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Abstract. Experiments have revealed multiple quantum oscillation frequencies
in underdoped high-temperature superconductor YBa2Cu3O6+δ, corresponding to
approximately 10% doping, which contains CuO bilayers in the unit cell. These
unit cells are further coupled along the c-axis by a tunneling matrix element. A
model of the energy dispersion that has its roots in the previously determined
electronic structure, combined with twofold commensurate density waves,
reveals multiple electron and hole pockets. To the extent that quasiparticles of the
reconstructed Fermi surface have finite residues, however small, the formation
of Landau levels is the cause of these oscillations, and the bilayer splitting and
warping of the electronic dispersion along the direction perpendicular to the
CuO-planes are firm consequences. The goal here is to explore this possibility
from various directions and provide a better understanding of the rapidly
developing experimental situation involving multiple frequencies. An important
conclusion is that bilayer splitting is considerably renormalized from the value
obtained from band structure calculations. It would be extremely interesting to
perform these experiments for higher values of doping. We roughly expect the
splitting of the frequencies to increase with doping, but the full picture may
be more complex because the density wave order parameter is also expected
to decrease with doping, vanishing around the middle of the superconducting
dome.
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1. Introduction

The surprising quantum oscillations (QOs) in both hole- [1]–[11] and electron-doped
cuprates [12] have raised an important question concerning the ground state of high-temperature
superconductors [13]. Applied magnetic field between 35 and 85 T has been argued to quench
the superconducting fluctuations, at least to a large degree, revealing the normal state. This is
not surprising in electron-doped Nd2−xCexCuO4 (NCCO), where the upper critical field Hc2 is
less than 10 T, but is somewhat surprising in hole-doped cuprates, where Hc2 is extrapolated to
be of the order of 100 T or greater [14]. One of the striking recent findings is the observation of
multiple QO frequencies [7, 15]. To understand QO in hole-doped YBa2Cu3O6+δ (YBCO) and
stoichiometric YBa2Cu4O8 (Y124), we shall follow a reasoning based on broken translational
symmetry with perhaps an unconventional order parameter, dx2−y2-density wave (DDW) [16].
The observed multiple frequencies should impose constraints not only on the theoretical
models but also on interpretation of experiments. In some respects, similar results can be
obtained within a mean field approximation using a spin density wave (SDW) theory, but
we favor singlet DDW for numerous reasons discussed elsewhere [17]. More importantly,
the quasiparticles of a singlet DDW have charge-e, spin-1/2 and a g-factor renormalized by
residual Fermi liquid corrections. In the simplest treatment given here, we set g = 2. This
characterization of the quasiparticles is consistent with a very recent measurement and its
precise analysis [15], and perhaps eliminates any triplet order parameter, such as SDW or triplet
DDW.

The experiments involving multiple QO frequencies not only indicate formation of Landau
levels signifying finite quasiparticle residues even in underdoped cuprates, but also indicate
coherent electron motion along the direction perpendicular to the CuO-plane. A bilayer
Hamiltonian corresponding to YBCO was first written down in a paper in which an interlayer
tunneling theory of superconductivity was proposed [18]. This Hamiltonian was subsequently
derived from a downfolding process in a band structure calculation [19]. As long as the
fermionic quasiparticles exist as excitations of the normal ground state, it is impossible to deny
the existence of bilayer splitting, which results from the superposition of the electronic states
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of the layers within a bilayer block. For each value of momentum, there is a bonding and an
antibonding state that are split in energy. In the original context [18], it was argued that only
in a superconducting state is such a coherent linear superposition possible. However, it is clear
that the only requirement is the existence of a finite quasiparticle residue. An important effect
discussed earlier [17] is that the phase of the DDW order parameter of the two layers within a
bilayer block make a large difference. Even though the bilayer splitting can be substantial, the
splitting of the Fermi surface areas for the out-of-phase case can be very small as compared to
the in-phase case. We shall focus on these two alternatives amongst other considerations.

For many years it has been argued that the normal state of high-temperature
superconductors is incoherent, especially in the underdoped regime. Here we shall focus on
very low temperatures, where a sharp statement can be made. The view that the normal state
is a non-Fermi liquid appears to be at variance with the striking QO experiments mentioned
above. We look for consistency with recent experiments [7, 15] involving multiple frequencies,
emphasizing, of course, the general aspects of a mean field theory. A further motivation is a
measurement in a tilted magnetic field [20], where inconsistency of a scenario in which observed
multiple frequencies arise from bilayer-split pockets is pointed out.

