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In the second term on the right-hand side of equation (4.10), the square brackets should be
divided by [ω + ω′

− u · (k + k′)]2, and the second term inside the braces on the right-hand side
of (4.12) by [x + x ′

− v · (κ + κ ′)]2. This rectifies a copying error in the manuscript.
Consequently, to overall order v2 and by virtue of the delta functions, the last factor on the

right-hand side of (5.5) should be replaced by δ(µ − x)/(µ + x ′)4, with evident corresponding
changes in (5.6), (5.7) and (6.5); and (5.8) is replaced by

PB '
9h̄αβ2u2

64ζ 5
·

ωS�γ

(� + ωS)
3 .

The discrepancy (6.4) with the result PSB of Scheel and Buhmann (2009) then reduces to the
purely numerical ratio PSB/PB = 16/3. This removes any indications that it might stem from
differences in handling line shapes, and leaves differences in handling polarizations as the only
readily visible suspects.

I am indebted to Peter Milonni for spotting the error.
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Abstract. We calculate the frictional resistance experienced by an atom,
modelled as a harmonic oscillator, moving with constant velocity u at a
fixed distance ζ outside and parallel to the surface of a Drude-modelled
half-space. Our method applies in the nonrelativistic/nonretarded/electrostatic
regime, where u is far below c, and u/ζ is far below any important natural
frequency of the atom or of the material. For a dissipative (e.g. for an ohmic)
half-space and for the low values of u least unlikely to be of practical interest,
this force is dominated by a term proportional to u/ζ 8, found perturbatively to
fourth order in the interaction between atom and half-space. It appears to depend
rather sensitively on how line shapes are handled.
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1. Introduction

This is the second of two papers meant as readily accessible checks on some current theories of
quantum friction between finitely separated bodies in uniform relative motion. Throughout, we
take retardation effects to be negligible and the temperature to be zero. The first paper (Barton
2010a), to be cited as I, introduced the exercise, and dealt with the force between two atoms: a
natural preliminary, although complicated by the fact that the component of the force parallel to
the motion (call it the drag force) is both position-dependent and mostly reversible, with only a
small contribution from true, irreversible, frictional dissipation. The present paper (II) is free of
these complications. It deals with an atom, modelled as a harmonic oscillator, moving outside
a Drude-modelled half-space. Here too one finds nonzero friction. The results are very similar
but not identical to the appropriate limits of those recently reported by Scheel and Buhmann
(2009). References to other works will be given later, in context.

Our nonretarded approximations are restricted to separations smaller than the dominant
wavelengths 3 characterizing atom or half-space: for instance, to distances smaller than
3p = c/ωp in the case of plasmas with plasma frequency ωp. Hence they can say nothing about
extensions of Casimir or of Casimir–Polder theories from perfect to imperfect but nondispersive
reflectors, e.g. to insulators with finite but frequency-independent refractive index: such models
lack the inner regions where, realistically, photon-dominated long-distance forces modulate
to the electrostatics-dominated short-distance van der Waals (VdW) forces. On the other
hand, in the small-distance nonretarded regime corrections for low but finite temperatures
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remain minor1, whereas at very long distances they can become dominant even when formally
free of c.

We stress that for our very limited purposes one requires only elementary nonrelativistic
quantum mechanics with explicit Hamiltonians. No appeal is needed to QED, to stress tensors
or to Green’s functions. In particular, we are careful to avoid recourse to the widely invoked
Lifshitz theory, because it lacks an intelligible Hamiltonian and has invited untenable inferences
more than once. (A remarkable rescue operation outlined by Philbin (2010) seems capable
of validating many Lifshitz-derived results by constructing an explicit and unexceptionable
Hamiltonian directly from the observable imaginary parts of any dielectric response functions
in question.)

Section 2 spells out our Hamiltonians for atom and half-space, and for the interaction
between them, using the Huttner–Barnett theory for absorptive materials (which for our
purposes is equivalent to Philbin’s). One needs to distinguish sharply between (i) materials
that are dispersive but not truly (i.e. not irreversibly) absorptive, e.g. plasmas with finite natural
frequencies ωp but no ohmic resistance; and (ii) materials that are both. Contrary to widespread
folklore, both types behave causally, i.e. both obey appropriate Kramers–Kronig relations2. The
significant difference is that the absorption lines of the former have zero width (as e.g. in (2.8)
and (2.12) below), while the lines of the latter have finite width. In particular, one must not
confuse nondissipative with nondispersive limits.

