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Abstract. We report on the impact of topological defects on the formation
of discrete spatial solitons in waveguide arrays. The influence of defects, i.e.
waveguides with a detuned effective refractive index, is well understood within
such systems. They have been shown to support linear bound states and thus
influence the formation of spatial solitons in the surrounding sites. We show
numerically and demonstrate experimentally how the presence of topological
defects caused by junctions within the otherwise periodical system also has a
strong influence on the surrounding sites.
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1. Introduction

Discrete solitons in arrays of evanescently coupled waveguides [1]–[3] offer a variety of
potential applications in integrated optics. One of the most intriguing possibilities is the use of
tightly localized solitons to block off certain paths at photonic network junctions [4], enabling
nonlinear switching and routing and thus providing essential basic components for optical signal
processing. In this context, a knowledge of the influence of those junctions on the formation
of solitons in the vicinity is vital for design and optimization. In analogy to conventional
defects formed by detuned waveguides, which have been the subject of detailed investigations in
recent years (see e.g. [5]–[8]), junctions act as perturbations to the periodicity of the waveguide
array and, consequently, can be perceived as so-called topological defects [9]. As proposed
in [10] for kinks (junctions with two oblique branches), the similarity between topological and
conventional defects may be employed e.g. to mitigate reflections by introducing an appropriate
detuning at the pivotal guide [11]. Here, we investigate topological defects imposed by junctions
or truncations with respect to their influence on the formation of discrete solitons in the
surrounding waveguides.

2. Numerical investigation

To gain insights into the dynamics of soliton formation, we describe the propagation of light
with the nonlinear paraxial Schrödinger equation for the normalized field amplitude 8 in the
moving frame (i.e. the group velocity is removed by normalization), assuming continuous wave
(cw) illumination:

[2kn0i∂z + ∂2
x + ∂2

y + |8|
2 + 2k2n01n(x, y)]8(x, y, z) = 0. (1)

Here, n0 denotes the bulk refractive index, x , y and z are the transverse and longitudinal
coordinates and k is the vacuum wave number. The refractive index profiles (see figure 1(a))
of junctions between M branches of N coupled nonlinear waveguides each are represented by
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describes the shape of the individual waveguides [12] and (xm,n, ym,n) denote the positions of the
respective guides. Using a nonlinear finite element method, stationary solutions of equation (1)
were computed according to the separation ansatz 8(x, y, z) = φ(x, y)exp(iβz). Note that the
reference frame moves at a velocity of c/n0, while the linear waveguide mode has an effective
index neff > n0. Hence, the eigenvalue β includes a relative wave vector β0 = k(neff − n0).
Among the conserved quantities of equation (1) is the total energy flow

U =
1

2k2n0n2

∫ ∫ +∞

−∞

|8|
2 dx dy, (4)

the dependence of which on β may be investigated to study the system. The nonlinear refractive
index is designated n2. Corresponding to the experimental parameters, we modeled systems
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Figure 1. Waveguide array junction with N = 7 and M = 4 (X junction
with seven waveguides per branch). (a) Refractive index profile according to
equation (2). (b) Discrete model of the same system corresponding to the coupled
mode approximation. The waveguides are represented by circles, while the
couplings included are illustrated by arrows. The individual waveguides are
labeled with respect to their branch (m = 1, . . . , M) and the distance from the
pivotal guide (n = 1, . . . , N ); the pivotal guide is designated as m = n = 0.

comprising waveguides with an index increase of p = 4.3 × 10−4 and widths wx = 6.8 µm,
wy = 3.5 µm separated by a spacing of 38 µm.

In addition to the continuous approach, the coupled mode approximation [13] was applied
(see figure 1(b)), yielding the following set of nonlinear differential equations for the modal
amplitudes within the individual waveguides:

i∂zϕk + |ϕk|
2ϕk +

∑
` 6=k

Ck,` ϕ` = 0. (5)

In this context, k is the discrete transverse coordinate and the coefficients Ck,` = C`,k of the
symmetric coupling matrix indicate the rate of energy transfer between the waveguides k
and `. Due to the approximately exponential dependence of the coupling on the waveguide
separation [14], nearest-neighbor coupling (designated C and assumed to be constant
throughout the system) is usually sufficient to describe the propagation of light with reasonable
accuracy. Despite its limitations, this formalism enables the investigation of the influence of
arbitrary couplings for otherwise fixed properties of the system. Here, we consider additional
coupling between the first sites of neighboring branches (henceforth termed second-order
coupling C2), which becomes relevant as their separation approaches the pitch within the
individual branches. In the discrete model, the normalized total power is given by