We emphasize a commensurate density wave order as the cause of Fermi surface
reconstruction as revealed in QO measurements, although some evidence for incommensuration
does exist [4]. The pressing questions can hopefully be addressed in a simpler setting. Why
should the Fermi liquid picture be valid for the normal state? Is the motion along the direction
perpendicular to the CuO-planes (c-axis) coherent? Why do other experimental probes of
the electronic structure paint a very different picture of the fermiology? In reality, no direct
evidence for any kind of long-range density wave order exists in the regime of interest to
the QO measurements. Fluctuating order does not solve this dilemma, especially because
the QO measurements require very large correlation lengths and nearly static order. The
simplest possible explanation of the main aspects of the measurements call for long-range
order. Moreover, there are strong arguments from detailed fits to the measurements that the
relatively high magnetic field is not the root of these observations [11], beyond the obvious
effect of suppressing superconductivity. Indeed, previous NMR measurements in Y124 up to
at least 23.2 T have shown no signatures of field-induced order. Yet the QO measurements for
this stoichiometric material are clear and unambiguous. Of course, NMR measurements [21] in
higher fields of the order of 45 T would be interesting. Given these larger issues and many others,
it is not particularly attractive to focus on details such as incommensurate versus commensurate
order. In any case, it was shown previously [17] that within mean field theory it is quite simple
to incorporate incommensurate order with very little change of the big picture; to go beyond
mean field theory is quite difficult and is not particularly fruitful without sufficiently strong
motivation. An important point with regard to DDW is that it is hidden from most common
probes and its existence perhaps could have gone unnoticed.

The present paper is organized as follows. In section 2, we set up the effective Hamiltonian
then discuss bilayer splitting in section 3. In section 4, we discuss our results in a perpendicular
magnetic field and, in section 5, those in a tilted field. In section 6, we discuss how variation
of parameters provides contrasting evidence of the out-of-phase versus in-phase DDW order.
In section 7, we discuss in detail the temperature dependences and the oscillation magnitudes
of both the magnetization and the specific heat within the Lifshitz–Kosevich–Luttinger formula
but with Dingle factors reflecting vortex scattering rate in the mixed state. Section 8 contains
remarks regarding unresolved puzzles.

New Journal of Physics 12 (2010) 105005 (http://www.njp.org/)

http://www.njp.org/


4

1

2

1

2

CuO

CuO

CuO

CuO

c =11.82 A
o

o
d = 3.25 A

j

( j + 1)

Figure 1. Bilayer structure of YBCO. Each unit cell contains a bilayer CuO
block. Note that tunneling matrix elements within a bilayer unit and between the
nearest-neighbor planes between the unit cells are kept; other matrix elements
are exponentially smaller.

2. Hamiltonian

We consider a tight-binding Hamiltonian, H0, which captures correctly the bilayer splitting and
the matrix elements between the unit cells (see figure 1),

H0 =

∑
j,k

2∑
n=1

ε(k)c†
n, j(k)cn, j(k)−

∑
j,k

t⊥(k)c
†
1, j(k)c2, j(k)+ h.c.

− tc

∑
j,k

c†
1, j+1(k)c2, j(k)+ h.c. (1)

The fermion annihilation operator cn, j(k) depends on the bilayer index n within the unit cell
and the index j refers to the unit cell. The spin indices are suppressed and k = (kx , ky) is a two-
dimensional (2D) vector. Only the hopping matrix element, tc, between the nearest-neighbor
planes of two adjacent unit cells is kept, as the tunneling matrix elements to further neighbor
planes are considerably smaller. For simplicity, tc is assumed to be momentum independent, as
very little is known about its precise form. This assumption will have little effect on our analysis.
The bilayer matrix element corresponding to YBCO is [18]

t⊥(k)=
t⊥
4

[
cos(kxa)− cos(kya)

]2
, (2)

where a is the in-plane lattice constant, ignoring slight orthorhombicity. H0 can be further
simplified by the canonical transformation [22],

cn(k, kz)=
1

√
M

∑
j

cn, j(k)eikz[ jc+(n−1)d]e∓iφ(kz)/2, (3)
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which diagonalizes it in the momentum space. Note the additional phase factors, e−iφ(kz) for
n = 1 and e+iφ(kz) for n = 2. The choice of the phase φ(kz)= −kzd preserves the fermion
anticommutaion rules and results in an energy spectrum that is periodic in 2π/c, which
preserves the periodicity of the conventional unit cell. The 2 × 2 bilayer block is still not
diagonal and must be diagonalized further to obtain the quasiparticle dispersion. Note that tc

is a matrix element between the nearest-neighbor planes of the two bilayer blocks and will be
chosen to be an adjustable parameter. The canonical transformation leads to

H0 =

∑
kz,k

{
2∑

n=1

εkc†
n(kz,k)cn(kz,k)− [t⊥(k)+ tce

−ikzc]c†
1(kz,k)c2(kz,k)+ h.c.

}
. (4)

We use a common band structure [19, 23],

εk = −2t (cos kxa + cos kya)+ 4t ′ cos kxa cos kya − 2t ′′(cos 2kxa + cos 2kya), (5)

with t ′
= 0.32t and t ′′

=
1
2 t ′, but t is chosen to be t ≈ 0.1 eV. This renormalized value of t ,

as compared to the band structure value of 0.38 eV, seems to be phenomenologically more
appropriate in the underdoped regime of interest to us. However, the specific results pertaining
to the ground state at T = 0 are independent of the magnitude of t ; even if we had chosen
t = 0.38 eV, the results would have been the same provided the remaining parameters are chosen
proportionately. This is no longer true when we consider the T 6= 0 properties discussed in
section 6. We shall first choose t⊥ = 0.05t and tc = 0.013t ; these parameters are expected to be
highly renormalized in the underdoped regime. Even when bilayer splitting is clearly observed
in angle-resolved photoemission spectroscopy (ARPES) in heavily overdoped Bi2Sr2CaCu2O8+δ

(Bi2212) [24], the actual magnitude of t⊥ is severely overestimated by the band structure
calculations, 300 meV, as opposed to the observed 88 meV. In the underdoped regime, the band
structure value is likely to be more unreliable because of strong correlation effects. In section 6,
we shall see how the variation of t⊥ affects the principal conclusions.