Because we rely on perturbation theory, we must exclude the resonant case where the
natural frequencies of atom and half-space are nearly the same.

Section 3 recalls the standard second-order expression for the attractive force and explains
why, unlike most VdW effects, the friction forces are dominated by contributions not from
first-order but from second-order perturbation theory, i.e. by contributions not of second but
of fourth order in the interaction Hamiltonian. Section 4 derives these forces via the power-
dissipation P calculated by second-order time-dependent perturbation theory, and shows that
P = PA + PB splits naturally into two parts: only PA survives for nondispersive atoms, but it is
PB that turns out to dominate under most physically interesting conditions. Section 5 explicates
the consequences for low speeds, such as those that one is most likely to meet in practice: the
main result is given by (5.7) plus (5.8). Section 6 compares our conclusions with the appropriate
limit of those reached by Scheel and Buhmann (2009) and draws some tentative (because
only perturbative) inferences about the notorious and until recently still contentious problem
of friction between two half-spaces3.

The appendix derives the frictional force on an atom treated as nondispersive ab initio
(i.e. not only in some limit), hypothetical but remarkably easy to find.

2. The model

The atom is constrained to move with constant velocity u = ux̂ parallel to a half-space z < 0,
at a fixed distance ζ . We model it as three dynamically identical simple-harmonic oscillators
mutually at right angles, with frequency �, ignoring the interactions of the three directly with

1 This contrasts sharply with VdW friction between two half-spaces, which at any fixed finite temperature T and
small enough velocity is dominated by a term proportional to T 2 (Barton 2010b).
2 For a general introduction to these relations see e.g. Goldberger and Watson (1964) and Jackson (1999). Their
application to Casimir problems is discussed e.g. by Klimchitskaya et al (2009).
3 See e.g. Leonhardt (2010) and Pendry (2010).
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each other. The zero-point energy is dropped, and the energy eigenstates are written as |n〉, with
eigenvalues nh̄�. The ground state is |0〉; we abbreviate the first-excited states as |η〉, where η is
a polarization vector, used mainly as a bookkeeping device, with unit component pointing along
each oscillator. For instance, for a single oscillator perpendicular to the surface, one would
have η = (0, 0, 1); for our isotropic three-dimensional (3D) oscillator η = (η‖, 1)=(1, 1, 1).
In particular, ∑

η

ηiη j = δi j . (2.1)

The internal coordinate is s. Recall the oscillator range parameter b, the electric dipole operator
D = es and its matrix elements, and the zero-frequency polarizability α:

b =
√

h̄/2m�, 〈η| D j |0〉 = η j eb, α = 2 |〈1| D1 |0〉|
2 /h̄�= e2/m�2. (2.2)

There is an obvious transcription to an atom with a dominant excitation energy E ∼ h̄� and
arbitrary matrix elements 〈i |D j |0〉. The nondispersive limit is �→ ∞ and |〈1|D1|0〉|

2
→ ∞ at

fixed α, reducing the polarizability to α at all frequencies.
We adopt the dipole approximation, which assumes that b � ζ .
The dielectric function of the half-space is4,5

ε = 1 +
ω2

p

ω2
0 −ω2 − iω0

, ω2
S = ω2

0 +ω2
p/2, β2

=
ω2

p

2ω2
S

, 0 =
ω2

p

4πσ
. (2.3)

The Drude model for metals with conductivity σ has ω0 = 0, with squared surface-plasmon
frequency ω2

S = ω2
p/2 and β = 1. Perfect reflection (|ε| → ∞) would require ω2

p � ω2
0 � ω2

�

ω0, entailing ω2
S � ω2

� ω0. Imperfect but nondispersive reflection (constant real ε = n2)
would require 0 = 0 and ω2

0, ω
2
p � ω2 at fixed (1 +ω2

p/ω
2
0)= n2. We are not committed to

either approximation. But we consider only weak dissipation, 0/ωS � 1; in metals, this ratio is
typically 10−2–10−3.

