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Abstract. We report a detailed quantum oscillation study of the overdoped
cuprate Tl2Ba2CuO6+δ at two different doping levels (Tc = 10 and 26 K). The
derived Fermi surface size and topology complement earlier angle-dependent
magnetoresistance studies and confirm the existence of a large quasi-cylindrical
hole-doped Fermi surface with a small, but finite, c-axis warping. An accurate
determination of the hole concentration reveals that superconductivity in
Tl2Ba2CuO6+δ does not follow the universal Tc(p) parabola for cuprate families
and survives up to a larger doping of pc = 0.31. The observation of quantum
oscillations for both dopings demonstrates that Fermi liquid behaviour is not
confined to the edge of the superconducting dome, but is robust up to at least
0.3T max

c . Moreover, the observation of such well-resolved oscillations implies
that the physical properties of overdoped Tl2Ba2CuO6+δ are determined by a
single, spatially homogeneous electronic ground state. Finally, analysis of the
different quasiparticle masses points towards a purely magnetic or electronic
pairing mechanism.
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1. Introduction

Understanding the high-temperature superconducting cuprates is, without doubt, one of the
most formidable challenges in condensed matter physics [1]. In addition to their high transition
temperatures, their anomalous normal state transport properties (above Tc) [2] are often cited
as the most striking example to date of the breakdown of Landau’s Fermi liquid description
of metals. One of the fundamental signatures of a Fermi liquid is of course the Fermi surface,
the locus in reciprocal space of long-lived quasiparticle excitations that govern the electronic
properties at low temperatures. In conventional metals, these excitations have well-defined
momenta with components in all three dimensions. The failure to unambiguously observe
such an entity in cuprates in the two decades following their discovery, coupled with their
unusual, highly two-dimensional (2D) electronic properties, led to an intensive theoretical
search for novel (strongly correlated) electronic ground states in two dimensions [3], a search
that continues to this day.

During the course of the first 20 years of cuprate research, various physical properties,
particularly in the overdoped cuprates, were found to be consistent with conventional Fermi-
liquid behaviour, but none of the experimental results could truly be considered as direct
proof of the existence of fermionic quasiparticles around a closed and fully coherent
Fermi surface. The electronic specific heat of YBa2Cu3O6+δ (Y123), for example, was
found to be composed of fermionic excitations, albeit with a low Fermi energy and a
pseudogap [4], the Wiedemann–Franz law was found to be obeyed in overdoped Tl2Ba2CuO6+δ

(Tl2201) [5], and in heavily overdoped non-superconducting La2−xSrxCuO4 (LSCO), the in-
plane resistivity followed a strictly quadratic temperature dependence at low T [6]. In overdoped
Bi2Sr2CaCu2O8+δ (Bi2212), quasiparticle-like peaks were detected in the energy–density curves
derived from angle-resolved photo-emission spectroscopy (APRES) experiments at all Fermi
wavevectors in the normal state [7], although their widths near the zone boundaries were
often too broad (up to 0.1 eV) to be considered as conclusive evidence for the long-lived
quasiparticle states predicted by density functional theory band-structure calculations. Finally,
evidence for a large three-dimensional (3D) Fermi surface emerged in 2003 through the analysis
of angle-dependent magnetoresistance (ADMR) data for Tl2201 [8]. Being a semi-classical
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phenomenon, however, the observation of ADMR alone could not provide any definitive
conclusions about the quantum mechanical nature of the underlying electronic ground state.

Arguably the most concrete signature of fermionic excitations in a metal is the observation
of quantum oscillations. In the early days of high-Tc cuprate research, low-frequency oscillations
of the (inverse) magnetization, the de Haas–van Alphen (dHvA) effect, were reported in
optimally doped Y123 and overdoped Tl2201 [9, 10]. However, the signal-to-noise level in
these measurements was very low and it was demonstrated that the claimed peaks in the
frequency spectrum could easily be explained as artefacts of the data analysis [11]. Importantly,
as sample quality and maximum field improved, there were no further reports of oscillations
and so it was concluded by many that these early experiments did not, in fact, observe
quantum oscillations. This failure to observe genuine quantum oscillations tended to suggest
that fermionic quasiparticles were absent in these strongly correlated metals; the combined
effects of low dimensionality and the proximity to a Mott insulating phase were confining and
intensifying the electron correlations to such an extent that a Fermi surface of well-defined
quasiparticle excitations did not survive.

In the spring of 2007, an important advancement was made by the observation of
quantum oscillations in the Hall and longitudinal magnetoresistance of underdoped Y123 [12],
a breakthrough that was followed quickly by similar reports of oscillations in underdoped
YBa2Cu4O8 (Y124) [13, 14], and later in overdoped Tl2201 [15, 16] and the electron-
doped compound Nd2−xCexCuO4 (NCCO) [17]. While the origin and nature of the pockets
responsible for the oscillations in the Y-based cuprates remain the subject of intense debate,
quantum oscillations observed in single-layer, single-band Tl2201 appeared to provide clear
and unambiguous evidence that the charge carriers, at least in the overdoped, superconducting
CuO2 planes, are indeed fermionic quasiparticles.

In this paper, we report a detailed analysis of angle-dependent dHvA data for overdoped
Tl2201 with two different Tc values from which important information pertaining to the bulk
electronic structure and the superconductivity of the doped CuO2 planes is obtained. Our results
show that a generalized Fermi-liquid picture extends into the high-Tc phase of overdoped
cuprates and is not confined to the edge of the superconducting dome. We also show that
overdoped Tl2201 has a highly homogeneous electronic state on the scale of the cyclotron
radius (rc & 1200 Å at 40 T). Our precise determination of the Fermi surface volume reveals
that superconductivity in Tl2201 survives up to a hole doping of pc = 0.31, significantly beyond
that inferred for LSCO and by extension other cuprate families [18]. Finally, the dHvA mass
is found to be relatively insensitive to the hole concentration 1 + p and seems to result from an
overall band-narrowing rather than strong renormalization near the Fermi level. These two latter
facts seem to rule out pairing mechanisms involving low-frequency bosons; however, as we will
describe later, a strong k dependence of the quasiparticle renormalization cannot be ruled out.

In section 2, we provide a brief description of quantum oscillations and the various damping
factors from which important details of the nature of the quasiparticles can be gleaned. Section 3
focuses on the key issue of dimensionality in a quasi-2D metal, with specific reference to the
c-axis warping expected in body-centred tetragonal Tl2201. Sections 4 and 5 contain
experimental details and results, respectively. In section 6, we compare our results to ab-initio
band-structure calculations, and in section 7, we discuss the implications of these findings for
our understanding of the cuprate phase diagram. Our conclusions are summarized in section 8.
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2. Quantum oscillations and damping factors

The observation of the phenomenon of quantum oscillations has been used for more than
50 years [19] as one of the most direct and precise means of experimentally measuring the
Fermi surface topology of a crystalline conductor. When a metal is subjected to a magnetic
field B = (B, ϕ, θ), the allowed quasiparticle states lie on quantized Landau tubes—concentric
cylinders aligned along the direction of the field whose k-space radii increase with increasing
B. Only the portions of each tube lying below the chemical potential, and therefore inside
the Fermi surface, contain occupied states. As the field strength B is increased, the tubes get
larger (in k space) and leave the Fermi surface one by one, depopulating as they do so. This
repeated depopulation results in oscillations of the free energy that are periodic in 1/B, with the
frequencies

F =
h̄

2πe
Aext (1)

corresponding to extrema Aext in the cross-sectional areas of the Fermi surface perpendicular
to B. Such quantum oscillations show up in many measurable physical quantities; the dHvA
effect employed in the present study refers to oscillations manifested in the bulk magnetization
or torque [19]:

τ̃ = A sin

[
2π

(
F

B

)
+ ξ

]
. (2)

In addition to the oscillation frequency F , a great deal of information can be obtained by
paying attention to the dependence of the oscillation amplitude A on the temperature and the
strength and orientation of the magnetic field. For a quasi-2D system such as Tl2201, where the
Fermi surface is roughly cylindrical, the oscillation frequency follows the form

F (θ) ≈ F0/ cos θ, (3)

where θ is the polar magnetic field angle measured relative to the crystalline c-axis, and F0 is
the oscillation frequency obtained when the magnetic field is applied parallel to the c-axis. The
overall field- and temperature-dependent oscillation amplitude is given by