The 2 × 2 Hamiltonian has the eigenvalues

λ±(kz,k)= εk ±

√
t2
c + t⊥(k)2 + 2tct⊥(k) cos kzc . (6)

It is interesting to note that with our choice of the phase of the fermion operators, the distance
between the layers in a bilayer block, d , does not appear explicitly in the spectrum, but only
implicitly in the magnitude of the hopping matrix elements. The above result is very different
from the conventional warping of layered materials that contain only one electronically active
plane per unit cell, which leads to a dispersion εk − 2tc cos kzc. Also, note that the interbilayer
term is modulated by t⊥(k); see figure 2. As long as tc is non-zero, the splitting at the nodal
locations (π/2a, π/2a) is non-zero. We now fold the Brillouin zone to the reduced Brillouin
zone (RBZ) bounded by ky ± kx = ±π/a, corresponding to the twofold commensurate singlet
DDW order parameter, and augment H0 by H ′,

H ′
=

∑
kz,k∈RBZ

[
i Wkc1(kz,k)†c1(kz,k + Q)+ h.c.

]
+ (1 → 2), (7)

where Q = (π/a, π/a) and the DDW gap Wk is real and is given by

Wk =
W0

2
(cos kxa − cos kya). (8)
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Figure 2. A greatly exaggerated illustration of warping of the bilayer split
bands plotted in the extended zone −2π 6 kzc 6 2π , −π 6 kxa 6 π and −π 6
kya 6 π .

Note that the DDW order parameters are chosen to be in-phase for the layers. To reproduce the
experimental frequencies, we require a somewhat large value of W0 = 0.85t within our mean
field approximation; in section 6, we shall consider a small variation of this parameter.

The singlet DDW condensate is defined by [25]

〈c†
n′,σ ′(k′, kz)cn,σ (k, kz)〉 = iWk δσ ′,σδn′,nδk′,k+Q. (9)

Note that it involves δσ ′,σ for spin indices. This is the reason why the spin indices can
be conveniently suppressed. This is a particle–hole condensate that breaks the following
symmetries: translation by a lattice spacing, time reversal, parity and a rotation by π/2, while
the product of any two are preserved. The order parameter corresponds to angular momentum
`= 2. Since there is no exchange symmetry between a particle and a hole, the orbital wave
function does not constrain the spin wave function. Therefore, there is also a corresponding
triplet DDW, which consists of a staggered pattern of circulating spin currents [25], as opposed
to a staggered pattern circulating charge currents. In the present work, we shall consider only
the singlet DDW order and make only brief remarks regarding the triplet DDW at the very end.
The staggering is determined by the wave vector Q.

3. Bilayer splitting

The combined Hamiltonian H0 + H ′ can be written in terms of the four-component spinor
9†(k, kz)= {c†

1(k, kz), c†
1(k + Q, kz), c†

2(k, kz), c†
2(k + Q, kz)}, suppressing once again the spin

indices, which is irrelevant for a singlet DDW order parameter. In terms of this spinor, the
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combined Hamiltonian is

H=

∑
k∈RBZ,kz

9†(k, kz)A9(k, kz), (10)

where

A=


εk iWk −t⊥(k)− tc e−ickz 0

−iWk εk+Q 0 −t⊥(k)− tc e−ickz

−t⊥(k)− tc eickz 0 εk iWk

0 −t⊥(k)− tc eickz −iWk εk+Q

 . (11)

Note that the DDW order parameters in the two 2 × 2 diagonal blocks are in phase. The in-phase
DDW order parameter corresponds to ‘ferromagnetically’ aligned staggered circulating currents
in the layers within a bilayer block. The four eigenvalues of the matrix A are

λs
1±
(k)=

εk + εk+Q

2
±

∣∣∣∣∣∣
√(

εk − εk+Q

2

)2

+ W 2
k −

√
t2
c + t⊥(k)2 + 2tct⊥(k) cos kzc

∣∣∣∣∣∣ , (12)

and

λs
2±
(k)=

εk + εk+Q

2
±

√(
εk − εk+Q

2

)2

+ W 2
k +

√
t2
c + t⊥(k)2 + 2tct⊥(k) cos kzc

 . (13)

For a particle–hole condensate, when measured from the chemical potential, the spectra are

E s
1±
(k)= λs

1,±(k)−µ, (14)

E s
2±
(k)= λs

2,±(k)−µ, (15)

because both ε(k) and ε(k + Q) are equally shifted by µ. If, on the other hand, the staggered
circulating currents are ‘antiferromagnetically’ aligned within a bilayer block [17], that is,
iWk is replaced by −iWk in the lower 2 × 2 diagonal block (out-of-phase), the corresponding
eigenvalues are

λa
1±
(k)=

εk + εk+Q

2
±

{
W 2

k +

(∣∣∣∣εk − εk+Q

2

∣∣∣∣ − √
t2
c + t⊥(k)2 + 2tct⊥(k) cos kzc

)2
}1/2

, (16)

and

λa
2±
(k)=

εk + εk+Q

2
±

{
W 2

k +

(∣∣∣∣εk − εk+Q

2

∣∣∣∣ +
√

t2
c + t⊥(k)2 + 2tct⊥(k) cos kzc

)2
}1/2

. (17)