The resonant scenario |ωS −�|/�� 1 is excluded, because it requires special treatment
(Barton 1978).

Because we remain in the non-retarded regime (electrostatics, as if c → ∞, i.e.
(ωS, �)ζ/c � 1) there are no photons: in the absence of the half-space, excited atoms would
live forever. By the same token we consider only motions slow in the sense that u/c � 1.

To make dissipation (0 6= 0) and thereby (2.3) amenable to standard Hamiltonian methods,
we use the classic Huttner–Barnett model (see e.g. Huttner and Barnett (1992), Matloob et al
(1995), Matloob and Loudon (1996), Barnett et al (1996)). The details needed for and adapted
to our regime have been spelled out elsewhere (Barton (1997), (2000), where the symbol ‘σ ’ is
used for the ‘β’ here).

We work in the Schrödinger picture. The quantized potential outside (z > 0) reads

8(x, y, z)= −ωSβ

∫
d2k

∫
∞

0
dω

gω
F(ω, ωS)

akω

√
h̄

4πkω
exp [i(k1x + k2 y)− kz] + H.c., (2.4)

4 We use unrationalized Gaussian units. The frequency of the atomic oscillator, called ω in I, has already been
relabelled as �. Here, ω is merely a variable; ω0 is reserved for the frequency parameterizing the (nominally
nonelectric) restoring forces in the material, i.e. for the frequency at which its polarization would oscillate in the
absence of electric forces between its constituents (as if in the limit of extreme dilution).
5 The symbol β here is unrelated to the ‘β’ in I.
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where H.c. stands for the Hermitian conjugate, k = (k1, k2)= (k cosφ, k sinφ) and

g2
ω = 2ω20/π, F(ω, ωS)= ω2

S −ω2
− iω0. (2.5)

To realize the non-dissipative (nd) limit 0 = 0 from the outset, one replaces (2.4) by

0 = 0 : 8nd(x, y, z)= −β

∫
d2kak

√
h̄ωS

4πk
exp [i(k1x + k2 y)− kz] + H.c. (2.6)

It proves convenient to introduce dimensionless variables6

x ≡
ω

ωS
, µ≡

�

ωS
, c ≡

0

ωS
, v ≡

u
ζωS

, κ ≡ kζ, κ ·v =
k·u
ωS
, (2.7)

with v here analogous to the differently defined v in I. Although our general results emerge in
a form valid for any value of v, those of the present paper will be implemented only for small
v � 1, which fortunately are those least unlikely to matter in practice. Approximations for large
v are surprisingly onerous.

Much use will be made of

lim
0/ωS→0

ωSg2

|F |
2 = lim

0/ωS→0

2ωSω
20

[(ω2
S −ω2)2 +ω202]

= lim
c→0

2x2c/π

[(1 − x2)2 + x2c2]

= lim
c→0

2c/π

[(1 − x2)2 + c2]
= δ(1 − x)= ωSδ(ωS −ω). (2.8)

Under
∫

∞ dω . . . , the limit applies with test functions f (ω) for which
∫

∞ dω f (ω)/ω2

converges.
The interaction Hamiltonian is

V = −D · ∇8(ut, 0, ζ ), Vnd = −D · ∇8nd(ut, 0, ζ ). (2.9)

The Golden Rule gives the (polarization-dependent) decay rates of the first-excited atomic
states as

γη =
2π

h̄
ω2

Sβ
2

∫
d2k

∫
∞

0
dω

g2

|F |
2 ·

h̄

4πkω
[(η · k)2 + k2η2

3]
e2h̄

2m�
e−2kζδ (h̄�− h̄ω) ,

[
γ1,2

γ3

]
=

[
1/2
1

]
γ, γ =

(e2/m)β20ω2
S/4ζ

3

[(�2 −ω2
S)

2 +�202]
, (2.10)

γ =
αβ20ω2

S�
2/4ζ 3

[(�2 −ω2
S)

2 +�202]
=
αβ2ωS

4ζ 3
·

cµ2

[(1 −µ2)2 + c2µ2]
. (2.11)

Written in terms of � this is a purely classical expression. Nondissipatively,

lim
0/ωS→0

γ = (αβ2ω2
S/4ζ

3)(π/2)δ(�−ωS). (2.12)

3. First-order perturbation theory

Recall that, to determine energies and transition rates correct to second order in V , state vectors
need be correct only to first order.