A(B, T ) = A0

∏
i

Ri(B, T ), (4)

wherein A0 contains all field- and temperature-independent amplitude information. The set
of multiplicative Ri terms represents modifications to the oscillation strength from various
physical sources, discussed in more detail below. Many of the Ri terms arise from processes that
dephase and therefore damp out the quantum oscillations. The terms that are of importance to
our experiment are those due to the torque measurement technique (Rtorque), blurring of the
Fermi surface at finite temperatures (RT), scattering-induced broadening of the Landau levels
(RD), crystalline mosaicity (Rmos), doping inhomogeneity (Rdop), spin-splitting of the Fermi
surface (Rs) and Fermi surface c-axis warping (Rwarp; see section 3), such that equation (4)
becomes

A (B, ϕ, θ, T ) = A0 Rtorque RT RD Rmos Rdop Rs Rwarp. (5)

In Tl2201, ϕ refers to the azimuthal magnetic field angle measured relative to the
copper–oxygen bond direction.
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As explained in section 4, in our experiments we measure the torque τ applied to the sample
by the magnetic field as it is held semi-rigidly on a microcantilever. For a quasi-2D metal, in
which additionally F0 � B, this leads to a modification of the oscillation amplitude (compared
to the oscillatory magnetization along the c-axis M̃‖c) of [19]–[21]

Rtorque (B, θ) = B |sin θ | . (6)

The primary challenge that must be overcome in order to observe quantum oscillations
lies in the fact that, in practice, the oscillatory signals are often strongly damped by dephasing
processes. Such processes cause a single well-defined quantum oscillation to be replaced by a
superposition of oscillations in which the frequency (or equivalently the phase) varies slightly.
The destructive interference arising from this phase smearing effect reduces the amplitude of the
measured oscillatory signal by a factor Rz given by the Fourier transform of the phase smearing
distribution function D(z) [19]:

Rz(λ) =

∫
∞

−∞

eiλz D(z) dz

/∫
∞

−∞

D(z) dz. (7)

The Fourier transform is taken with respect to the variable λ, which quantifies how much
the oscillation phase is changed by a small change in the physical parameter of interest (here
labelled z):

λ =
2π

B

∂ F

∂z
. (8)

One example of a dephasing effect occurs when a finite temperature T causes states within
kBT of the Fermi level to be occupied. This can be thought of as superimposing a continuum of
extremal area frequencies distributed over this energy interval. In standard Lifshitz–Kosevich
(LK) theory, the relevant phase smearing distribution function is the negative derivative with
respect to energy of the Fermi function, leading to a damping term [19]

RT (B, θ, T ) =

[
2π2kBm∗

thermT

eh̄ B cos θ

]/
sinh

[
2π 2kBm∗

thermT

eh̄ B cos θ

]
, (9)

in which kB is the Boltzmann constant and m∗

therm is the thermodynamic quasiparticle effective
mass—the same effective mass as that measured by specific heat experiments. m∗

therm is
renormalized relative to the band mass mb by electron–phonon interactions and the spin-
symmetric part of the electron–electron interactions, but not by the spin-antisymmetric (Stoner)
part of the electron–electron interactions [21, 22]. Since RT is the only temperature-dependent
damping factor, it may be used to determine m∗

therm from the measured temperature dependence
of the quantum oscillation amplitude. Note that the standard LK form of RT shown in
equation (9) does not include contributions from marginal Fermi liquid effects [23], although
such deviations are typically only apparent at the lowest temperatures [24, 25].

Small- and large-angle quasiparticle scattering from crystal impurities dephases quantum
oscillations by broadening the Landau energy levels (blurring the Landau tubes). This
broadening can be represented by a Lorentzian phase smearing distribution function, whose
Fourier transform leads to the exponential form of the so-called Dingle impurity damping term.
For a quasi-2D compound with an isotropic scattering mean free path `0, the Dingle term can
be written as [19]

RD (B, θ) = exp

{
−π

√
2h̄F0

e

1

`0 B cos θ

}
. (10)
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If the sample being measured is composed of a mosaic of smaller crystallites, with a
small distribution of angles around the nominal crystal orientation, further dephasing will occur.
Assuming the distribution of crystallite angles is a simple Gaussian function

D(z) ∝ exp
(
−z2

)
, (11)

where z = θ/δθ with δθ being the half-width of the Gaussian, equation (8) becomes

λ =
2π

B

∂ F

∂θ
δθ, (12)

and equation (7) reduces to [19, 26]

Rmos (B, θ) = exp

{
−

1

4
λ2

}
= exp

{
−

[
π

B

(
∂ F

∂θ

)
δθ

]2
}

= exp

{
−

[
π F0

B

(
sin θ

cos2 θ

)
δθ

]2
}

. (13)

Similarly, dephasing will result if the hole doping (and therefore Fermi volume) varies
across the sample. If, as above, the distribution of dopings is assumed to be Gaussian about the
nominal hole doping p per in-plane Cu atom, the associated oscillation damping factor is

Rdop (B, θ) = exp

{
−

[
π

B

(
∂ F

∂p

)
δp

]2
}

= exp

{
−

[
π

B cos θ

(
∂ F0

∂p

)
δp

]2
}

= exp

{
−

[
π 2h̄δp

a2eB cos θ

]2
}

, (14)

where δp is the half-width of the Gaussian, a is the in-plane lattice parameter, and hole counting
is used to obtain

F0 (p) =
h̄

2πe
Aext,0

=
h̄

2πe

[
1 + p

2

(
2π

a

)2
]

=
π h̄

a2e
(1 + p). (15)

The final effect to be considered in this section is that due to spin-splitting of the
Fermi surface by the applied magnetic field. Depending on the direction of the magnetic
field, oscillations arising from the majority-spin and minority-spin Fermi surface sheets will
interfere constructively or destructively, resulting in dramatic changes of the observed quantum
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oscillation amplitude. For a quasi-2D system in which the magnetic field splits the Fermi surface
without distorting it, the amplitude modification factor due to spin-splitting is

Rs (θ) =

∣∣∣∣cos

(
πgm∗

sus

2me cos θ

)∣∣∣∣ , (16)

where the spin g-factor is assumed to be equal to 2 for the purposes of our study, me is the bare
electron mass, and m∗

sus is the susceptibility quasiparticle effective mass. m∗

sus is renormalized
relative to the band mass mb by both the spin-symmetric and spin-antisymmetric (Stoner) parts
of the electron–electron interactions, but not by the electron–phonon interactions [21, 22]. Thus,
for a given material, m∗

sus need not be the same as m∗

therm, and indeed can be either larger or
smaller than m∗

therm (for example, m∗

sus/m∗

therm ∼ 1.6 for the γ sheet of = Sr2RuO4 [21] and
∼ 0.6 for the σ sheet of MgB2 [27]).

If the spin-splitting is linear in B, the difference in k-space extremal areas of the spin-up
and spin-down Fermi surface sheets is also linear in B and hence the phase difference between
the two oscillatory terms is constant as a function of the field. A situation known as a ‘spin zero’
occurs when, at a particular angle θ0, there is perfect destructive interference. Locating the spin
zeros of a given compound allows m∗

sus to be determined, although the highly nonlinear nature
of equation (16) means that this must be done with care. Specifically, the presence of a spin zero
at angle θ0 does not correspond to a unique value of m∗

sus, but rather to an infinite ‘magic list’ of
compatible values

m∗

sus

me
=

j

2
cos θ0; j = 1, 3, 5, 7, 9, . . . . (17)

In order to pin down m∗

sus to a particular value on the magic list, at least two spin zeros must be
observed. Furthermore, an m∗

sus that is numerically similar to a value on the magic list but that
is not on the list itself may correspond to an entirely different set of spin zeros. For example,
θ0 = 27.6◦ is associated with m∗

sus = {0.44me, 1.33me, 2.22me, 3.10me, 3.99me, 4.87me, 5.76me,
6.65me, 7.53me, 8.42me, . . .}; figure 1 shows the angle dependence of Rs for several values of
m∗

sus on this list and one value not on the list.