Once again, measured from µ, we have

E a
1±
(k)= λa

1,±(k)−µ, (18)

E a
2±
(k)= λa

2,±(k)−µ. (19)

The contour plots for the Fermi surfaces corresponding to λs
1±

and λs
2±

for kz = 0 are shown
in figure 3. It is clear that while the electron pockets are observably split, the splitting of
the hole pockets is much smaller. The chemical potential, µ= −0.78t , was adjusted to yield
approximately 10.3% hole doping. For an identical set of parameters, the splitting for the out-
of-phase eigenvalues, λa

1±
and λa

2±
, is considerably smaller, as shown in figure 4. It would be

incorrect, however, to infer that the splitting is exactly zero (see table 2 below). Note that the
absolute value of t does not change the frequencies because εF(k;αt, αt ′, αt ′′, αt⊥, αtc, αW0)=

αεF(k;t, t ′, t ′′, t⊥, tc,W0), as long as we also let µ→ αµ.
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Figure 3. Bilayer splitting of the Fermi surfaces for the in-phase DDW order
parameter. The cut is at kz = 0, where the splitting is maximal. For clarity, the
contours are plotted in the extended zone.
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Figure 4. Bilayer splitting of the Fermi surfaces for the out-of-phase DDW
order parameter. The cut is at kz = 0. For clarity, the contours are plotted in the
extended zone.
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Table 1. Bilayer split frequencies for the in-phase DDW order. Here, t⊥ = 0.05t ,
tc = 0.013t and doping is approximately ∼10.3%. The band parameters are given
in the text. The electron pocket is labeled as the e-pocket and the hole pocket as
the h-pocket.

e-pocket (kz = 0) e-pocket (kz = π/c) h-pocket (kz = 0) h-pocket (kz = π/c)

711 T 659 T 1051 T 1032 T
480 T 534 T 997 T 1015 T

4. Magnetic field perpendicular to the CuO-plane: the Onsager relation

QO frequencies can be obtained from the extremal areas, A(εF), of the Fermi surface
perpendicular to the applied magnetic field [26]. The Onsager relation for the frequency F is

F =
h̄c

2πe
A(εF). (20)

Of course, this formula presupposes that the quasiclassical approximation is valid and there are
no significant magnetic breakdown effects.

Given the electronic structure, the doping dependence can be obtained from noting that
there are two hole pockets within the RBZ and one electron pocket. These are further split by
the bilayer coupling and warped by the kz dependence. Taking into account two spin directions,
the doping fraction of a given electron pocket corresponding to the bilayer bonding band b,
xb

e , is

xb
e = 2

2a2c

(2π)3

∫ π/a

0
dkx

∫ π/a

0
dky

∫ π/c

−π/c
dkz θ

(
µ− εb(k, kz)

)
. (21)

There is an identical expression for the antibonding contribution x a
e . Similarly, the two hole

pockets contribute an amount xb
h given by

xb
h = 2

2a2c

(2π)3

∫ π/a

0
dkx

∫ π/a

0
dky

∫ π/c

−π/c
dkz θ

(
εb(k, kz)−µ

)
, (22)

with an identical antibonding contribution x a
h . The total hole doping per CuO-plane is then

xh =
1
2(x

b
h + x a

h − xb
e − x a

e). (23)

The frequencies for the in-phase order parameter are given in table 1. The parameters
were chosen, but not particularly optimized, to be similar to the observed frequencies [7]
540 ± 15, 630 ± 40, 450 ± 15 and 1130 ± 20 T. Out of four theoretically predicted frequencies
corresponding to the electron pocket, only three are observed. The fourth observed frequency
at 1130 T could correspond to the hole pocket that is split very little. Alternately, it may also
be a harmonic. It has been a puzzle for some time [11], [27]–[31] as to why the hole pocket
frequencies have such weak or non-existent signatures in QO measurements.

In contrast, the out-of-phase frequencies (table 2) do not resemble the experimental
observations [7]. We provide an alternative picture in section 6 based on the experiment in [15].
Within the mean field approximation adopted here, it is not possible to distinguish between the
in-phase and the out-of-phase cases [17] as far as the electronic energy is concerned. For this,
one would need a detailed microscopic Hamiltonian. This is outside the scope of the present
investigation. We therefore rely on experiments to distinguish between the two cases.
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Table 2. Bilayer split frequencies for the out-of-phase DDW order. The
parameters are the same as in table 1.

e-pocket (kz = 0) e-pocket (kz = π/c) h-pocket (kz = 0) h-pocket (kz = π/c)

617 T 609 T 1044 T 1031 T
573 T 585 T 1002 T 1016 T

5. Tilted magnetic field

In this section, we calculate the effect of tilted magnetic field on QOs [32]. In figure 5 we
show a cut of the Fermi surface with the plane ky = −π/a. The intersection with the plane A is
given by

εF

(
kx , ky, kx tanϕ

)
= µ. (24)

If the Fermi surface does not depend on kz, the area AO will be constant for all planes
perpendicular to kz = 0, and the area in the plane A will be given by AA =AO/ cosϕ with a
constant value of AO. However, given the dependence on kz, the area is