6 Do not confuse this x with the position coordinate, nor this c with the speed of light.
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3.1. Attraction

The mean potential energy between a stationary atom and a nondissipative half-space is given
by the well-known expression from second-order perturbation theory using (2.6, 2.9b):

U (2)
nd (u = 0)= −

e2β2h̄ωS

16m�(ωS +�)ζ 3

[
1

2
η2

‖
+ η2

3

]
= −

αβ2h̄ωS�

16(ωS +�)ζ 3

[
1

2
η2

‖
+ η2

3

]
. (3.1)

Isotropically, [ . . . ] = 2.
For a slowly moving atom

U (2)
nd (u = ux̂)= −

αβ2h̄ωS�

16(ωS +�)ζ 3

{[
1

2
η2

‖
+ η2

3

]
+

3

2

[
3

4
η2

1 +
1

4
η2

2 + η2
3

](
u

(ωS +�)ζ

)2
}
. (3.2)

Isotropically, both [ . . . ] reduce to 2, reproducing the result found by Ferrel and Ritchie (1980).

3.2. Drag

A steady drag force F = −ûF on the atom dissipates power P = uF , supplied by the agency
enforcing the motion. It operates through momentum transfer from atom to half-space. Transfer
mechanisms that require the energy to rise by at least h̄ωmin in the half-space and by h̄�min in
the atom contribute to F amounts that at low speeds and/or long distances are exponentially
small, in the sense of having factors exp[ − 2ζ(ωmin +�min)/u]. In this paper, we disregard
all such contributions and look only for contributions proportional to powers of u and inverse
powers of ζ .

To second order in V and with a nondissipative half-space, ωmin = ωS. Moreover, to second
order �min =�, because the atom too must be excited, while the widths of the excited states
must be taken as zero, because, as (2.10) reminds one, the true widths are themselves of second
order. Nondissipatively therefore P is small to the tune of exp[ − 2ζ(ωmin +�min)/u].

Thus, power-law contributions to P enter only to fourth (or higher) order in V and require
state vectors correct to second order.

4. Second-order perturbation theory

4.1. Generalities

We study a dissipative half-space. Initially (as t → −∞) the atom is in its ground state, and
there are no plasmons; we calculate the probability |c(t)|2 that at time t there are two plasmons,
kω and k′ω′, with the atom still in its ground state. This becomes possible on admitting into c
terms of second order in V . It will turn out that |c(t)|2 grows linearly with t at large t , and we
identify7

P = lim
t→∞

1

2

∫∫
d2k dω

∫∫
d2k ′dω′h̄

(
ω +ω′

)
|c(t)|2 /t, (4.1)

where the prefactor 1/2 compensates for double counting the identical states |kω, k′ω′
〉 and

|k′ω′,kω〉.

7 Alternatively one can calculate the t → ∞ limit of the expectation value of the force operator, using the
appropriately perturbed state vector. To O(V 2) this is an attractive option, and the best way to (3.2); but to O(V 4)

the bookkeeping becomes very awkward.
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In a self-explanatory notation

|ψ(t)〉 =

∑
n

cn(t) exp(−iωnt) |n〉, |ψ(−∞)〉 = |i〉,

dc j

dt
= −

i

h̄

∑
n

cn(t) exp(iω jnt) 〈 j | V |n〉, ω jn ≡ ω j −ωn, cn(−∞)= δni .

Indicating powers of V by superscripts, one has (Dirac 1958)

cn(t)= δni + c(1)n (t)+ c(2)n (t)+ · · · , c(1)n (t
′)= −

i

h̄

∫ t ′

−∞

dt ′′ exp(iωni t
′′) 〈n| V (t ′′) |i〉,

(4.2)

c(2)f (t)=

(
−i

h̄

)2∑
n

∫ t

−∞

dt ′ exp(iω f nt ′) 〈 f | V (t ′) |n〉

∫ t ′

−∞

dt ′′ exp(iωni t
′′) 〈n| V (t ′′) |i〉.

