will only
include in a first approximation local fluctuations, see equation (5).

The time averages (over the corresponding time series) of the electronic parameters 〈ε j〉t and
〈V j, j+1〉t have been split off to provide a zero-order Hamiltonian that contains dynamical effects
in a mean-field-like level. The effect of the fluctuations around these averages is hidden in
the vibrational bath, which is assumed to be a collection of a large (N → ∞) number of
harmonic oscillators in thermal equilibrium at temperature kBT . The bath will be characterized
by a spectral density J (ω), which can also be extracted from the MD simulations, as shown
below and in [65]. Since we are interested in calculating the electrical response of the system,
the charge-bath model has to also include the coupling of the system to electronic reservoirs
(electrodes). The coupling to the electrodes will be treated in a standard way, using a tunneling
Hamiltonian Htunnel that describes the coupling to the s-lead with s = left (L) or right (R). Later
on, the so-called wide-band limit will be introduced (the corresponding electrode self-energies
are purely imaginary and energy independent), thus reducing the electrode–DNA coupling to a
single parameter.

The previous model relies on some basic assumptions that can be substantiated by the
results of the MD simulations [53]: (i) the complex DNA dynamics can be well mimicked within
the harmonic approximation by using a continuous vibrational spectrum; (ii) the simulations
show that the local on-site energy fluctuations are much stronger in the presence of a solvent
than those of the electronic hopping integrals (see also the end of the previous section), so
that we assume that the bath is coupled only diagonally to the charge density fluctuations; (iii)
fluctuations on different sites display rather similar statistical properties, so that the charge–bath
coupling λα is taken to be independent of the site j . This latter approximation can be lifted by
introducing additional site-non-local spectral densities J j, j+1(ω); this, however, would make
the theory more involved and less transparent. In figure 2, we show typical normalized auto-
correlation functions of the on-site energy fluctuations for the DD in both solvent and vacuum
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conditions as well as one case of off-diagonal correlations between nearest-neighbor site
energies (inset). When speaking of simulations in vacuum conditions, we mean that the last term
in equation (3) is left out. Also shown are fits to stretched exponentials, which are in general
equivalent to a sum of simple exponential functions. This suggests the presence of different
time scales and the nontrivial time dependence of the fluctuation dynamics. The fits become
obviously less accurate at long times due to the reduced number of sampled data points with
increasing time (the oscillatory behavior becomes stronger). From the figure we first see that
the off-diagonal correlations decay on a much shorter time scale than the local ones, so that a
first approximation to neglect them can be justified; further, the decay of the correlations for the
vacuum simulations is considerably faster than in a solvent, indicating the strong influence of
the latter in gating the electronic structure of the biomolecule. The corresponding correlation
functions for the hopping integrals V j, j+1(t) (not shown) display even shorter relaxation times,
so that the approximation V j, j+1(t) = 〈V j, j+1(t)〉t is enough for our purposes (the hopping
integrals are self-averaging). We also mention that a stretched exponential behavior has also
been investigated in a more general context for analyzing the influence of static and dynamic
torsional disorder on the kinetics of charge transfer donor–bridge–acceptor systems [66].

In order to deal with the previous model, we first perform a polaron transformation of
the Hamiltonian equation (4), using the generator U = exp[

∑
`,α gαd†

` d`(B†
α − Bα)], which is

nothing else than a shift operator of the harmonic oscillator equilibrium positions. The parameter
gα = λα/�α gives an effective measure of the electron–vibron coupling strength. Since we will
work in the wide-band limit for the electrode self-energies, the renormalization of the tunneling
Hamiltonian by a vibronic operator will be neglected. As a result, we obtain a Hamiltonian
with decoupled electronic and vibronic parts and where the on-site energies are shifted as
〈ε j〉t → 〈ε j〉t −

∫
∞

0 dωJ (ω)/ω. However, as is well known [68], the retarded Green function
of the system is now an entangled electronic–vibronic object that cannot be treated exactly; we
thus decouple it in the approximate way [55, 69]:

Gnm(t, t ′) = −iθ(t − t ′)
〈[

dn(t)X †(t), d†
m(t ′)X (t ′)

]
+

〉
≈ −iθ(t − t ′)

{〈
dn(t)d

†
m(t ′)

〉 〈
X †(t)X (t ′)

〉
+

〈
d†

m(t ′)dn(t)
〉 〈
X (t ′)X †(t)

〉}
= θ(t − t ′)

{
G>

nm(t, t ′)e−φ(t−t ′)
− G<

nm(t, t ′)e−φ(t ′−t)
}

, (5)

φ(t) =

∑
α

(
λα

�α

)2 [
(1 + Nα)e

−i�α t + Nαe+i�α t
]
.