3. Fermi surface warping

In Tl2201, conduction is confined predominantly to the 2D copper–oxygen planes, resulting
in a Fermi surface that is roughly cylindrical. However, some c-axis hopping from one plane
to another does occur, indicative of a small, but non-zero, warping of the Fermi surface [8].
A convenient way to parametrize this warping is by expanding the local Fermi wavevector kF

in terms of cylindrical harmonics that respect the crystal symmetry. Since the Tl2201 Fermi
surface is centred on the X point (corner) of the Brillouin zone of a body-centred tetragonal
structure, we can write [21, 28]

kF (φ, κz) =

∑
µ,ν>0

µ mod 4≡0
ν even

kµ,ν cos νκz cos µφ +
∑
µ,ν>0

µ mod 4≡2
ν odd

kµ,ν cos νκz sin µφ, (18)

where φ is the azimuthal angle of k, and κz ranges from −π at the bottom of the Brillouin
zone to π at the top of the Brillouin zone. It is found [8, 28–31] that only the lowest order
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Figure 1. Angle dependence of the amplitude factor due to Fermi surface spin
splitting, Rs, plotted for three values of m∗

sus (3.99me, dashed line; 4.87me, solid
line, and 5.76me, dotted line) on the ‘magic list’ for a spin zero at θ0 = 27.6◦ and
one value (5.20me, heavy solid line) not on the list.

terms (illustrated in figure 2) are needed for describing the existing experimental data, so we
can simplify equation (18) to

kF (φ, κz) = k0,0

(
1 +

k4,0

k0,0
cos 4φ

)
+ k2,1 cos κz

(
sin 2φ +

k6,1

k2,1
sin 6φ +

k10,1

k2,1
sin 10φ

)
. (19)

Having thus parametrized the Fermi surface geometry, we can calculate various physical
properties in terms of kµ,ν . For example, the zero-temperature resistive anisotropy of Tl2201
may be estimated as [21]

ρ0,c

ρ0,ab
≈

8

c2k2
2,1

[
1 +

(
k6,1

k2,1

)
+
(

k10,1

k2,1

)] , (20)

where c is the c-axis lattice parameter. (Note that equation (20) is not exact, because it was
derived under the assumption of circular in-plane Fermi surface cross-section, i.e. k4,0 = 0.)

As the Fermi surface of Tl2201 is close to being 2D, the usual extremal approximation [19]
to determine the dHvA frequencies and amplitudes is insufficient. Instead we follow the
approach of Bergemann et al [21] to obtain the oscillatory magnetization along the c-axis M̃‖c

by direct integration:

M̃‖c ∝

∫ 2π

0
sin

(
h̄a (κz)

eB

)
dκz, (21)

where

a (κz) =
1

2 cos θ

∮ 2π

0
k2

F

[
φ, κz − κ‖ (φ) cos(φ − ϕ) tan θ

]
dφ (22)
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Figure 2. Diagrammatic representations of equation (18) (µ, ν) Fermi surface
warping terms present in Tl2201. In each case, warping terms not listed have had
their kµ,ν ≡ 0. (a) µ = 0, ν = 0 only; (b) µ = 0, ν = 0 and µ = 4, ν = 0 only; (c)
µ = 0, ν = 0 and µ = 2, ν = 1 only (also known as ‘the snake that swallowed
a chain’ [21]); (d) µ = 0, ν = 0 and µ = 6, ν = 1 only; (e) µ = 0, ν = 0 and
µ = 10, ν = 1 only. Note that, for illustrative purposes, the amount of warping
shown in these cartoons is greatly exaggerated compared to the actual warping
parametrized by the experimentally determined kµ,ν in Tl2201.

is the cross-sectional area of the Fermi surface perpendicular to the magnetic field direction that
crosses the axis of the cylinder at κz. kF is taken from equation (19), and

κ‖ =
c

2

(
k0,0 + k4,0 cos 4φ

)
(23)

is c/2 times the in-plane Fermi wavevector.
Assuming that the in-plane Fermi surface cross-section is circular (i.e. k4,0 = 0) and the

warping parameters kµ,1 are small compared to k0,0, equations (22) and (21) may be integrated
analytically. The result of such a treatment is a single quantum oscillation with a frequency
given by equation (3) (with F0 = h̄k2

00/2e) and an overall amplitude modulation due to Fermi
surface warping given by [21]

Rwarp (B, ϕ, θ) =

∣∣∣∣∣J0

{
2π

√
2h̄F0

e

k2,1

B cos θ

[
J2

(
c

√
eF0

2h̄
tan θ

)
sin 2ϕ

+
k6,1

k2,1
J6

(
c

√
eF0

2h̄
tan θ

)
sin 6ϕ

+
k10,1

k2,1
J10

(
c

√
eF0

2h̄
tan θ

)
sin 10ϕ

]}∣∣∣∣∣ , (24)

in which Jµ is the µth Bessel function of the first kind.
Like Rs, Rwarp can produce amplitude zeros at particular field angles θ in a restricted range

of field. However, the two effects can be easily distinguished, because the zeros due to warping
occur at different θ values for different values of ϕ and eventually disappear when ϕ → 0 (since
limϕ→0 Rwarp = 1), whereas spin zeros are fixed at the same values of θ for all ϕ. Furthermore,
because limθ→0 Rwarp = 1, the correction due to Fermi surface warping is weak for magnetic
fields aligned near the c-axis, no matter what the value of ϕ.
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4. Experimental details

Tl2201 single crystals were grown using a self-flux method [32], and a range of sample
dopings were obtained by annealing different crystals at different temperatures in flowing
oxygen [32] and quenching quickly onto a copper block. The orientation and tetragonal structure
of each single crystal were determined by x-ray diffraction. The samples exhibiting quantum
oscillations have lattice parameters a = 3.86 Å and c = 23.2 Å. Crystals prepared in this way
usually have 7.5 ± 2% Cu on the Tl site [32].

For each sample, torque magnetization was measured using a piezo-resistive
microcantilever4, balanced with a Wheatstone bridge circuit against a dummy microcantilever
patterned onto the same substrate. Measurements were carried out with samples and cantilevers
in liquid in a pumped 3He cryostat, using the 45 T hybrid magnet at the National High Magnetic
Field Laboratory (NHMFL) in Tallahassee. The temperature of the cantilever was measured
using the vapour pressure of 3He in which it was immersed. Great care was taken to reduce
experimental noise levels as much as possible; doing so was essential in order to be able to
observe the very weak quantum oscillations shown by our crystals.

More than 100 samples were pre-screened for purity [31], using criteria such as a low
extrapolated residual c-axis resistivity, a high c-axis residual resistance ratio, magnitude of the
transverse c-axis magnetoresistance and sharpness of the superconducting transition (measured
via c-axis resistivity and superconducting quantum interference device magnetometry). Over 20
of the best of these samples, with Tc values ranging up to 60 K, were measured in high fields,
including up to 70 T at the Laboratoire National des Champs Magnétiques Intenses in Toulouse.
However, clear quantum oscillations were seen only in three crystals (and weak signals in one
other crystal): two samples with Tc = 10 K, labelled ‘Tl10Ka’ and ‘Tl10Kb’, and one sample
with Tc = 26 K, labelled ‘Tl26K’.

The fact that quantum oscillations were observed only in a small subset of the samples
measured is due to the dephasing processes discussed in section 2. The exponential functional
forms of RD, Rmos and Rdop (equations (10), (13) and (14)) lead to particularly strong damping,
since they allow a small decrease in sample quality to reduce the oscillation amplitude by
multiple orders of magnitude; these effects are especially severe in those compounds such
as Tl2201 that have large Fermi surfaces. Thus, only the highest-quality crystals will exhibit
quantum oscillations that are observable above the experimental noise floor.

Tl10Ka was mounted with the Cu–O bond direction parallel to the cantilever (ϕ ∼ 0◦),
whereas Tl10Kb and Tl26K were mounted with ϕ ∼ 45◦. The Tl26K cantilever was later rotated
by 45◦ so that this sample was measured in both the ϕ ∼ 0◦ and the ϕ ∼ 45◦ orientations.
Throughout this paper, data from Tl10Ka taken with ϕ ∼ 0◦ are shown as solid blue squares,
data from Tl10Kb taken with ϕ ∼ 45◦ are shown as solid blue–green diamonds, data from Tl26K
taken with ϕ ∼ 0◦ are shown as open red squares, data from Tl26K taken with ϕ ∼ 45◦ are shown
as open red diamonds and theoretical fits and simulations are shown as black lines and symbols.