In our case, |i〉 = |0〉|0〉 and | f 〉 = |kω,k′ω′
〉|0〉. The only intermediate states |n〉 are |k′ω′〉 |η〉,

with ω f n = −�+ω and ωni =�+ω′, plus |kω〉 |η〉, with ω f n = −�+ω′ and ωni =�+ω. In
each case, one must sum over the polarization η of the virtual excited state.

4.2. Amplitude

To identify P with confidence it helps to separate the effects of the perturbation in producing
the static potential from those that depend on the motion. To this end we adopt the following
scenario: for t < 0 the atom is at rest at (0, 0, ζ ); the initial state vector is the direct-product
ground state |ψ(−∞)〉 = |0〉|0〉. For t < 0, the interaction is taken as V × exp(−λt), where the
exponential is the familiar adiabatic switching factor. As soon as it is safe we take the limit
λ→ 0. For t > 0, we use V without a switching factor, but with the atom at (ut, 0, ζ ).

The integrations prescribed by (4.2) are elementary but moderately tedious. Defining

10 ≡ ω− k · u, 1′

0 ≡ ω′
− k′

· u, 1≡10 +1′

0 = ω +ω′
− k · u − k′

· u, (4.3)

one eventually finds

c(2)(t)= −
αβ2�ω2

S

8π
exp[−(k + k ′)ζ ]

√
kk ′gg′

√
ωω′F∗(ω)F∗(ω′)

QM(t), (4.4)

where (2.1) has been used to obtain

Q ≡

∑
η

[η · (−ik̂ − ẑ)][η · (−ik̂′
−ẑ)] = 1 − k̂ · k̂′

= [1 − cos(φ−φ′)], (4.5)

and where

M(t)=

{
−

1

ω +ω′

[
1

�+ω
+

1

�+ω′

]
−

[eit1
− 1]

1

[
1

�+10
+

1

�+1′

0

]
+

[eit (−�+10) − 1]

(−�+10)

×

[
k′

· u
(�+ω′) (�+ω′ − k′ · u)

]
+

[eit (−�+1′

0) − 1]

(−�+1′

0)

[
k · u

(�+ω) (�+ω− k · u)

]}
.

(4.6)

The first term could of course have been found equally well by time-independent perturbation
theory.

It is worth noting thatM(t) knows nothing about ωS.
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4.3. Power

For insight into the behaviour ofM(t) and of |M(t)|2 at large t , recall that

[eitν
− 1]

ν
=

ieitν/2 sin (tν/2)

(ν/2)
→

t→∞
ieitν/2πδ (ν/2)= i2πδ(ν), (4.7)

and ∣∣∣∣ [eitν
− 1]

ν

∣∣∣∣2 →
t→∞

(2π)2δ2(ν)= t × 2πδ (ν) , (4.8)

warranted by comparing the two representations

lim
t→∞

sin(tν)

ν
= πδ(ν), lim

t→∞

sin2(tν)

tν2
= πδ(ν). (4.9)

Accordingly, at large t contributions8 to |M(t)|2 that are nonoscillatory and t-proportional
arise only from the individually squared moduli of the second, third and fourth terms inside the
braces in (4.6). Eventually, exploiting the delta functions, one finds that

lim
t→∞

(
|M(t)|2

t

)
= 2π

{
δ (ω +ω′

− u · (k + k′)) 4�2

(�+ω− k · u)2 (�+ω′ − k′ · u)2

+

[
δ(�−ω + k · u)

(�+ω′)2

(
k′

· u
)2

+
δ(�−ω′ + k′

· u)

(�+ω)2
(k · u)2

]}
. (4.10)

Substitution into (4.1) via (4.4) then leads to9

P =
h̄α2β4�2ω4

S0
2

16π 3

∫∫
d2k d2k ′ exp[−2(k + k ′)ζ ]kk ′Q2

×

∫
∞

0

∫
∞

0
dω dω′

ωω′ (ω +ω′)

|F(ω, ωS|
2
|F(ω′, ωS|

2 × {from (4.10)}. (4.11)

It is reassuring to note that P vanishes as ωS → ∞: the field cannot then penetrate into the
half-space, and it cannot dissipate energy elsewhere.