In this equation, θ(t − t ′) is the Heaviside function and the pure bosonic operator X (t) =

exp[
∑

α gα(B†
α − Bα)]. In the last row of equation (5), we can pass to the continuum limit and

express φ(t) in terms of the bath spectral density J (ω) [70]:

φ(t) =
1

h̄

∫
∞

0
dω

J (ω)

ω2
coth

h̄ω

kBT
(1 − cos ωt) − i

1

h̄

∫
∞

0
dω

J (ω)

ω2
sin ωt . (6)

2.3. The electrical current

We derive in this section the expression we are going to use to calculate the electrical current
through the DNA oligomer under study. The starting point is the well-known Meir–Wingreen
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expression for the current from lead s [71]:

Is =
2e

h̄

∫
dE

2π
Tr

{
6<

s (E)G>(E) − 6>
s (E)G<(E)

}
.

Now, we can exploit the decoupling approximation used in equation (5) together with the wide-
band limit in the electrode–molecule coupling to write, for example, for the left electrode:

6<
L (E)G>(E) =

∫
dE ′

2π
fL(E)(1 − fR(E ′))t (E ′)8(E − E ′),

6>
L (E)G<(E) =

∫
dE ′

2π
(1 − fL(E)) fR(E ′)t (E ′)8(E ′

− E),

8(E) =

∫
dt

h̄
e(i/h̄)Ete−φ(t).

Here, we have used the explicit expressions for the greater- and lesser-Green functions:

G>,<
0 (E) = G0(E)(6

>,<
L (E) + 6

>,<
R (E))G†

0(E), (7)

the index 0 indicating that the vibrational degrees of freedom have already been decoupled.
The transmission-like function t (E) is given by t (E) = Tr{G0(E)0LG†

0(E)0R. The retarded
matrix Green function G0(E) is calculated without electron–bath coupling, but including the
interaction with the electrodes: G−1

0 (E) = E + iη − H0 + i0L + i0R, with H0 being the electronic
part of the Hamiltonian of equation (4). Using these results, the right-going current can be
written as

IL =
2e

h̄

∫
dE

2π

∫
dE ′

2π
t (E ′)

{
fL(E)(1− fR(E ′))8(E − E ′)−(1− fL(E)) fR(E ′)8(E ′

− E)
}
,

(8)

a similar expression holding for the left-going current, when the indices L and R are
interchanged. The total current can be written in a symmetrized way: IT = (IL − IR)/2. Note that
the previous expression is similar to that obtained in the context of the P(E) theory of Coulomb
blockade, where the electromagnetic environment plays the role of the bosonic bath [70, 72]. By
looking at equation (6), two limiting cases can immediately be obtained: the zero charge–bath
coupling (φ = 0), which implies 8(E) = 2πδ(E). In this limit, we recover the conventional
expression for coherent transport, involving only the transmission function t (E). In the high-
temperature and/or strong coupling limit to the bath, a short-time expansion of φsc(t) can be
performed, yielding

φsc(t) =
t2

2h̄

∫
∞

0
dω J (ω) coth

h̄ω

kBT
− i

t

h̄

∫
∞

0
dω

J (ω)

ω
= κthermt2

− i
Ereorg

h̄
t.

In the former expression,
√

κtherm is related to an inverse decoherence time. In the high-
temperature limit, κtherm ∼ kBT E reorg. The Fourier transform of e−φsc(t) can be calculated
straightforwardly and gives

8(E) =

√
π

h̄2κtherm
exp

[
−

(E + Ereorg)
2

4h̄2κtherm

]
.

Thus, the current calculated using equation (8) becomes a convolution of t (E) with a Gaussian
function. Note the similarity of this expression with the Franck–Condon factor appearing in the
Marcus electron transfer theory.
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2.4. Spectral density from MD

The next issue at stake is how to relate the bath spectral density J (ω) to the time series of the
electronic parameters as obtained through the MD simulations. To illustrate this point, we will
consider the simple case of a single level, whose site energy is a Gaussian random variable,
coupled to left and right electrodes according to the Hamiltonian (we assume for simplicity that
〈ε(t)〉 = 0):

H = δε(t)d†d + Htunnel + Hleads. (9)

To deal with this problem, we may use equation of motion techniques for the retarded dot Green
function G(t, t ′) = −(i/h̄)θ(t − t ′)〈{d(t), d†(t ′)}〉 in the time domain:

(ih̄∂t − δε(t))G(t, t ′) = δ(t − t ′) +
∑
k,α

t†
k,αGkα(t, t ′), (10)

with Gkα(t, t ′) = −(i/h̄)θ(t − t ′)〈ck,α(t), d†(t ′)〉. A similar equation of motion for the latter
function allows us to introduce the electrode self-energies:

(ih̄∂t − δε(t))G(t, t ′) = δ(t − t ′) +
∫

dτ6(t, τ )G(τ, t ′),

6(t, τ ) =

∑
k,α

|tk,α|
2e−iεk,α t . (11)