5. Results

The high-field torque data for all three samples, taken at T = 0.4 K with the magnetic field
aligned close to the crystalline c-axis (i.e. θ close to 0◦), are shown in the insets of figure 3, after

4 Self-sensitive microcantilever; SII NanoTechnology Inc., Chuo-ku Tokyo, Japan; model number SSI-SS-ML-
PRC120.
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Figure 3. FFTs of torque data between 38 and 45 T (38.5 and 45 T for (d)) at
T = 0.4 K for (a) Tl10Ka, (b) Tl10Kb, (c) Tl26K (ϕ ∼ 0◦ configuration) and
(d) Tl26K (ϕ ∼ 45◦ configuration). High-field portions of the corresponding
background-subtracted raw data for each sample are shown in the insets.

third order polynomial background subtraction. Clear, high-frequency quantum oscillations are
seen in all cases. We believe that the low-frequency background oscillations apparent in these
traces are not intrinsic to our samples but arise from high-field magnetoresistance effects in the
cantilevers themselves. Note that this cantilever magnetoresistance effect is not responsible for
the low-frequency quantum oscillations seen in the underdoped cuprates [12], as in that case the
oscillations are also measured in magnetotransport properties.

Fast Fourier transforms (FFTs) of the raw torque data are shown in the main panels of
figure 3. Each sample shows a single sharp peak in the FFT spectrum (with width determined
by the field range of measurement), centred at a lower frequency for Tl26K than for Tl10Ka or
Tl10Kb. As discussed in more detail below, this frequency shift with changing Tc confirms that
the observed quantum oscillations originate from the same part of the sample exhibiting bulk
superconductivity.

The temperature dependence of the quantum oscillation amplitude A(T ) for Tl10Ka,
Tl10Kb and Tl26K is shown in figure 4. By fitting A(T ) using the standard LK form of the
temperature damping term RT (equation (9)), we are able to determine the thermodynamic
quasiparticle effective mass m∗

therm for each sample. A(T ) is well fitted by the standard LK
formula, indicating that any possible deviations from the usual thermal population factor (the
Fermi function) arising from (marginal) non-Fermi-liquid effects [23, 24] are not apparent
within the error bars of our measured data for temperatures above ∼ 350 mK, despite the
presence of a significant T-linear resistivity at low temperatures [5, 33], to be discussed in
more detail below.
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Figure 4. Temperature dependence of the oscillatory torque amplitudes A(T )

for the samples (a) Tl10Ka (field range: 40–45 T), (b) Tl10Kb (field range:
42–45 T) and (c) Tl26K (field range: 43–45 T). Solid lines are fits to the Lifshitz-
Kosevich form of RT (equation (9)). For ease of comparison, all panels have been
normalized to their respective zero-temperature fit values A(0).

From our fits, we find that m∗

therm = 5.8(3)me for Tl10Ka (ϕ ∼ 0◦), m∗

therm = 4.9(3)me for
Tl10Kb (ϕ ∼ 45◦) and m∗

therm = 5.0(3)me for Tl26K (ϕ ∼ 45◦). While the masses obtained for
the two Tc = 10 K samples are further apart than might be expected given the high quality of the
fits, a deviation in temperature of the lowest temperature data points beyond our estimated error
could influence the results.

To check for consistency and any field dependence of the dHvA mass (common in heavy
Fermion systems, where m∗

therm is strongly enhanced by spin fluctuations), we compare our
effective mass values to the zero-field electronic specific heat. For a 2D metal, the Sommerfeld
coefficient is [34]

γ =

(
πk2

B NAa2

3h̄2

)
m∗

therm, (25)

where NA is Avogadro’s constant. Taking the average m∗

therm = 5.2(4)me, we obtain
γ = 7.6(6) mJ mol−1 K−2 in excellent agreement with the almost p-independent value of
7(1) mJ mol−1 K−2 found from direct measurement of polycrystalline Tl2201 [35].

Comparison with the band mass mb ∼ 1.7me, given by density functional theory band-
structure calculations (see section 6), reveals a significant enhancement due to electron
correlation effects (m∗

therm/mb ≈ 3) that is constant (within our uncertainty) up to at least
∼ 0.3 T max

c . ARPES measurements showed that the band energies of Tl2201 (Tc = 30 K) [37]
are renormalized by a similar factor over a large energy range of the order of several eV. In
fact, using the tight binding parametrization of the ARPES data given in [36], we calculate an
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orbitally averaged mass m∗

ARPES =
h̄2

2π

∂A
∂ε

= 6.6 me, which is ∼ 20% larger than our measured
dHvA mass. This implies that the renormalization predominantly arises from correlation-
induced band-narrowing and that any further renormalization close to the Fermi level EF from
interaction with low-energy boson modes is minimal.

Having pinned down the RT damping term by looking at the temperature dependence of
the quantum oscillation amplitude A(T ), it is possible to learn about the exponential damping
terms RD, Rmos and Rdop by fitting the field dependence of the amplitude A(B). Specifically, if
we define

Areduced (B) ≡ A (B) /Rtorque (B) RT (B) (26)

and measure long field sweeps at magnetic field angles θ close to the c-axis, where Rwarp ∼ 1,
then

ln Areduced (1/B) ≈ ln
[
A0 RD (1/B) Rmos (1/B) Rdop (1/B)

]
≈ ln(A0) −

[
π

√
2h̄F0

e

1

`0 cos θ

](
1

B

)

−

[
π F0

(
sin θ

cos2 θ

)
δθ +

π 2h̄δp

a2e cos θ

]2 ( 1

B

)2

. (27)

Figure 5 shows experimental Areduced(B) data extracted from the magnetic field sweeps
shown in figure 3. A high-pass FFT filter was applied to the raw oscillation data to remove the
extrinsic low-frequency background oscillation; then A(B) was extracted by directly fitting the
data in three-period segments to a sine function that is periodic in 1/B. For each data point, we
convert A(B) into Areduced(B) using equation (26) and the experimentally determined masses
m∗

therm obtained from the fits shown in figure 4.
Our error bars and field range of measurement (the oscillations are lost into the noise floor

at lower fields) make it difficult to disentangle the influences of RD, Rmos and Rdop on the field
dependence of Areduced(B). However, limiting values may be obtained by considering the effect
of each damping term in the absence of the other two. Thus, for example, by assuming that all
damping of Areduced(B) comes from impurity scattering (i.e. δp ≡ δθ ≡ 0), error weighted fits
to our data (solid lines in figure 5) yield lower limit mean free path values of `0 = 410(10) Å
for Tl10Ka, `0 = 330(20) Å for Tl10Kb, `0 = 360(30) Å for Tl26K measured with ϕ ∼ 0◦ and
`0 = 360(30) Å for Tl26K measured with ϕ ∼ 45◦. Although in some sense self-selection is
responsible for the small range of measured `0 values (reducing `0 by 1.3 would decrease
the strength of the dHvA signal by a factor of 10), the fact that we could find samples with
sufficiently long `0 to allow the observation of quantum oscillations shows that no intrinsic
quasiparticle decoherence beyond this scattering level arises as the doping is decreased towards
T max

c . For example, if part of the electron orbit started to become incoherent due to the onset of
the pseudogap, this would provide a fundamental limitation.

Similarly, by assuming that all damping comes from doping inhomogeneity (i.e. `0 ≡

∞ and δθ ≡ 0), error-weighted fits to our data (dashed lines in figure 5) yield upper limit
doping spread values of δp = 0.00204(3) doped holes per in-plane Cu atom for Tl10Ka,
δp = 0.00230(5) holes for Tl10Kb, δp = 0.00221(7) holes for Tl26K measured with ϕ ∼ 0◦

and δp = 0.00221(8) holes for Tl26K measured with ϕ ∼ 45◦. This is an important result as it
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Figure 5. Logarithmic plots of the reduced oscillation amplitude Areduced(B) ≡

A(B)/Rtorque(B)RT(B) versus inverse field 1/B, for the data shown in figure 3.
A high-pass FFT filter was applied to the raw oscillation data to remove the
extrinsic low-frequency background oscillation; then A(B) was extracted by
directly fitting the data in three-period segments to a sine function that is
periodic in 1/B. Lines are error-weighted fits to equation (27) in which all
exponential damping is assumed to come from either impurity scattering (solid,
with δp ≡ δθ ≡ 0) or doping inhomogeneity (dashed, with `0 ≡ ∞ and δθ ≡ 0).

demonstrates that the doping distribution in overdoped Tl2201 is negligibly small on the length
scale of `0 & 400 Å. Indeed, were `0 a factor of 2 smaller or δp a factor of 2 larger, the overall
quantum oscillation amplitude would be reduced by over four orders of magnitude, rendering
the oscillations unobservable within our current experimental noise floor.