8 How large t should be emerges only from (4.11) below: the δ(ν) delivered by (4.7)–(4.9) approximate peaks that
must be narrower than the factors multiplying {. . .} in the integrand of (4.11), whence we require t0 � 1. (Recall
that here we are concerned specifically with nonzero 0.) Finite-t contributions are much harder to determine.
For instance, even in second order there must be transients just after t = 0, if only to supply the u2-proportional
part of (3.2).
9 The first term inside the braces in (4.10) and (4.11) has poles where�+ω− k · u or�+ω′

− k′
· u vanishes: they

signal that fast enough atoms can create physical rather than merely virtual plasmons, the mechanism responsible
for the O(V 2) contribution to P . But to the O(V 4) contributions, dominant at the low speeds we are considering,
section 5 will demonstrate that the poles are irrelevant.
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To approximate sensibly one needs the scaled variables from (2.7):

P =
h̄α2β4ω2

Sµ
2c2

16π 3ζ 6

∫∫
d2κ d2κ ′ exp[−2(κ + κ ′)]κκ ′Q2

×

∫
∞

0

∫
∞

0
dx dx ′

xx ′(x + x ′)

[(1 − x2)2 + c2x2][(1 − x ′2)2 + c2x ′2]

×

{[
δ (x + x ′

− κ · v − κ ′
· v) 4µ2

(µ+ x − κ · v)2 (µ+ x ′ − κ ′ · v)2

]

+

[
δ (µ− x + κ · v) (κ ′

· v)2

(µ+ x ′)2
+
δ (µ− x ′ + κ ′

· v) (κ · v)2

(µ+ x)2

]}
≡ PA + PB . (4.12)

The two terms in PB contribute equally.
It is worth explicating some of the virtues of the scaled version (4.12). (i) The exponential

allows one to treat κ , κ ′ as of the order of unity when approximating the integrand. (ii) It
shows ‘low speed’ to mean v = u/ζωS � 1, a condition amply satisfied if, in atomic units,
ωS, �∼O(1) and u . 1, while ζ is macroscopic even if macroscopically small. In view of
(i), small v entails small κ · v and κ ′

· v. (iii) Nontrivially, i.e. apart from the prefactor 1/ζ 6, it
depends on ζ only through v. (iv) It yields the nondispersive limit by inspection:

Pnd ≡ lim
µ→∞

P = lim
µ→∞

PA =
h̄α2β4ω2

Sc2

4π3ζ 6

∫∫
d2κ d2κ ′ exp[−2(κ + κ ′)]κκ ′Q2

×

∫
∞

0

∫
∞

0
dx dx ′

xx ′ (x + x ′) δ (x + x ′
− κ · v − κ ′

· v)
[(1 − x2)2 + c2x2][(1 − x ′2)2 + c2x ′2]

. (4.13)

5. Slow atoms

We deal with PA and PB separately, approximate each to leading order in small v, and compare
them afterwards.

5.1. The component PA

The delta function in the integrand of PA (the first [ . . . ] inside the braces in (4.12)) shows that
small v entails small x and x ′. Hence to leading order both factors [ . . . ] in its denominator
reduce to unity; and the factor (. . .)2 (. . .)2 reduces to µ4, cancelling the factors µ2 in the
numerator and in the prefactor. Thus, with

a ≡ (κ + κ ′) · v = v[κ cosφ + κ ′ cosφ′], (5.1)

the inner integral reduces to∫
∞

0

∫
∞

0
dx dx ′xx ′(x + x ′)δ(x + x ′

− a)= θ(a)a4/6, (5.2)

where θ is the Heaviside step function. Accordingly, with Q from (4.5),

PA '
h̄α2β4ω2

Sc2v4

24π 3ζ 6

∫∫
d2 κ d2κ ′ exp−2(κ+κ ′) κκ ′[1 − cos(φ−φ′)]2[κ cosφ + κ ′ cosφ′]4.

(5.3)
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Corrections of higher order in v2 could be found by expanding the denominator of the
integrand of (4.12) in powers of κ · v and of κ ′

· v. The integral in (5.3) is just a number, and
evaluates to 27π 2/8:

PA '
9

128π
·

h̄α2β4ω2
Sc2v4

ζ 6
=

9

128π
·

h̄α2β402u4

ω4
Sζ

10
→

Drude

9

512π 3
·

h̄α2u4

σ 2ζ 10
. (5.4)

It is easily seen that the same approximation follows from the nondispersive limit (4.13).
The overall normalization of (4.12) can be checked by comparison with the nondispersive model
outlined in the appendix, which implements the limit right at the start.