Ũ =

∑
`

|ϕ`|
2 (6)

and can be plotted over the propagation constant b of stationary solutions ϕn(z) = φnexp(ibz).
It is instructive to first analyze the impact of three different kinds of perturbations in planar

waveguide arrays: a truncation, a waveguide with a higher refractive index than all other guides
(positively detuned defect) and a waveguide with a lower refractive index than the other guides
(negatively detuned defect). The numerical results obtained from equation (1) are summarized
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Figure 2. U (β)-diagrams as obtained from equation (1): (a) a truncated
planar array with 13 waveguides, (b) a planar array of 25 waveguides with a
positively detuned central waveguide (p′

= 1.025 p) and (c) a planar array of
25 waveguides with a negatively detuned central waveguide (p′

= 0.985 p). In
all diagrams, the U (β) graph of an unperturbed planar array of 25 identical
waveguides is given as a reference (solid lines).

in figure 2(a). The solid graph shows the unperturbed array with 25 identical waveguides.
It exhibits the typical thresholdless behavior, emerging from the β-axis at a certain cutoff
propagation constant. Hence, in the absence of defects, stationary solutions exist for all powers.
Furthermore, U increases monotonically with β. However, the situation changes when the array
is truncated. The pivotal site of this single-branch ‘junction’, i.e. the outermost waveguide of
the array, no longer supports stationary solutions for arbitrary powers. Rather, these so-called
surface solitons [15, 16] feature significant power thresholds (dotted line). Nevertheless, the
graph still converges toward the unperturbed case for large β. Importantly, such a truncation not
only has a local impact, but also induces power thresholds for solitons residing at the adjacent
guides (various dashed lines).

In figure 2(b), the U (β) graphs for a positively detuned waveguide (p′
= 1.025 p)

embedded within an otherwise homogeneous array are shown. Such a defect always creates
bound states [17]. At the defect guide itself, the cutoff is significantly increased (dotted graph),
but solitons still exist for all power levels. In contrast to the truncation, the influence of the
detuned waveguide does not subside for large β. This difference becomes clear if one considers
that, for the corresponding large powers, the transverse profile of a soliton essentially becomes
localized within a single waveguide. Since this mitigates the influence of neighboring guides,
the shift along the β-axis introduced by the detuned guide increases and eventually converges
toward the value of the detuning. Interestingly, the positive defect imposes power thresholds
on the adjacent guides (dashed graphs), similar to the truncation. Solitons centered on the
waveguide next to the positive defect exhibit a substantial threshold, much higher than in the
waveguide next to a truncation. However, for large β the strongly localized soliton does not
‘feel’ the defect anymore, so that the U (β) graph eventually converges to the unperturbed
planar case for large β. In a similar vein, the threshold power decreases for solitons residing on
waveguides further away from the pivotal guide, and for high β the U (β) graph approaches the
one of the unperturbed array. The situation for a negatively detuned waveguide (p′

= 0.985 p)
is depicted in figure 2(c). Here, solitons centered on the defect exhibit a power threshold.
Compared to the unperturbed array, the cutoff is also increased, and for high β the shift of
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Figure 3. (a) Sketch of an X junction with second-order coupling around the
pivotal guide, with the circles representing the waveguides. When using the
discrete model (5), the coupling constant, visualized with arrows, has to be
chosen manually. (b) U (β)-diagrams as obtained from equation (1) for an X
junction with seven waveguides per branch. (c) U (β)-diagrams calculated using
the coupled mode approximation equation (5). Dashed line: an unperturbed
planar array. Solid lines: a pivotal guide of X junctions with varying degrees
of second-order coupling (C2 = 0, . . . , C in steps of 0.1 C).