From another perspective, the fact that we observe quantum oscillations at all implies that
the combined damping from all types of sample inhomogeneity is minimal over a length scale
of the order of the cyclotron radius rc

rc =
h̄kF

eB
≈

√
2F0h̄

e

1

B
. (28)

For F0 = 18 kT and B = 40 T, rc ∼ 1200 Å.
In order to characterize the fine details of the CuO2 plane-derived Fermi surface shape in

Tl2201 and how this shape changes with doping, we have performed a full angle dependence
study of the quantum oscillations. For the Tc = 10 K and Tc = 26 K samples, respectively,
figures 6 and 7 show the field angle dependence of the dHvA frequency F(θ) for both the ϕ

directions (panel (a)), the dHvA amplitude A(θ) for ϕ ∼ 0◦ (panel (b)) and the dHvA amplitude
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Figure 6. Quantum oscillation dependence on polar magnetic field angle θ for
Tl10Ka and Tl10Kb, extracted from the highest peak of the FFT spectrum in
a 15–30 kT window at each angle. Data points at which the signal has fallen
into the noise have been removed from (a) and are shown in grey (b) and (c).
(a) Oscillation frequency F(θ) for both samples (i.e. both ϕ orientations), with
a fit of equation (3) to the Tl10Kb ϕ ∼ 45◦ data (not including noise points)
shown as a solid line. (b) Oscillation amplitude A(θ) for Tl10Ka in the ϕ ∼ 0◦

orientation, along with a fit to equation (5) (for θ > 0◦ only), using the analytical
form of Rwarp given by equation (24), RD given by equation (29), and fitting
parameters shown in table 1. (c) Oscillation amplitude A(θ) for Tl10Kb in the
ϕ ∼ 45◦ orientation, along with a fit to equation (5) (for θ > 0◦ only), using the
analytical form of Rwarp given by equation (24), RD given by equation (29) and
fitting parameters shown in table 1. Note the strong asymmetry seen particularly
in (b), discussed in the text.
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Figure 7. Quantum oscillation dependence on polar magnetic field angle θ

for Tl26K, extracted from the highest peak of the FFT spectrum in a
15–30 kT window at each angle. Data points at which the signal has fallen
into the noise have been removed from (a) and are shown in grey (b) and (c).
(a) Oscillation frequency F(θ) for both ϕ orientations, with a fit of equation (3)
to the Tl26K ϕ ∼ 0◦ data (not including noise points) shown as a solid line.
(b) Oscillation amplitude A(θ) for Tl26K in the ϕ ∼ 0◦ orientation, along with
a fit to equation (5) (for θ > 0◦ only), using the analytical form of Rwarp given
by equation (24), RD given by equation (29) and fitting parameters shown in
table 1. (c) Oscillation amplitude A(θ) for Tl26K in the ϕ ∼ 45◦ orientation,
along with a fit to equation (5) (for θ > 0◦ only), using the analytical form of
Rwarp given by equation (24), RD given by equation (29) and fitting parameters
shown in table 1. Note the strong asymmetry seen particularly in (b), discussed
in the text.
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Table 1. Fitting parameters used to generate the A(θ) fit curves shown in panels
(b) and (c) of figures 6 and 7.

Tl10Ka, Tl10Kb, Tl26K, Tl26K,
Parameter Units ϕ ∼ 0◦ ϕ ∼ 45◦ ϕ ∼ 0◦ ϕ ∼ 45◦

ϕa deg 6a 45 0 45
Ab

0 arb. 3.8(1) × 10−3 18.6(7) × 10−3 23.0(7) × 10−3 10.0(8) × 10−3

Temperature K 0.45(5) 0.45(5) 0.45(5) 0.45(5)
m∗

therm me 5.8(2) 4.9(2) 5.0(2) 5.0(2)
m∗

sus me 4.87 4.87 4.87 4.87
F0 kT 18.10(3) 18.00(1) 17.63(1) 17.61(2)
`0 Å 410(10) 330(20) 360(30) 360(30)
nb – 1.58(6) 0.92(9) 4.5(1) 1.6(3)
δpc holes 0 0 0 0
δθ c deg 0 0 0 0
c Å 23.2 23.2 23.2 23.2
k2,1 (see Å−1

−0.00170(5) −0.00170(5) −0.00125(5) −0.00125(5)

footnote 5)
k6,1/k21 – 0.71 0.71 0.62 0.62
k10,1/k21 – −0.25 −0.25 −0.39 −0.39
Field range tesla 42–44 42–45 42–45 43–45
Bmid tesla 42.977 43.448 43.448 43.977

aSamples were aligned on the cantilevers by x-ray diffraction, and cantilevers were aligned on
the experimental probe by the eye; the detailed shape of A(θ) for the nominally ϕ ∼ 0◦ Tl10Ka
sample is best fitted with ϕ = 6◦.
bAs described in the text, the final least-squares fits shown in figures 6 and 7 have only A0 and
n as free fitting parameters.
cSince the effects of RD, Rmos and Rdop are similar, δp and δθ were set to 0 to constrain the fitting.

A(θ) for ϕ ∼ 45◦ (panel (c)). At each θ angle, F(θ) and A(θ) were extracted from the highest
peak in the FFT within a fairly broad window (15–30 kT); thus, at angles where the quantum
oscillation amplitude is so low that the signal has fallen into the noise, these data points (shown
in grey in figures 6 and 7) represent the highest peaks of the noise spectrum at those particular
angles and are useful for getting a sense of the overall noise floor of the experiment.

Fitting the frequency angle dependence F(θ) of the Tc = 10 K samples (figure 6(a)) to
the quasi-2D, roughly cylindrical Fermi surface form (= F0/cos θ ), we obtain fundamental
frequencies F0 of 18.10(3) and 18.00(1) kT for Tl10Ka and Tl10Kb, respectively, in agreement
with a previous study in pulsed fields [15]. Similarly, for the Tc = 26 K sample Tl26K
(figure 7(a)), we obtain fundamental frequencies F0 of 17.63(1) kT for ϕ ∼ 0◦ and 17.61(2) kT
for ϕ ∼ 45◦. Since F0 is directly related to the extremal cross-sectional area Aext of the
Fermi surface via the Onsager relationship (equation (1)), we find that the radius k0,0 of the
roughly cylindrical Fermi surface is 0.7416(6) Å−1 for Tl10Ka, 0.7396(2) Å−1 for Tl10Kb,
0.7319(2) Å−1 for Tl26K (ϕ ∼ 0◦) and 0.7315(4) Å−1 for Tl26K (ϕ ∼ 45◦). Furthermore, from
equation (15), we obtain hole dopings p of 0.304(2), 0.2970(7), 0.2703(7) and 0.269(1)

5 Note that the sign of k2,1 cannot be determined experimentally by either dHvA or ADMR and has thus been
chosen to be negative to match that found by fitting band-structure calculations (see section 6).
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holes per in-plane Cu atom, respectively, for Tl10Ka, Tl10Kb, Tl26K (ϕ ∼ 0◦) and Tl26K
(ϕ ∼ 45◦). These values are consistent with those originally determined by ADMR (k0,0 =

0.745(8) Å−1) [8] and the measured zero-temperature Hall number nH(0) = 1.28(6) per Cu for
a Tc = 15 K sample [33].