5.2. The component PB

To leading order in v the explicit factors (κ · v)2 = v2κ2 cos2 φ and (κ ′
· v)2 = v2κ ′2 cos2 φ′ in

the integrand of PB (the second [ . . . ] inside the braces in (4.12)) show that everywhere else one
may set v → 0. Since the two terms in [ . . . ] contribute equally, we may write

PB '
h̄α2β4ω2

Sµ
2c2v2

8π3ζ 6

∫∫
d2κ d2κ ′ exp[−2(κ + κ ′)]κκ ′3[1 − cos(φ−φ′)]2 cos2 φ′

×

∫
∞

0

∫
∞

0
dx dx ′

xx ′ (x + x ′)

[(1 − x2)2 + c2x2][(1 − x ′2)2 + c2x ′2]
·
δ (µ− x)

(µ+ x ′)2
. (5.5)

Corrections of higher order in v2 could be found by expanding δ(µ− x + κ · v) in powers
of κ · v.

In (5.5), the κκ ′ and the xx ′ integrals decouple. The former is just a number, and evaluates
to 9π2/16. In the latter,

∫
dx . . . is trivial by virtue of the delta function. Redistributing the

prefactor c2 one obtains

PB '
9h̄α2β4ω2

Sµ
2v2

128πζ 6
·

cµ

[(1 −µ2)2 + c2µ2]

∫
∞

0
dx ′

cx ′

[(1 − x ′2)2 + c2x ′2](µ+ x ′)
· (5.6)

For simplicity, we now confine attention to weak damping, c � 1, and use (2.8) to evaluate∫
∞

0 dx ′ . . . only in the limit c → 0:

0/ωS � 1 : PB '
9h̄α2β4ω2

Sv
2

256ζ 6(µ+ 1)
·

cµ3

[(1 −µ2)2 + c2µ2]
(5.7)

=
9h̄α2β4u2�

256ζ 8(�+ωS)
·

0ωS�
2

[(�2 −ω2
S)

2 +02�2]
.

Even though this expression is well defined for all µ=�/ωS, one should bear in mind that near
µ= 1 our perturbative approach is unwarranted.

Finally, it is entertaining to rewrite (5.7) in terms of the parameter γ (equation (2.11))
governing the decay rates of the excited states:

PB '
9h̄αβ2u2

64ζ 5
·

�γ

ωS (�+ωS)
. (5.8)
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5.3. PA versus PB

By (5.4) and (5.7)

PA

PB
=

{
20v2

πωS

}{
(�+ωS)[(�2

−ω2
S)

2 +02�2]

�3ω2
S

}
, v2

≡

(
u

ζωS

)2

. (5.9)

In the regime we are considering, v2
� 1 because the motion is slow, and 0/ωS � 1 because

damping is weak. Hence the factor in the first pair of braces is small. Moreover, as explained in
section 1, we are excluding the near-resonant case where |�−ωS| ��, whence the factor in
the second pair of braces is of order unity. Accordingly, in our regime PB dominates:

PA/PB ∼ 0v2/ωS = 0u2/ζ 2ω3
S � 1 ⇒ P = uF ' PB . (5.10)

6. Comments

6.1. Comparisons

Scheel and Buhmann (2009) use Green’s function techniques to look for the properly retarded
O(V 4) force on an isotropic ground-state atom with a single excitation frequency ωA and
squared dipole matrix element d2 (our |D|

2). Our results and the non-retarded limits of theirs
should tally, but in fact, although they vary in the same way with u and ζ , they vary differently
with � and ωS.