Note that the Green function thus obtained is still a random function, since no average over
the random variable δε(t) has as yet been performed. Using the wide-band limit in the lead
self-energies 6α(t, t ′) = −i0αδ(t − t ′), we obtain, with 0 = 0L + 0R:

(ih̄∂t − δε(t) + i0)G(t, t ′) = δ(t − t ′). (12)

Introducing the time exponential U(t, t ′) = exp(−(i/h̄)
∫ t

t ′ ds(δε(t) − i0)) allows us to write a
closed solution for the dot Green function:

G(t, t ′) = −
i

h̄
θ(t − t ′)U(t, t ′). (13)

The average Green function over the random variable δε(t) yields now in energy space:

〈G(E)〉 = −
i

h̄

∫
∞

0
dt e(i/h̄)E(t−t ′)

〈
U(t − t ′)

〉
= −i

∫
∞

0
dt e(i/h̄)(E+i0)(t−t ′)

〈
e−(i/h̄)

∫ t
t ′ dsδε(s)

〉
. (14)

Performing now a cumulant expansion [73] of the averaged exponential and taking into account
that cumulants higher than the second one exactly vanish due to the Gaussian nature of the
fluctuations and to the fact that δε(t) is a classical variable, we obtain (with t ′

= 0)

〈G(E)〉 = −
i

h̄

∫
∞

0
dt e(i/h̄)(E+i0)t e−(1/h̄2)

∫ t
0 ds

∫ s
0 ds′ 〈δε(s)δε(s′)〉, (15)

which is the formally exact solution of the problem. We may now look at the same problem
from a different point of view by considering explicitly the coupling of a single site with
time-independent on-site energy to a continuum of vibrational excitations. Using the polaron
transformation together with the approximations introduced at the beginning of section 2.2, we
can write the retarded Green function as

G(E) = −
i

h̄

∫
∞

0
dt e(i/h̄)(E+i0)t e−φ(t), (16)
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where φ(t) has already been defined in equation (6). By comparison of equations (15) and (16),
there must exist a relation between the (real) correlation function and the real part of φ(t). The
latter can be rewritten in the following way:

Re φ(t) =
1

h̄

∫
∞

0
dω

J (ω)

ω2
coth

h̄ω

kBT
(1 − cos ωt)

=

∫ t

0
ds

∫ s

0
ds ′

{
1

h̄

∫
∞

0
dω J (ω) coth

h̄ω

kBT
cos[ω (s − s ′)]

}
,

from which we conclude that〈
δε(s)δε(s ′)

〉
= h̄

∫
∞

0
dω J (ω) coth

h̄ω

kBT
cos [ω (s − s ′)].

From this, it follows, by inversion that,

J (ω) =
2

π h̄
tanh

h̄ω

kBT

∫
∞

0
dt cos ωt C(t) =

2

π h̄
tanh

h̄ω

kBT
j (ω). (17)

The previous result was obtained in [65] in the weak coupling, perturbative regime to the
vibrational system; we have shown here that it can be extended also to the case of arbitrary
coupling. Similar expressions could be derived for (spatially) non-local spectral densities.

2.5. Results

To illustrate our methodology, we have focused on DD, which has a non-homogeneous base
sequence. In contrast to our previous study [36], where homogeneous DNA sequences were
addressed like poly(G)-poly(C) and poly(A)-poly(T), the study of the DD nicely illustrates the
role of the solvent fluctuations in gating the electronic structure. To study the effect of the
conformational dynamics as well as the fluctuations of the environment on the charge transport
properties, we have performed classical MD simulations using the AMBER-parm99 [74] force
field with the parmBSC0 extension [75] as implemented in GROMACS [76] software package.
The static geometries were built with 3DNA program [77], while the starting structures for the
MD simulations were created using the make-na server [78]. After a standard heating procedure
followed by a 1 ns equilibration phase, we performed 30 ns MD simulations with a time step of
2 fs. The simulations were carried out in a rectangular box with periodic boundary conditions
and filled with 5500 TIP3P water molecules and 22 sodium counterions for neutralization.
Snapshots of the molecular structures were saved every 1 ps, for which the charge transfer
parameters were calculated with the methodology described in the previous sections. Upon
mapping the electronic structure onto a linear chain as discussed in the former sections, we
have first computed the time- and energy-dependent quantum-mechanical transmission function
T (E, t) by evaluating for every set of charge transfer parameters, i.e., at each simulation
time step t , 〈T (E, t)〉t = (1/TMD)