Moving on to the angle dependence of the quantum oscillation amplitude A(θ) (panels
(b) and (c) of figures 6 and 7), one can immediately notice that for both dopings, the data sets
taken in the ϕ ∼ 45◦ orientation go to zero at many more angles than those taken with ϕ ∼ 0◦. In
Tl10Ka (ϕ ∼ 0◦), beyond the amplitude zero at θ = 0◦ caused by Rtorque, only one amplitude zero
is seen, at θ0 = 27.6(1.0)◦. Since zeros due to warping disappear as ϕ → 0◦, this zero must arise
from the spin-splitting term Rs. Unfortunately, no additional spin zeros are visible for ϕ ∼ 0◦,
so while we know that the susceptibility mass m∗

sus lies on the ‘magic list’ written at the end of
section 2, it cannot be specified more precisely. (However, we can truncate the list at a maximum
value of m∗

sus = 7.53me because higher values cause additional zeros at θ < 27◦, which are ruled
out experimentally.) Since m∗

sus = 4.87me is close to the experimentally determined values of
m∗

therm and best matches the overall θ dependence of both the Tl10Ka (ϕ ∼ 0◦) and Tl10Kb
(ϕ ∼ 45◦) data, we use this value for our fits (m∗

sus = 3.99me and 5.76me also give good fits and
are close to m∗

therm). For a given value on the magic list, the experimental error of ∼ ±1◦ in θ0

corresponds to an error of approximately 0.04me in m∗

sus. While no spin zeros can be seen in the
Tl26K ϕ ∼ 0◦ data, the overall amplitude θ dependence is consistent with the presence of a zero
near θ0 = 27.6(1.0)◦ and so we assume that m∗

sus = 4.87me for the Tl26K fits as well.
For ϕ ∼ 45◦, the minima observed below θ = 25◦ are caused by Rwarp and specifically

determined by the value of k2,1, the dominant component of the c-axis warping and a parameter
that cannot be determined directly by ADMR or ARPES experiments. We varied k2,1 until
the first amplitude zero from Rwarp matched the angle of that seen in the data; for the same
k2,1 value, the higher-angle warping zeros seen in the Tl10Kb data automatically matched
those predicted by Rwarp as well. Our data show that k21 = −0.00170(5) and −0.00125(5) Å−1

for Tc = 10 K and 26 K, respectively6, corresponding to a resistivity anisotropy ρc/ρab of
3.3(2) × 103 and 6.2(5) × 103 (estimated using equation (20), assuming isotropic scattering
and including k6,1/k2,1 and k10,1/k2,1 from previous ADMR measurements [8, 30], as listed
in table 1). These values are in reasonable quantitative agreement with reported anisotropies
(ρc/ρab = 2.5 × 103 at T = 30 K) for Tl2201 single crystals with similar Tc values [38]. The
rise in anisotropy as T max

c is approached derived from our data is, however, significantly steeper
than observed in resistivity measurements [39]. This could result from experimental difficulties
in resistive measurements of highly anisotropic crystals or a strong anisotropy in the scattering
rate for the c-axis versus in-plane transport.

The overall broad angle dependence of the amplitude, which damps out with increasing θ ,
is difficult to model precisely as it depends on detailed knowledge of the θ, ϕ dependence of
the scattering rate, mosaic spread and doping inhomogeneity in the portion of the sample from
which quantum oscillations arise. In particular, we observed a strong asymmetry in the angular
dependence for ϕ ∼ 0◦ (evident in figures 6 and 7). Some asymmetry has been seen by us in
other systems measured using the same microcantilevers and is not understood. In the present
study, this asymmetry is much weaker for ϕ ∼ 45◦, and importantly, the positions of the minima,
which determine k2,1, are symmetric with respect to ±θ .

6 Note that the sign of k2,1 cannot be determined experimentally by either dHvA or ADMR and has thus been
chosen to be negative to match that found by fitting band-structure calculations (see section 6).
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Nevertheless, we have attempted to quantify the broad θ dependence of the oscillation
amplitude by fitting A(θ) (θ > 0◦) to the full form of equation (5). Since the angle dependences
of RD, Rmos and Rdop are similar to each other and therefore difficult to disentangle, δθ and δp
were set to 0 in order to allow fitting parameters to be constrained. Furthermore, given the lower
limits of the scattering mean free path `0 determined from the low-angle Areduced(B) fits shown
in figure 5, the oscillation amplitudes A(θ) are damped out much more quickly with increasing
θ than predicted by the quasi-2D, isotropic-` version of RD from equation (10) (especially when
ϕ ∼ 0◦). In order to accommodate the unknown θ, ϕ dependence of ` in the simplest manner
possible, we modify equation (10) to

RD (B, θ) = exp

{
−π

√
2h̄F0

e

1

`0 B (cos θ)n

}
, (29)

where the `0 values are fixed at those determined from Areduced(B) and n is a free fitting
parameter. Using the formula for RD (equation (29)), the analytical form of Rwarp given by
equation (24) and parameters shown in table 1, we generate least-squares fits to the θ > 0◦ data
shown in figures 6 and 7, with the fits shown as lines in the aforementioned figures. In these
fits, only A0 and n are free parameters, with the values of the other parameters deduced as
above. The magnetic field strength B used in equation (5) and in the equations for the damping
terms is taken to be the mid-point Bmid of the field sweep range in 1/B. Also, for completeness,
higher order warping terms k6,1/k2,1 and k10,1/k2,1 determined by previous ADMR studies of
overdoped Tl2201 crystals from the same crystal growth batch [8, 31] were included in the
fits, although as discussed below, our quantum oscillation data are not very sensitive to these
particular warping parameters.

Since (i) the analytical form of Rwarp shown in equation (24) was derived under the
assumption that k4,0 = 0, but we know from the previous ADMR measurements of overdoped
Tl2201 that k4,0/k0,0 = −0.032 [8, 31]; and (ii) the methodology for deriving equation (24) [21]
has recently come into question [40], we have endeavoured to confirm our results numerically.
To this end, we have directly computed the full oscillatory magnetization along the c-axis from
equations (19), (21), (22) and (23) at 1000 magnetic field values per tesla within the field ranges
measured experimentally, then extracted A(θ) using the same treatment as the one we applied
to the experimental data (i.e. from the peak in the FFT). In these numerical simulations, spin-
splitting was explicitly taken into account by calculating and summing different M̃‖c,↑↓ for the
majority-spin and minority-spin Fermi surface sheets at each field value; the other damping
factors (including Rtorque, which converts the calculated M̃‖c to torque) were also applied directly
at each field. Unless indicated otherwise, the same parameters as the analytical fits (shown in
table 1) were used for the simulations.

A comparison between analytical fits and numerical simulations for each doping/ϕ

combination is shown in figure 8. Analytical fits (solid lines) are the same as those in panels
(b) and (c) of figures 6 and 7. Two types of numerical simulation were run: one with the full
parametrized Fermi surface, including k0,0, k4,0, k2,1, k6,1 and k10,1 (open circles), and the other
including only k0,0 and k2,1 (+ symbols). From these comparisons, we can clearly see that (i)
the results are nearly identical whether or not k4,0 is included and whether or not the analytical
expression was used; and (ii) the effects of k6,1 and k10,1 are only apparent at high angles θ & 25◦,
where we have few experimental data points.
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Figure 8. Comparison (for all four doping/ϕ combinations) of the amplitude
angle dependence A(θ) obtained using the analytical equation (24) with k0,0,
k2,1, k6,1 and k10,1 (solid lines); numerical simulations of equation (21) with k0,0,
k4,0, k2,1, k6,1 and k10,1 (circles); and numerical simulations of equation (21) with
k0,0 and k2,1 only (+ symbols). All other parameters are taken from table 1.

6. Band structure

Now that we have an accurate experimental determination of the Fermi surface of Tl2201,
it is instructive to compare this in detail to density functional theory (DFT) band-structure
calculations. To do this, we have calculated the band structure of Tl2201 using the Wien2K
package [41], which is an implementation of a full-potential, augmented plane-wave plus local
orbital scheme (APWlo). We used a generalized gradient approximation form for the exchange
correlation potential [42] and 104 k-points for convergence. The structure used was based on
that determined by Liu et al [43], but with the Tl and O(3) atoms moved to the symmetry points
with full occupancy: Tl (0.5, 0.5, 0.203), Ba (0, 0, 0.0842), Cu (0.5, 0.5, 0), O(1) (0, 0.5, 0),
O(2) (0.5, 0.5, 0.1168), O(3) (0.5, 0.5, 0.289), space group 139 (I4/mmm), lattice constants
a = 3.861 Å, c = 23.133 Å.