Their expressions translate into ours according to the following dictionary:

SB : (4πε0) ν z A ωA d2 γ ω2
p |F|

here : 1 u ζ �
∣∣D2

∣∣= 3αh̄�/2 0/2 (2ω2
Sβ

2) (P/u)
. (6.1)

Write the power loss corresponding to their result as PSB, found by substituting their (83) into
their (82) and multiplying by the velocity. Then, re-expressed in our notation and in terms of α
instead of |D|

2, one finds that

PSB =
3h̄α2β4u20�3ω3

S

16ζ 8
(
�2 −ω2

S

)2
(�+ωS)

3
· (6.2)

By contrast, for weak damping our own result (5.7) may be written as

PB =
9h̄α2β4u20�3ωS

256ζ 8
(
�2 −ω2

S

)2
(�+ωS)

. (6.3)

Hence

PSB

PB
=

4

3
×

(
2ωS

�+ωS

)2

, (6.4)

a ratio that looks as if it might stem from or at least be related to tacit differences regarding the
line shape. The writer understands that some of their expressions might need revision in order
to take full account of the difference between the decay rates of |η1,2〉 and of |η3〉.

Essentially the same nonretarded problem was considered in at least two much earlier
papers. For low speeds, Mahanty (1980; equation (23)) gave F ∼−(uh̄α/32ζ 5)(n2

− 1)/(n2 +1)
as re-expressed in our notation, with n being the zero-frequency dielectric constant. Schaich and
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Harris10 (1981; equation (43)) gave F ∼ −uα2e4/h̄ω2
Sζ

10. The writer believes that neither can
be right, if only because, even without dissipation in the material, each makes F vary like some
power of u and inverse power of ζ rather than exponentially.

In fact the u2/ζ 8-proportionality seems to be remarkably robust. For instance, Zurita-
Sánchez et al (2004) predict and cite experimental evidence for it, at finite temperature, in the
quite different problem where instead of the atom one has a macroscopic sphere, with radius
well below the pertinent 3, but large enough for its response to be characterized by a Drude
response function of its own.

6.2. Preliminary implications regarding two half-spaces

Consider a second half-space, optically dilute, made of atoms of the kind we have been
considering, n̄ per unit volume. Hence, it is dispersive but nondissipative, with dielectric
response ε̄(ω)' 1 + 4π n̄α�2/[�2

− (ω2 + i0)]. Let it be parallel to the original half-space and
move laterally, with a gap of width Z in between. It experiences a drag force −Rû per unit
surface area; then the power dissipation (localized in the original half-space) is u R. By simple
addition11 of the forces P/u per atom, and in virtue of (5.7),

R = n̄
∫

∞

Z
dζ

PB

u
'

9

(7 × 256)
·

uh̄n̄α2β4�

Z 7(�+ωS)
·

0ωS�
2

[(�2 −ω2
S)

2 +02�2]
. (6.5)

To forestall confusion, we remark that it makes no sense to try and compare (6.5) in any
detail with the force F in appendix B of I, even though both feature dilute material. The latter
applies to two nondissipative half-spaces, both dilute, with identical natural frequencies, and
applies to second order in the coupling between them. By contrast, (6.5) applies when one half-
space is dissipative and need not be dilute, while the other must be both nondissipative and
dilute; it excludes the case where the natural frequencies are the same and applies to fourth
order in the coupling between them. We study elsewhere how the methods of the present paper
extend to two half-spaces that need not be dilute and may be conducting (Barton 2010b).
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Appendix. Nondispersive atom

Call the interaction W , to forestall confusion with Vnd from (2.9):

W = −αE2(ut, 0, ζ )/2 = −α [∇8(ut, 0, ζ )]2 /2. (A.1)

10 Much of their paper deals with two half-spaces responding like a Fermi gas, whose excitation spectrum differs
significantly from that of the Drude model. But they do use the Drude model for the half-space interacting with an
atom, so that comparison makes sense.
11 Unfortunately no such simple argument applies if the second half-space contains mobile charge carriers however
dilute, nor in the presence of appreciable dissipation.
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The state vector now acquires two-plasmon admixtures to first order in W . Following the same
scenario as in section 3.2, one finds that the power dissipation to second order in W reads

PW =
h̄α2β4ω4

S0
2

4π 3

∫∫
d2k d2k ′

{
[kk ′

− k · k′]2

kk ′

}
exp[−2(k + k ′)ζ ]

×

∫
∞

0
dω
∫

∞

0
dω′

ωω′(ω +ω′)δ(ω +ω′
− u · (k + k′))

[(ω2
S −ω2)2 +ω202][(ω2

S −ω′2)2 +ω′202]
. (A.2)

The factor in braces is just kk ′Q2, with Q from (4.5), whence on scaling (A.2) tallies as it should
with (4.13).
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