U (β) again approaches the value of the detuning. The impact of the defect is still evident in the
neighboring guide, where solitons exhibit a similar power threshold, but rapidly decreases for
waveguides further away. Additionally, for high β the U (β) graphs of these guides converge to
the one of the unperturbed array. The impact of a topological defect in an X junction (M = 4)
with N = 7 waveguides per branch is illustrated in figure 3. When calculating the power for
solitons centered on this guide, one finds the cutoff shifted toward larger β (figure 3(b)).
While the monotonic dependence of U (β) is preserved, the graph is deformed such that it
intersects with the unperturbed case. Consequently, solutions with propagation constants above
this intersection carry larger powers than their counterparts in an unperturbed array. At large
β, the graph eventually converges to the corresponding graph of the unperturbed case, since
the solitons are strongly localized, rendering the influence of the neighboring guides negligibly
small. Numerical investigations of the coupled mode approximation equation (5) of this system
show that the specific behavior at intermediate values of β is chiefly determined by the second-
order coupling around the pivotal guide (figure 3(a)). In the ideal case of C2 = 0, the graph
quickly converges toward the unperturbed planar array (figure 3(c)). As C2 increases, the shift
of the cutoff β becomes more prominent. Interestingly, at intermediate values of β, U may
increase significantly above the power carried by the corresponding solitons in the unperturbed
planar array. Although in practice second-order coupling in the vicinity of the junction cannot
be tuned independently, both C and C2 follow the same exponential dependence on the distance
between the coupling waveguides [14]. The fixed ratio of waveguide separations (d2 =

√
2 d for

a symmetric X junction) consequently allows a certain scaling of the ratio C2/C with the pitch
of the system.

The influence of the junction becomes even more apparent at the neighboring guides where
the presence of the topological defect leads to power thresholds on soliton formation (various
dashed graphs in figure 3(b)). Certain minimum powers are required for the existence of solitons
and the corresponding cutoffs values of β are increased accordingly. This influence abates with
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Figure 4. (a) Schematic diagram of a common Y junction. (b) U (β)-diagrams
for a Y junction with seven waveguides per branch. (c) Schematic diagram
of a modified Y junction with an extended pivotal region. (d) U (β)-diagrams
for exciting the pivotal sites in (a) and (b) (dashed graphs) compared to the
unperturbed planar array (solid graph). The U (β)-diagrams in (b) and (d) were
obtained from equation (1).

increasing distance to the pivotal guide, and for increasing powers the graphs again converge
toward the unperturbed case.

In a Y junction (M = 3, N = 7), sketched in figure 4(a), the topological defect is less
pronounced, owing to fewer branches. Nevertheless, in figure 4(b) the basic features of the
X junction (compare figure 3(b)) are reproduced. Interestingly, in a modified Y junction
(sketched in figure 4(c)), the impact of the topological defect on the pivotal guide is even more
pronounced. The cutoff is larger, and the soliton power crosses the one for the unperturbed array,
and even exhibits a quite sharply pronounced local maximum, before it eventually approaches
the one of the unperturbed array for large β. In general, the U (β) dependence closely resembles
the behavior reported in waveguide arrays with intermediate dimensionality [18]. This clearly
shows how the impact of topological defects can be strongly enhanced with a minor modification
of the geometry of the setting.

By comparing the results for the X junction (figure 3) and the Y junction (see figure 4)
with the conventional defects (figure 2), one finds various related features. It is evident that the
topological defects act in a similar fashion to positive defects: solitons centered on the pivotal
guide bifurcate from a linear mode, i.e. they exist for all power levels. Furthermore, solitons
centered on neighboring waveguides exhibit a power threshold, which decreases with increasing
distance from the pivotal guide. The strength of a junction’s topological defect is determined by
the number M of its branches. However, there is one important distinction: for high β, the
impact of topological defects vanishes, whereas a real defect persists.

3. Experimental results

For our experiments, we used the femtosecond laser direct inscription technique [19] to
fabricate junctions with six waveguides per branch within fused silica. The fabrication process
is shown schematically in figure 5, and specific writing parameters are discussed in [20]. A
waveguide separation of 38 µm was chosen in order to avoid reflections from the end of the
branch during the propagation distance of 105 mm. A T:sapphire laser system (Spectra Physics
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Figure 5. (a) Schematic representation of the femtosecond laser direct writing
method. (b) Micrograph of the fabricated X junction, exemplary refractive index
profile and corresponding mode field of a single waveguide measured at 633 nm.

Tsunami/Spitfire), delivering 200 fs pulses at a wavelength of 800 nm with a repetition rate of
1 kHz, was used to excite individual waveguides via a 5× microscope objective. Subsequently,
the discrete diffraction patterns at different excitation powers were observed by imaging the
sample end facet onto a CCD camera.