AA(ϕ) cosϕ =

∫
−π/a

−π/a
dkx

∫
−π/a

−π/a
dkyθ

[
εF

(
kx , ky, kx tanϕ

)
−µ

]
, (25)

which can be computed numerically. The above result corresponds to kz = 0. More generally,
when the plane O is situated at an arbitrary value of kz, we obtain

AA (kz, ϕ) cosϕ =

∫
−π/a

−π/a
dkx

∫
−π/a

−π/a
dkyθ

[
εF

(
kx , ky, kz + kx tanϕ

)
−µ

]
. (26)

Note that equation (26) is valid for angles ϕ 6 ϕmax such that

tanϕmax =
π/c

π/a
=

a

c
. (27)

Beyond this maximum angle, there are discontinuous jumps, and we do not attempt to treat this
case. For hole pockets, the frequencies are summarized in figure 6. Similarly, for the electron
pockets, the frequencies are shown in figure 7. Note that the vertical scales are different in
figures 6 and 7. However, in this calculation we assumed that the extremal areas are centered
at kx = ky = kz = 0 and kx = ky = 0, kz = π/c. This need not be the case in actual experiments
and therefore a direct comparison with experiments is not possible. Finding the extremal areas
with proper account of both bilayer splitting and warping is very complex, given the energy
eigenvalues in equations (12) and (13). The calculation presented above is merely indicative of
the trend of the frequencies as the tilting takes place.

It is also interesting to note how the frequencies are sequentially split as we first turn on t⊥
and then tc, which is shown in figure 8 for the magnetic field in the direction kz. In figure 9, we
illustrate the warping along kz for an electron pocket. We represent a cut for kx = 0 that yields
kya around 2.64. The vertical line at the center corresponds to a model where t⊥ = tc = 0. The
two vertical lines at the left and right of the figure show the splitting when t⊥ 6= 0. The line on
the left corresponds to the outer pocket and the line on the right to the inner pocket. As we turn
on tc, the warping is seen as two curved lines. It is clear that the warping has opposite sense for
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Figure 5. A cut of the Fermi surface of a pocket by a plane ky = −π/a. B is the
applied magnetic tilted at an angle ϕ.
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Figure 6. Hole pocket frequencies as a function of the tilt angle ϕ.

the outer and inner pockets. The bilayer splitting can be seen from the displacement of the left
line by 0.0334 from the central line, while the right line is displaced by 0.0379 in the opposite
direction. The splitting induced by t⊥ is therefore not symmetric. To calculate the warping we
can compute the distance between the lines at kz = 0, obtaining 0.009 37 for the outer pocket
and 0.0119 for the inner one. At kz = ±π/c, 0.009 58 is the displacement for the outer pocket
and 0.011 58 is the displacement for the inner one. These numbers encode two important facts:
firstly, the warping is different for the inner and the outer pockets and, secondly, it cannot be
modeled with a simple cosine dependence.
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Figure 7. Electron pocket frequencies as a function of the tilt angle ϕ.

Figure 8. The hierarchy of frequency splitting for the in-phase DDW order
parameter with the magnetic field normal to the CuO-plane, as we sequentially
turn on t⊥ and tc. Not to scale.
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Figure 9. Warping of the bilayer split electron pockets.

6. Variation of parameters

Here we vary the parameters to see how the results change. The focus is the difference between
the out-of-phase and the in-phase DDW order parameters. We have already seen that there
is a qualitative distinction between them. However, given the recent measurements [15], we
would like to see if one or the other can be made more consistent with these experiments. We
stress that the phenomenological nature of our work precludes us from fitting parameters with
certainty, nor is it our intention. We only look for some qualitative insights. However, since
in this section we shall be computing the oscillatory part of the thermodynamic potential, as
a function of temperature and magnetic field, not just the frequencies, a good estimate of the
leading tight-binding matrix element t is necessary for materials relevant for QO experiments.
Since there are no reliable ARPES for YBCO, the next best we can do is to rely on the recent
tight-binding fit to the measured ARPES in Y124 [33], a system in which good QOs have been
observed. Except for t , the ratios of the remaining band parameters to t are not very different
from the band structure results given below equation (4). Thus, we simply take over the value of
t determined from ARPES in Y124, which is t = 0.154 eV (the average of the fit to the bonding
and antibonding bands). Additionally, we would like to see if one can tolerate a much larger
value of bilayer matrix element, t⊥, as compared to the earlier section and still find consistency
with experiments. We shall see that this is indeed possible, but only for the out-of-phase DDW
order parameter.

In this section, we keep all the band structure parameters fixed, including tc, but more than
double the bilayer matrix element to t⊥ = 0.12t = 0.0185 eV, resulting in a splitting of 37 meV,
which is reasonable compared to the overdoped Bi2212, where it is measured to be 88 meV;
one expects renormalization with underdoping. To keep the doping level more or less fixed
(≈10.7%), we set µ= −0.775t and W0 = 0.9t . The resulting oscillation frequencies are shown
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Figure 10. The hierarchy of frequency splitting for the out-of-phase DDW order
parameter with the magnetic field normal to the CuO-plane, as we sequentially
turn on t⊥ and tc. Not to scale.