The Fermi surface resulting from this calculation is similar to that reported previously [44]
with two sheets: one large hole-like quasi-2D sheet derived from the CuO2 planes (containing
1.05 holes) and a small electron-like spherical sheet derived from the Tl–O layers (containing
0.05 electron). The total volume of the Fermi surface corresponds to half-filling, i.e. one
electron per Cu atom. Our samples are overdoped (because of Tl deficiency and excess oxygen).
A simple way to simulate this is to rigidly shift the energy of the bands until the experimental
doping level is achieved. An alternative, more accurate approach is to employ the virtual crystal
approximation (VCA) where the doping is achieved by replacing the T1 atom with a virtual
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Figure 9. Comparison of the (001) cross-section of the Fermi surface of Tl2201
at kz = 0 calculated by DFT band structure with that derived from dHvA and
ADMR experiments.

atom of non-integral charge [45]. With this approach, the T1–O band moves much more rapidly
than the CuO2 band [45]. In order to get a doping of p = 0.31 we need to reduce the charge per
Tl site from 81 to 80.846.

A (001) cross-section of the Fermi surface at kz = 0 is compared in figure 9 to the same
cross-section calculated using the parameters derived from the present experiments. For this
calculation a very dense mesh of 1.6 × 105 k-points was used in the 2D grid. The level of
agreement is very good. We note that a previous calculation of Platé et al [36, 37] predicted
a much more square Fermi surface than that found experimentally. This is presumably a result
of the tight-binding linear muffin-tin orbital (TBLMTO) method used, which is evidently less
accurate than the present full-potential APWlo calculation for the case of Tl2201.

To make a more detailed comparison between the DFT calculation and experiment, we
fitted kF(φ, kz = 0) to the harmonic expansion given in equation (18) (figure 10(a)). To get a
fit within the numerical noise level of the calculation, we need to include four cosine warping
terms (k4,0, k8,0, k12,0, k16,0), whereas to fit the ADMR data just the k4,0 parameter was needed.
However, the small magnitude of these extra terms (k4,0 ' 5k8,0 ' 35k12,0 ' 100k16,0) means
that they are difficult to detect experimentally. For example, the experimental error in k4,0 is
the same order of magnitude as k8,0. The residuals after subtracting a fit with just the cosine
terms are shown in figure 10(b). These residuals correspond to the c-axis warping of the Fermi
surface—the cross-section at kz = π/2 does not contain any sine term (by symmetry) and is
fitted within the noise by the cosine terms alone. The sine terms needed to fit these residuals
within the numerical noise are exactly the same components k2,1, k6,1 and k10,1 needed to
fit the ADMR data. The fact that this was determined experimentally from the analysis of
ADMR measurements [8] prior to these calculations is a testament to the robustness of the

New Journal of Physics 12 (2010) 105009 (http://www.njp.org/)

http://www.njp.org/


22

-90 -60 -30 0 30 60 90

0.72

0.74

0.76

0.78

0.80 (a)

k F
(Å

-1
)

φ (o)

DFT calculation
Full fit
Cosine terms only

-90 -60 -30 0 30 60 90

-0.004

-0.002

0.000

0.002

0.004 (b)

k F
(Å

-1
)

φ (o)

Residuals
Sine terms only

Figure 10. (a) DFT VCA calculation of kF(φ) at kz = 0. The solid line is the full
fit using both the cosine and sine terms described in the text (see table 2). The
dashed line is a fit using just the cosine terms. The residuals from this latter fit
are shown in (b) and are fitted using the sine terms listed in table 2.

Table 2. Fitting parameters from the DFT VCA band-structure calculation
compared to parameters derived from the present dHvA study (k0,0 and k2,1)
and ADMR measurements (k4,0, k6,1, k10,1) for the Tc = 10 K sample. The units
of k0,0 and k2,1 are Å−1.

k2,1 (see
k0,0

k4,0

k0,0

k8,0

k0,0

k12,0

k0,0

k16,0

k0,0
footnote 7) k6,1

k2,1

k10,1

k2,1

DFT 0.7390 −0.047 0.0088 −0.001 35 0.000 436 −0.002 87 0.50 −0.34
Exp 0.7416 −0.032 – – – −0.001 70 0.71 −0.25

ADMR fitting procedures. Note that the c-axis dispersion is zero at φ = 0◦ and close to zero
at φ = 45◦ as predicted by the ADMR fitting [8]. A detailed comparison of the fit parameters
is shown in table 2. Overall, the fit parameters from the DFT calculation and dHvA/ADMR
experiments are in good agreement. The sign and magnitude of all the terms agree well. The
largest warping parameters k4,0 and k2,1 are experimentally found to be about 50% smaller than
the DFT calculation; however, given the small size of these terms, the level of agreement is still
remarkably good and gives additional confidence in the correctness of the experimental analysis.
Finally, as shown in figure 11(b), the DFT calculation exhibits a decrease in the magnitude of
k2,1 with decreasing doping, as we also found experimentally; however, the experimental doping
dependence of k2,1 is much stronger than that predicted by DFT.

By performing rigid band shifts on the band-structure data for both the undoped Tl2201
calculation and the VCA calculation, we can estimate the variation of the Fermi surface
extremal areas with band energy ε. Taking the derivative yields the band mass mb =

h̄2

2π

∂A
∂ε

.
This band-structure determined mass, plotted as a function of doping in figure 11(a), includes
lattice effects and electron–electron correlations at the mean field (LDA) level [46]. Given

7 Note that the sign of k2,1 cannot be determined experimentally by either dHvA or ADMR and has thus been
chosen to be negative to match that found by fitting band-structure calculations (see section 6).
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Figure 11. (a) Dependence of the DFT calculated band mass on the doping
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line) are shown. (b) Doping dependence of the k4,0 (dashed line) and k2,1 (solid
line) warping terms from rigid band shifts of the VCA calculation.

our uncertainties, the small predicted change in band mass would be unobservable between
the two doping levels we have measured. However, the lack of any significant change in
the electronic specific heat capacity [35] as T max

c is approached is surprising. The difference
between this band mass and the measured dHvA mass is a measure of the strength of the
(dynamical) electron–electron correlations or electron–phonon interactions as discussed above.
In the present case, the enhancement seems to be predominately driven by a correlation-induced
band narrowing. It might be possible to account for this in the calculation by introducing an
on-site potential within the LDA+U formulation [46]. At first sight it might be surprising that the
detailed FS warping parameters agree so well with the band structure given the large discrepancy
in the calculated band width. Note that although Luttinger’s theory means that the volume of
the FS is conserved when many-body effects are included, the shape of the FS is not necessarily
conserved. The fact that it is (approximately) points to the potential giving rise to the narrowing
being highly isotropic.

7. Discussion

Prior to the breakthrough experiment in underdoped Y123 by Doiron-Leyraud et al [12],
overdoped Tl2201 had always been considered as one of the best candidates for the observation
of quantum oscillations in cuprates. Indeed, several of the present authors, our colleagues and
other members of the community had tried, albeit unsuccessfully, to observe genuine quantum
oscillations in Tl2201 for more than 15 years. In retrospect, it is not hard to understand now
why it proved such a difficult task, in view of the fact that they have only been observed in a
few per cent of the crystals studied.

So now that quantum oscillations are finally and unambiguously observed, what can
we learn from them? First and foremost, the Fermi surface that we measure is the full one

New Journal of Physics 12 (2010) 105009 (http://www.njp.org/)

http://www.njp.org/


24

predicted by the band structure in the absence of any reconstruction. This result implies that
the pseudogap must close at some critical doping level inside the superconducting dome,
i.e. that the normal state pseudogap and the superconducting gap are not coincident in the
overdoped regime. One might counter, of course, that the magnetic field is acting to suppress any
(small) pseudogap present in the heavily overdoped regime. However, quantitative comparisons
between the properties calculated from the characteristics of the quasiparticles that we observe
through quantum oscillations at high fields and those measured directly by transport [33],
thermodynamic [35] and spectroscopic [37] measurements at low (and in some cases zero) field
make this unlikely.

A more subtle question is whether the electronic ground state in overdoped Tl2201 is
indeed a standard Fermi liquid. It is now known that while the T-dependence of the in-plane
resistivity ρab(T ) in a heavily overdoped non-superconducting cuprate (LSCO) follows a strictly
quadratic temperature dependence at low T [6], for superconducting Tl2201, an additional T-
linear component persists down to very low temperatures [5, 34]. In LSCO, this non-Landau-
Fermi-liquid power law is observed over a wide doping range [47], suggesting some form of
anomalous or ‘extended’ quantum criticality. In the vicinity of a quantum critical point, there
may be unusual energy dependences of the effective mass (or more precisely of the real and
imaginary parts of the quasiparticle self-energy) that manifest themselves in an anomalous
temperature dependence of the quantum oscillation amplitude [23]. In the present study
however, we find that the conventional Fermi-liquid formula applies for the entire temperature
region studied, down to T = 0.35 K. Moreover, the data for Tl26K show that the Fermi liquid
state is not restricted to the edge of the superconducting dome but extends a considerable
distance inside the dome (at least up to 0.3 T max

c ). It remains to be determined whether deviations
from this generalized form appear at lower temperatures, as found for example in CeCoIn5 [24],
and further experiments down to millikelvin temperatures are envisaged for addressing this
important point.