Generally, the power required to achieve localization within the excited guide decreased for
the pivotal sites and increased for the neighbors with respect to an unperturbed planar array. As
expected from the numerical analysis, the impact of the topological defect is most pronounced
for the X junction. Light injected into the pivotal guide itself remains localized independent of
the excitation power (left column of figure 6). It follows that the topological defect is sufficiently
strong to support a tightly localized linear mode indistinguishable from the solitons forming at
higher powers. In contrast, an excitation of the guide next to the junction (middle column) at low
powers mainly spreads into the far side of the branch due to reflection at the topological defect.
At intermediate powers, phase matching between the excited guide and the pivotal guide occurs,
causing the intensity maximum to shift to the pivotal guide, until at high powers the light can
overcome the attraction of the defect state and finally stays trapped in the excited guide. Light
injected into the waveguide two sites away from the pivotal site of the X junction spreads across
the excited branch, as well as across the junction into the first guides of the other branches.
Similar to the localization behavior in the unperturbed planar array, an increase of power leads
to a continuous contraction until finally all light remains localized in the excited guide (right
column).

The observations for the Y junction are summarized in figure 7. In contrast to the X
junction, the topological defect does not support a strongly localized linear mode at the pivotal
guide (left column). The symmetry of the arrangement is broken due to the ellipticity of the
waveguides, so that the light mostly diffracts into one branch of the junction when light is
launched into the pivotal guide. At increasing input power, light gradually localizes in the
excited site, and eventually forms a strongly confined soliton. When injecting the light into the
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Figure 6. Observed diffraction patterns of the X junction at 800 nm for excitation
at the pivotal guide (first column), one site from the pivotal guide (second
column) and two sites from the pivotal guide (third column). The first row:
micrographs of the relevant region of the system; the second row: 0.06 MW; the
third row: 0.22 MW; the fourth row: 1.00 MW peak power. White circles mark
the excited waveguides.

neighboring waveguide, at low input power light is reflected from the topological defect (middle
column). For intermediate powers, the nonlinear phase matching augments the attraction of the
topological defect, so that the maximum light intensity is shifted into the pivotal guide. At
high power, eventually a localized soliton is formed. Exciting the waveguide two sites away
from the pivotal guide (right column) at low power yields an asymmetric diffraction pattern,
since light is reflected by the junction. This effect persists even at intermediate powers, where
a slight contraction of the diffraction pattern is already observed. At high powers, the soliton is
eventually localized within the excited guide. Note that compared to the X junction, the injected
light contracts into the excited guide at lower powers for all neighboring sites.

In figure 8, a summary of the measured degree of localization as a function of the input
power is shown. When launching light into an unperturbed array, light gradually localizes in
the excited lattice site with increasing input power. If the array is truncated, launching the
light into the boundary waveguide results in an enhanced delocalization at low powers due
to repulsion of the array boundary [21]. However, light localizes at high power in a similar
fashion as in the unperturbed array. The plot for the pivotal guide of the Y junction shows a
slight enhancement compared to the unperturbed planar array, which can be attributed to the
comparably small topological defect. In contrast, in the X junction, the topological defect is
much more pronounced and consequently supports a strongly localized linear mode, which
yields high degrees of localization even at low powers. Hence, at high powers localization
increases only slightly.
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Figure 7. Observed diffraction patterns of the Y junction at 800 nm for excitation
at the pivotal guide (first column), one site from the pivotal guide (second
column) and two sites from the pivotal guide (third column). The first row:
micrographs of the relevant region of the system; the second row: 0.06 MW; the
third row: 0.13 MW; the fourth row: 0.70 MW peak power. White circles mark
the excited waveguides.

Figure 8. Measured power dependence of the degree of localization at the pivotal
sites of truncation, Y and X junctions (various dashed graphs) compared to the
unperturbed planar array (solid graph).
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4. Conclusion

In conclusion, we have demonstrated numerically and verified experimentally that topological
defects influence the formation of solitons in close resemblance to defects represented by
detuned waveguides. Junctions with an increased number of neighbors around the pivotal guide
act as positive defects, while truncations can be interpreted as negative defects. In contrast to
detuning defects, the influence of topological defects on solitons centered on the pivotal guide
vanishes for large values of the propagation constant β. Topological defects of sufficient strength
support strongly localized linear modes. Solitons centered on neighboring waveguides exhibit a
power threshold. Nevertheless, tightly localized solitons emerge as the influence of topological
perturbations becomes negligible for sufficiently high powers. In order to minimize the impact
of topological defects and hence the power requirements for soliton formation in the adjacent
sites, the number of branches per junction should be as close as possible to the unperturbed case
of the planar array. Consequently, Y junctions constitute the building block of choice for array-
based photonic networks. We believe these findings will pave the way for future developments
in utilizing solitons as blockers in array junctions [22] for two- and even three-dimensional
all-optical routing and switching schemes.
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