Table 3. Bilayer split frequencies for the out-of-phase DDW order parameter.
Here, t⊥ = 0.12t and doping is ≈10.7%. The band structure parameters, t ′ and
t ′′, are unchanged, t ′

= 0.32t and t ′′
= 0.5t ′, but W0 = 0.9t , where t = 0.154 eV.

e-pocket (kz = 0) e-pocket (kz = π/c) h-pocket (kz = 0) h-pocket (kz = π/c)

538 T 535 T 1034 T 1015 T
461 T 474 T 975 T 993 T

in table 3, and the Fermi surfaces at kz = 0 are plotted in figure 11. The two groups of electron
pocket frequencies are close to each other and so are the two groups of hole pocket frequencies,
despite much larger bilayer splitting. The warping of the outer electron pocket is only 3 T and
that of the inner pocket is 13 T. It is even possible to tolerate larger t⊥, but we have not explored
it further. It is again useful to examine the frequency diagram. This is shown in figure 10 and is
quite different from figure 8.

In contrast, for the same set of parameters as above, the in-phase DDW results in
frequencies that are no longer close to the recent experiments [15], as shown in table 4. The
warping of the outer electron pocket is 51 T and that of the inner electron pocket is 57 T.
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Figure 11. Bilayer splitting for the out-of-phase DDW order parameter. The cut
is at kz = 0. For clarity, the contours are plotted in the extended zone. Here,
t⊥ = 0.12t and doping is ≈10.7%. The band structure parameters, t ′ and t ′′, are
unchanged, t ′

= 0.32t and t ′′
= 0.5t ′, but W0 = 0.9t , where t = 0.154 eV.

Table 4. Bilayer split frequencies for the in-phase DDW order parameter. Here,
t⊥ = 0.12t and doping is ≈10.7%. The band structure parameters are unchanged,
t ′

= 0.32t and t ′′
= 0.5t ′, but W0 = 0.9t , where t = 0.154 eV. Compare with

table 3.

e-pocket (kz = 0) e-pocket (kz = π/c) h-pocket (kz = 0) h-pocket (kz = π/c)

750 T 699 T 1046 T 1022 T
250 T 307 T 965 T 988 T

6.1. Cyclotron masses and the second derivatives of the extremal areas

In the following section, we shall need the cyclotron masses and the second derivatives of the
extremal areas. These are calculated numerically and are summarized in tables 5 and 6. The
second derivatives of the extremal areas with respect to kz are more difficult to calculate. We
fit the areas near kz = 0 and kz = π/c by a fourth-order polynomial with only even terms (odd
terms are zero within numerical precision)

A≈A0 +
A2

2
(kzc)

2 +
A4

24
(kzc)

4 (28)

A≈A0 +
A2

2

[
(kzc)−π

]2
+
A4

24

[
(kzc)−π

]4
. (29)

It is interesting to note that while the cyclotron masses depend on the in-plane hopping matrix
element t , the second derivatives of the extremal areas are independent of t .
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Table 5. Cyclotron masses in units of the free electron mass for the out-of-phase
DDW order parameter.

e-pocket (kz = 0) e-pocket (kz = π/c) h-pocket (kz = 0) h-pocket (kz = π/c)

1.67 1.64 0.99 0.97
1.47 1.49 0.93 0.95

Table 6. The fitting coefficients of the extremal areas.

A0 A2 A4

h-pocket (kz = 0) 1.455 42 −0.008 04 −0.000 51
h-pocket (kz = 0) 1.372 38 0.007 76 −0.004 88
e-pocket (kz = 0) 0.756 96 −0.001 19 −0.003 05
e-pocket (kz = 0) 0.649 28 0.009 02 −0.024 21
h-pocket (kz = π/c) 1.430 00 0.041 16 −1.163 30
h-pocket (kz = π/c) 1.397 61 −0.041 02 1.180 22
e-pocket (kz = π/c) 0.753 15 0.002 69 −0.013 03
e-pocket (kz = π/c) 0.667 71 −0.008 62 0.006 37

7. Oscillation amplitudes of specific heat and magnetization

Within the Fermi liquid theory, Luttinger [34] has shown that the thermodynamic potential is
given by (β = 1/kBT )

�= −
1

β

∑
r

ln
[
1 + eβ(µ−Er )

]
, (30)

where {Er} constitute the spectra of elementary excitations behaving like independent particles
in a magnetic field, including Fermi liquid corrections; r denotes the collection of quantum
numbers: the Landau level n, kz and the spin σ . The spectra {Er} in a crystalline solid in high
magnetic fields are, of course, not easy to calculate, especially if we have to include bilayer
splitting and the DDW order discussed above, but a rigorous answer can be given within an
asymptotic expansion. Luttinger has shown that the problem maps onto that solved by Lifshitz
and Kosevich (LK) [35] in which the thermodynamic potential depends on the extremal areas of
closed orbits, the derivative of the areas with respect to energy at the chemical potential, and the
second derivative of the extremal areas with respect to kz. The beauty of this approach is that it is
not necessary to know Er explicitly. Thus, even given the complexity of the present problem, the
procedure to calculate the oscillatory part of the thermodynamic potential is straightforward. As
with all asymptotic expansions, the validity of the procedure far surpasses what we may naively
perceive to be the regime of validity. Thus the LK formula has stood the test of time, especially
with Luttinger’s Fermi liquid corrections.