The insensitivity of the quasiparticle mass to doping is another interesting, related
observation [35]. It is widely assumed that correlation effects become stronger as one
approaches the Mott transition from the overdoped side. Transport studies on both overdoped
Tl2201 [48] and LSCO [47], for example, have shown that while the magnitude of the isotropic
T 2 scattering rate remains approximately constant, the anisotropic T-linear component grows
rapidly with decreasing doping. Due to causality [49], one might expect such a marked increase
in the inelastic scattering rate to be reflected in a corresponding enhancement of the effective
mass. In order to understand why this is not necessarily so, one needs to consider the often
neglected momentum dependence of the effective interaction.

Because the electron self-energy, 6(k, ω) (containing all of the many-body correlation
effects), can in general depend on both frequency and momentum, the quasiparticle effective
mass m∗ can be written as

m∗

mb
=

mω

mb
×

mk

mb
, (30)

where the ‘ω-mass’ mω is the inverse of the quasiparticle weight Z , i.e.

mω

mb
= Z−1

=

(
1 −

∂Re6(ω)

∂ω

)
, (31)
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and the ‘k-mass’ mk is given by the expression

mk

mb
=

(
1 +

mb

h̄2kF

∂Re6(k, ω = 0)

∂k

)−1

. (32)

Note here that mb refers to the non-interacting band mass [50–52]. If we consider only the
on-site Coulomb interaction as the origin of the electron correlation, the self-energy depends
only on the quasiparticle energy ω, i.e. 6(k, ω) = 6(ω). In this situation, one expects the
effective mass to be strongly enhanced or to diverge as the (on-site) electron correlations
become progressively stronger [53]. In the general case, however, where Coulomb interaction
is non-local and the self-energy has a momentum dependence, the screening of the Coulomb
potential is weak and the contribution of the momentum-dependent self-energy becomes
significant, resulting in a possible decrease of the k-mass and a corresponding reduction in
m∗ [52, 54]. Thus, while correlation effects in cuprates become stronger with reduced doping,
the fact that the anomalous interaction could be strongly k-dependent might act to suppress any
corresponding enhancement in the effective mass.

Extensive theoretical and experimental work has suggested that hole-doping in cuprates is
intrinsically inhomogeneous on a length scale of a few unit cells [55–58]. NMR experiments on
Y123, however, suggest that (static) phase separation is not a generic property of underdoped
or optimally doped cuprates [59]. This is supported by analyses of heat capacity data for
Bi2212 over a wide range of hole doping p and of NMR data for Y124 and Ca-doped
Y123 [60]. For overdoped cuprates, the applicability of the phase separation picture is still
debated. Experimentally, the ratio of the superfluid density ns to the carrier effective mass
m∗

therm is found to decrease with increasing p [61, 62]. This so-called ‘boomerang’ effect has
been attributed both to pair-breaking in a homogeneous electronic state [61] and to spontaneous
phase separation into hole-rich (non-SC) and hole-poor (SC) regions [56, 62–64].

The observation of rapid quantum oscillations with a single frequency in overdoped
Tl2201 appears to rule out the notion that coexisting hole-rich and hole-poor regions (of
the order of the coherence length) are the origin of the decrease in ns in this system. In
the alternative, pair-breaking scenario, the rapid loss of superfluid density is attributed to a
crossover from weak to strong pair breaking with overdoping [61]. According to our dHvA
data, the intrinsic `0 is relatively insensitive to carrier concentration, and in LSCO at least, the
residual in-plane resistivity ρab(0) is roughly constant across the entire overdoped region of the
phase diagram [47]. Thus, for the crossover from clean to dirty limit superconductivity to be
realized, overdoping must be accompanied by a marked reduction in the strength of the pairing
interaction [61, 65], as implied by the observed correlation between Tc and the magnitude of the
(anisotropic) T-linear scattering rate in both overdoped LSCO [47] and Tl2201 [48].

In fully oxygenated LSCO, it is usually assumed that x equals p, the number of added
holes per CuO2 unit. Tallon et al [18] have argued that Tc follows a universal dependence on p
for all hole-doped cuprate families: Tc/T max

c = 1 − 82.6(p − 0.16)2. In many families however,
the precise doping level is difficult to determine. The SC phase diagram of overdoped Tl2201 is
compared with that of LSCO in figure 12. The dashed line is the ‘universal’ parabola [18], scaled
to T max

c , while the solid line is the corresponding Tc(p) curve for Tl2201, as determined by this
study (black squares). (Here we have assumed that T max

c remains at p = 0.16.) Extrapolation
of the solid line in figure 12 to Tc = 0 implies that superconductivity in Tl2201 will disappear
at p = 0.31. In LSCO, the T-linear term in ρab persists to x = 0.29, i.e. outside the LSCO
SC dome [47], implying that pairing may still be active there. Indeed, comparison of the
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Figure 12. Schematic phase diagram of cuprates, based on the present data for
TL2201 compared to those derived from measurements of LSCO.

impurity scattering rate with the superconducting gap energy 10 suggests that the parabolic
tail-off of Tc(p) in LSCO could be attributable to the same pair-breaking effects that lead to the
reduction in ns/m∗

therm. In LSCO (x = 0.29), ρab(0) ∼ 18 µ� cm [47]. Taking FS parameters
for overdoping LSCO from ARPES [66], we obtain a transport (i.e. large-angle) scattering rate
h̄/τ0 ∼ 10 meV that is much larger than the BCS weak coupling value 10 = 2.14kBTc ∼ 2 meV,
for Tc ' 10 K. In contrast, for Tl2201 with Tc = 10 K, ρab(0) ∼ 6 µ� cm, and correspondingly,
h̄/τ0 ∼ 3 meV ' 10 [5, 64].

In other words, the extent of the superconducting dome in Tl2201, with low levels
of impurity scattering, is closely tied to the doping dependence of the underlying pairing
interaction. However, the high levels of impurity scattering found in LSCO tend to prematurely
kill off bulk superconductivity with increasing overdoping. Thus, the detailed shape of the T max

c
versus p parabola, which had previously been thought to be universal to all cuprates, may in
fact be a coincidence arising from the large intrinsic disorder found in LSCO.

8. Conclusion

In conclusion, detailed angle-dependent quantum oscillation experiments have uncovered a
wealth of new information pertaining to the bulk electronic structure and superconductivity of
the single-layer cuprate Tl2201. All indicators suggest that the physical properties of overdoped
Tl2201 are determined by a single, spatially homogeneous electronic ground state and that
there is no phase separation over a length scale of more than 1000 Å. Combined with the
NMR measurements on underdoped and optimally doped cuprates [59], it would appear that
static nanoscale inhomogeneity and phase separation are not intrinsic features of cuprates in
any region of the phase diagram. We therefore conclude that pair breaking (possibly enhanced
by the effect of a pairing interaction that is highly anisotropic) is responsible for the loss of
superfluid density in overdoped Tl2201 and probably for the disappearance of superconductivity
in LSCO below pc = 0.31. The underlying reason for this appears to be the rapid fall in the
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strength of the pairing interaction on the overdoped side [61, 65]. This, and the absence of
any significant renormalization near the Fermi level, supports a purely magnetic or electronic
pairing mechanism.

The observation of quantum oscillations in a regime where the transport properties
show non-Fermi-liquid power laws is particularly intriguing. We have argued here that the
lack of any doping dependence in the quasiparticle mass is possibly related to the strong
momentum dependence of the electronic correlations [67]. A related question is how far into
the superconducting dome do quantum oscillations survive as the carrier concentration p is
decreased? Clearly this has a strong influence when choosing an appropriate starting point
to describe the high-Tc cuprates. Now that quantum oscillations are an active field in cuprate
research, further measurements may well have an important role to play in developing our
understanding of these key, fundamental issues.
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