∑
j T (E, t j). This quantity is expected to provide some

qualitative insight into different factors affecting transport (solvent versus vacuum), but its
use is restricted by the fact that for longer chains inelastic, fluctuation-mediated channels will
play an increasing role and then a pure elastic transmission cannot catch all the transport
physics. Implicit in this approach is the assumption that the shortest time scale of the problem
is provided by the propagating charge, so that the time dependence can be considered as a
pure parametric one. In this latter case, the model equation (5) seems to us more appropriate,
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Figure 3. Upper panel: time-averaged transmission function for simulations
performed in the solvent and in vacuum. Lower panel: coherence parameter
C(E) for the DD in the solvent and in vacuum. Note that the influence of
the solvent fluctuations is to spread out the spectral support of C(E). As
expected, the coherence parameter is on average larger for the vacuum case
where a large part of the fluctuations is suppressed due to the absence of an
environment. Nevertheless the transmission in the vacuum case is much smaller,
nicely illustrating the positive influence of the environment in gating charge
migration.

since it includes the dressing of the electronic degrees of freedom by the structural fluctuations.
In figure 3, we show the averaged transmission function (upper panel) for the cases where
solvent effects are included or neglected, respectively. We clearly see that solvent-mediated
fluctuations considerably increase and broaden the transmission spectrum. Its fragmented
structure is simply due to the fluctuations in the on-site energies, which make the system
effectively highly disordered. Another way of looking at the effect of fluctuations is via the
introduction of a coherence parameter [36], which is defined as C(E) = 〈T (E, t)〉2

t /〈T (E, t)2
〉t .

If the fluctuations are weak C(E) goes to one, while a strongly fluctuating system will lead to
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Figure 4. Time average of the absolute value of the on-site energies along
the segment covering bases 3 and 10 of the DD, i.e. over the sequence
5′-CGAATTCG-3′) for simulations in vacuum (upper panel) and in the solvent
(lower panel). The outermost two bases on each end were not included in the
calculations to avoid undesired boundary effects. The averaged energy profile in
the presence of the solvent becomes smoother, but also the fluctuations around
the averages are stronger. This smoothing reduces the energy barriers between
the sites and hence favors charge migration.

a considerable reduction of C(E). Obviously, this parameter has only a clear meaning for the
spectral support of the transmission function. C(E) is shown in the lower panel of figure 3;
the coherence parameter in vacuum conditions can become larger than in the solvent for some
small energy regions due to the reduction of the fluctuations. However, this does not turn out
to be enough to increase the transport efficiency for the special base sequence of the Dickerson
DNA, since this system has in the static limit a distribution of energetic barriers due to the base
pair sequence. To further illustrate the influence of the solvent, we have plotted in figure 4 the
time-averaged on-site energies along the model tight-binding chain. Remarkably, the presence
of the solvent ‘smoothes’ the averaged energy profile (although the amplitude of fluctuations
clearly becomes stronger). To compute the current through the system, we use the Hamiltonian
equation (5) and the current expression, equation (8), derived with this model. The Fermi
energy in these calculations was fixed at the upper edge of the transmission spectrum (see
figure 3). The qualitative results, however, are not considerably changed by slightly changing
its position. In figure 5, the current is shown for the two cases of interest. Due to the presence
of tunnel barriers in the wire, which are not fully compensated on average by the gating effect
of the environment, the absolute current values are rather small when compared with those of
homogeneous sequences [36]. However, the current including the solvent is roughly 15 times
larger than that obtained from the simulations in vacuum. Although our model Hamiltonian in
equation (5) does not fully contain all the dynamical correlations encoded in the time-dependent
electronic parameters, we nevertheless expect that their inclusion would lead to an even
further increase of the difference between the solvent and vacuum results, thus supporting our
main conclusions.
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Figure 5. Electrical current for the DD in both vacuum (no solvent) and including
the solvent. The current is considerably enhanced upon inclusion of solvent
fluctuations, nicely demonstrating the strong gating effect of the latter on the
energy profile of the DNA chain.

3. Conclusions

We have presented a hybrid methodology that allows for a very efficient coarse-graining of the
electronic structure of complex biomolecular systems and allows us to include the influence
of structural fluctuations in the electronic parameters. The time series obtained in this way
allow us to map the problem onto an effective low-dimensional model Hamiltonian describing
the interaction of charges with a bosonic bath, which comprises the dynamical fluctuations.
The possibility to parameterize the bath spectral density J (ω) using the information obtained
from the time series makes our approach very efficient, since we do not need to use the typical
phenomenological ansatze (ohmic, Lorentzian, etc) to describe the bath dynamics. The example
presented here, the DD, clearly shows that solvent-mediated gating may be a very efficient
mechanism supporting charge transport if the static DNA reference structure already possesses
a disordered energy profile (due to the base sequence). Our method is obviously not limited
to the treatment of DNA, but it can equally well be applied to deal with charge migration in
other complex systems like molecular organic crystals or polymers, where charge dynamics and
coupling to fluctuating environments play an important role [62]–[64], [79]–[83].
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