For simplicity, in this section we shall consider magnetic field only in the c-direction.
Taking into account only the fundamental frequencies, Fi , the oscillatory part of � is

�

V
∝ −H 5/2

∑
i

1

m∗

i

∣∣∣∣∂2Si

∂k2
z

∣∣∣∣−1/2

ψ (λi) cos

[
2πFi

H
±
π

4

]
cos

(
π

m∗

i

m

)
. (31)
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The phase ±π/4 corresponds to positive or negative sign of the second derivative of the extremal
area with respect to kz. The sum is over all extremal surfaces, and m∗

i is the cyclotron effective
mass given by (m is the free electron mass)

m∗

i =
h̄2

2π

∣∣∣∣∂Si

∂µ

∣∣∣∣ , (32)

and
∣∣∣ ∂2 Si
∂k2

z

∣∣∣ is the second derivative of the area of the Fermi surface with respect to kz. The

argument of the function

ψ (λi)=
λi

sinh λi
(33)

is

λi =
2π2kBT

h̄ω∗

ci

. (34)

The cyclotron frequencies are given by ω∗

ci = eH/m∗

i c. The oscillatory part of the specific heat
is then

Cosc
V

V
∝ −T H 1/2

∑
i

m∗

i

∣∣∣∣∂2Si

∂p2
z

∣∣∣∣−1/2

ψ ′′ (λi) cos

[
2πFi

H
±
π

4

]
cos

(
π

m∗

i

m

)
, (35)

whereψ ′′(λ) is the second derivative ofψ(λ)with respect to λ. Similarly, the leading oscillatory
term of the magnetization is

M

V

osc

∝ −H 1/2
∑

i

Fi

m∗

i

∣∣∣∣∂2Si

∂p2
z

∣∣∣∣−1/2

ψ (λi) cos

[
2πFi

H
±
π

4

]
cos

(
π

m∗

i

m

)
. (36)

These results need to be supplemented by the Dingle factors that damp the oscillations due
to scattering from defects or vortices in the vortex liquid state or both. We expect the total
scattering rate to be given by the combination of defect and vortex scattering rates

h̄

τ
=

h̄

τd
+

h̄

τv
. (37)

Moreover, these scattering rates must depend on the particular extremal area, i , under
consideration. The calculation of the Dingle factors

Di = e−π/ω∗

ci τi , (38)

especially in the mixed phase including disorder, with coexisting fluctuating d-wave
superconducting order parameter and DDW, is a daunting task. Previously, we have shown
rigorously that almost any form of conventional disorder due to defects in a pure DDW state
suppresses the electron pockets more than the hole pockets. For the vortex scattering rate,
however, an approximate treatment based on a paper by Stephen [36] led to an interesting
prediction relating the Dingle factors of electron and hole pockets (not including bilayer
splitting) in the commensurate case, which is(

h̄

ωcτv

)
h

≈
√

2

(
m̃

m∗

)3/2 (
h̄

ωcτv

)
e

, (39)

where m̃ is a characteristic scale having the dimension of mass corresponding to the massless
nodal fermions of the DDW (!), and m∗ is the cyclotron mass corresponding to the electron
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pocket, as defined above (note that the notations are different here from [29]), which in turn
is very close to the band mass defined by expanding around the bottom of the electron pocket.
Although the precise numerical relation is difficult to control, it is reasonable to set Dh = Dαe ,
with α = 1.5–4.5 for phenomenological purposes; we had estimated this parameter earlier to
be 4.4 [29].

7.1. Specific heat and magnetization

With the frequencies given in table 3, the cyclotron masses in table 4 and the second derivatives
of the areas in table 5, we can compute the oscillatory parts of the specific heat and the
magnetization provided we can make reasonable estimates of the Dingle factors. The Dingle
factor for electrons is a bit more controlled because the band mass obtained by expanding
around the antinodal points is quite consistent with the computed cyclotron masses. Assuming
that samples have negligible disorder, we shall estimate the scattering rate of the electrons to be
given by the vortex scattering rate, which, following an analysis of Stephen [36], was found to
be [17, 29] (

1

τv

)
e

=
12

0

h̄

(
1 −

H

Hc2

) √
π

|µ|h̄ωc
, (40)

where 10 is the magnitude of the T = 0 superconducting gap, which we set to be ≈10 meV for
the relevant doping range. The cyclotron frequency ωc = eH/m∗c, with m∗ given in table 4.
With the present set of parameters and with the average value of m∗, we find that(

1

τv

)
e

≈ 8.5 × 1012 s−1, (41)

where we used, as a typical case, H = 40 T and Hc2 ≈ 100 T. We believe that this gives
the correct order of magnitude; for the earlier set of parameters we estimated it to be
3 × 1012 s−1 [17]. The Dingle factors of the holes are more complex [17, 29] because they have
to be estimated taking into account the nodal fermions for DDW, but it is not unreasonable to
assume α ≈ 2 in the relation Dh = Dαe uniformly for all electron and hole pockets.

The computed specific heat at four representative temperatures is shown in figure 12. It
is interesting to note that there is a π -phase shift from high to low temperatures. The same
results are visualized in a 3D plot in figure 13. As a function of temperature and magnetic field
the oscillations go through a node, which is also visible in figure 12. The reason for this is
the factor ψ ′′(λ) in the formula for the specific heat. The Fourier transform of the oscillations
in 1/H , on the other hand, shows a more complex structure for specific heat, as shown in
figure 14, which, however, is very sensitive to the Dingle factor, the range of 1/H over which
the Fourier transform is performed, and the windowing technique. The results shown here
use no windowing technique, and the range of the magnetic field is 1/606 1/H 6 1/20. The
non-monotonic behavior of the Fourier transform in figure 14 can be understood by glancing
at figure 13. Because of the aforementioned node, the transition from 6 to 4 K lowers the
amplitude. At 2 K, the amplitude recovers again and then finally decreases again at 1 K. Note
that only one dominant frequency is seen.

Similarly, we also plot the oscillations of the magnetization as a function of 1/H in
figure 15, but it is difficult to detect multiple frequencies with the naked eye. Even in the
Fourier transform over a range 1/606 1/H 6 1/20, shown in figure 16, the multiple electron
pocket frequencies known to be present in the formula are not resolved. The Fourier transform
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Figure 12. Oscillatory part of the specific heat as a function of the magnetic field
at representative temperatures. Note the phase shift by π as the temperature is
lowered. The vertical scale is in arbitrary units.

Figure 13. Oscillatory part of the specific heat as a function of temperature and
the inverse of the magnetic field. Note the presence of nodes for intermediate
values of the magnetic field and the temperature. The vertical scale is in arbitrary
units.
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Figure 14. Absolute value of the Fourier transform, I , in arbitrary units of the
oscillations of the specific heat as a function of the frequency F in units of Tesla.
No windowing was performed, and the field range was 1/606 1/H 6 1/20.

Figure 15. Oscillatory part of the magnetization as a function of temperature and
the inverse of the magnetic field. There are no nodes at intermediate temperatures,
as in the case of specific heat. The vertical scale is in arbitrary units.

is now monotonic as a function of temperature, unlike the results for the specific heat. The
arrow indicates weak, unresolved hole pocket frequencies around 1000 T (see figure 10). The
two electron pocket frequencies at 535 and 538 T strongly overlap and lead to a large amplitude.
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Figure 16. Absolute value of the Fourier transform, I , in arbitrary units of the
oscillations of the magnetization as a function of the frequency F in units of
Tesla with no windowing, and the field range of 1/606 1/H 6 1/20.

The spin interference factor cos (πm∗/m) plays an important role in the respective weights of
the various frequencies.

8. Conclusion

We have argued that bilayer splitting and warping of the electronic dispersion in kz are necessary
consequences of a reconstructed Fermi liquid normal state, and measurements in a tilted
magnetic field can be useful in probing the frequency spectra of QOs. The small value of
the warping is intimately connected to the large ratio of the in-plane to c-axis resistivities.
However, the magnitude of bilayer splitting necessary to produce overall consistency with
experiments for the in-phase DDW order is strongly renormalized (∼10 meV) from the band
structure value (∼300 meV). Note that the distance between the layers is only 3.25 Å, similar
to the in-plane lattice constant. In contrast, with the out-of-phase DDW order, a larger value of
bilayer splitting (∼37 meV) can be tolerated. This is an important consequence of the out-of-
phase DDW order. Although strong electronic correlations in the underdoped regime must be
responsible for such renormalized parameters, a convincing explanation is missing despite many
speculations, especially because the effective mass is only about twice the free electron mass.
It would be interesting to carry out these QO measurements for larger hole-doping for which
we generally expect the splitting to increase, unless some other effects involving the decrease in
the magnitude of the order parameter intervenes. It is worth emphasizing once again that, even
in heavily overdoped Bi2212, the renormalization of the observed bilayer splitting, 88 meV, in
ARPES, as compared to the band structure value of 300 meV, is still not understood.

The calculations presented here can easily be extended within a mean field theory to
SDW and incommensurate order along the lines discussed elsewhere [17]. A more illuminating
exercise is to compare and contrast QOs in hole- and electron-doped cuprates [37]. The likely
differences in the upper critical fields lead to important physical differences. Further work in this
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direction is in progress. The triplet DDW [25] at the simplest mean field level produces results
similar to SDW, which is also a triplet order parameter, but with orbital angular momentum zero.
Such triplet order parameters are necessary to explain the experiments [6] involving the non-
existence of spin zeros in QO. On the other hand, more recent experiments [15] have revealed
spin zeros and have concluded that quasiparticles behave like charge-e, spin-1/2 fermions with
a g-factor consistent with 2.2. This is strongly indicative of a singlet order parameter, but not a
triplet order in the particle–hole channel, such as SDW or triplet DDW [38].

Although we have obtained consistency with experiments using the Fermi liquid theory, it
is not certain whether non-Fermi liquid aspects should be ignored, at least insofar as underdoped
YBCO is concerned. Convincing explanation of the lack of the hole pocket frequencies required
by the Luttinger sum rule [39]–[41] and the inconsistency with Fermi arcs observed in ARPES,
albeit in zero magnetic field, is missing. We know of one example, the ν = 1/2 quantum Hall
effect, which despite being a non-Fermi liquid has a phenomenology similar to a Fermi liquid
in many respects [42]. The situation in NCCO is clearer [37], however. We hope that our work
will shed light on these exciting sets of experimental developments.
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