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Abstract. We propose a fibre-based quantum key distribution system, which
employs polarization qubits encoded into faint laser pulses. As a novel feature,
it allows sending of classical framing information via sequences of strong
laser pulses that precede the quantum data. This allows synchronization, sender
and receiver identification and compensation of time-varying birefringence in
the communication channel. In addition, this method also provides a platform
to communicate implementation specific information such as encoding and
protocol in view of future optical quantum networks. We demonstrate in a long-
term (37 h) proof-of-principle study that polarization information encoded in
the classical control frames can indeed be used to stabilize unwanted qubit
transformation in the quantum channel. All optical elements in our setup can
be operated at Gbps rates, which is a first requirement for a future system
delivering secret keys at Mbps. In order to remove another bottleneck towards
a high rate system, we investigate forward error correction based on low-density
parity-check codes.
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1. Introduction

Based on the particular properties of single quantum systems, quantum key distribution (QKD)
promises cryptographic key exchange over an untrusted, authenticated public communication
channel with information theoretic security [1, 2]. Significant academic [3, 4] and industrial
effort [5] has been devoted to the development of point-to-point (P2P) QKD systems based
on attenuated laser pulses or entangled photons, and the first fully functional prototype of
a quantum cryptographic network consisting of pre-established P2P links in a trusted node
scenario has recently been demonstrated [6] (see also [7]). Furthermore, various proof-of-
principle demonstrations of quantum teleportation and quantum memory (see [8, 9] and
references therein) have been reported, which will eventually allow building of fully quantum
enabled networks [10, 11], e.g. for perfectly secure communication in settings with un-trusted
nodes and over large distances [12, 13].

Despite these remarkable achievements, the building of a reconfigurable real-world QKD
network still requires significant progress, even when limiting quantum communication to
qubits encoded into faint laser pulses and to entangled qubits. Among the issues to be solved is
the necessity to route quantum data from any sender to any receiver. The possibility to use active
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optical switches to send quantum information to different users has first been demonstrated in
2003 [14]. However, the question regarding the addition of sender and receiver addresses to
the quantum data (which is not required in pre-established P2P links) has, to the best of our
knowledge, never been addressed. Beyond routing, another requirement for quantum networks
is path stabilization between sender and receiver, i.e. to ensure that carriers of qubits prepared
at Alice’s arrive unperturbed at Bob’s. This includes control of the properties of the quantum
channel, e.g. birefringence in an optical fibre, and the establishment of a common reference
frame at Alice’s and Bob’s, e.g. a direction or a precise time-difference, depending on the
property chosen to encode the qubit [15]. Current P2P QKD systems are either of the ‘plug and
play’ type and automatically stabilize the quantum channel [16, 17], or achieve unperturbed
quantum communication by adding from time to time short sequences of classical control
information [18]. However, neither method allows communication of the properties that are
important in reconfigurable networks, including sender and receiver address, or the specific
QKD protocol or the type of qubit encoding chosen5.

In this paper, we propose the use of quantum frames (Q-frames) as a flexible framework for
sensing, communicating and controlling the parameters relevant in a QKD network setting. Our
approach is sufficiently flexible to accommodate for current and future quantum technology or
applications, including technology from different vendors, which is important in view of open
quantum networks. We demonstrate the suitability of our solution for QKD with polarization
qubits over a 12 km real-world fibre optic link.

This article is organized as follows: in section 2, we present the general idea of Q-frames.
We then discuss the principle QKD setup (section 3), and give further details of key components
(section 4). After presenting the properties of our fibre optics link (section 5), we describe the
QKD field tests and discuss the results (section 6) and then elaborate briefly on some issues
related to the security of the key establishment (section 7). In section 8, we present the status
of our classical post processing, required to distil a secret key, specifically the possibility of
hardware implementation of one-way error correction. We present our conclusions in section 9.

2. Q-frames

To add control functionalities to the communication between Alice and Bob, we propose
supplementing the quantum data (e.g. qubits) with classical control frames (C-frames). The
C-frames, encoded into strong laser pulses, alternate with the quantum data and a pair of
classical/quantum data forms a Q-frame (see figure 1). The C-frame allows synchronizing
sender Alice and receiver Bob, facilitates time-tagging and provides a platform to communicate
sender and receiver address (for routing or packet switching) plus implementation specific
information such as encoding (e.g. polarization or time-bin qubit [15]) and protocol (e.g.
BB84 [1], decoy state [19]–[21], or B92 [22]). This is interesting in view of open, reconfigurable
networks comprising different QKD technologies.

The classical information in our implementation is encoded into specific polarization states,
allowing assessment and compensation of time-varying birefringence in the quantum channel.

5 Note that this information can also be sent through another (classical) channel. However, given that control
information for channel stabilization has to be sent in any case (except for auto-compensating systems such as
the ‘plug and play’ system), it is natural to consider sending the network relevant control information through the
quantum channel as well.
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Control frame (C-frame) or data header
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Time

Optical power
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Figure 1. Quantum framing with alternating classical C-frames (inspired by
the Ethernet protocol) and quantum data. In the here reported implementation,
subsequent C-frames encode different polarization states (horizontal, vertical
and circular), each one used to independently stabilize one particular set of
polarization qubit basis states.

Figure 2. Schematic of our QKD system.

Note that the compensation scheme can easily be adapted to other QKD setups employing e.g.
time-bin qubits, entanglement, or quantum repeaters. Furthermore, the C-frames can be used to
assess channel loss, which may be important for routing.

3. Our QKD system

Our QKD system is based on polarization qubits and employs the BB84 protocol [1],
supplemented with two decoy states [19]–[21]. It allows alternating sequences of strong
and faint laser pulses, encoding classical data and quantum data, respectively. A simplified
schematic of the QKD system is depicted in figure 2. Alice uses two laser diodes to generate
the classical data (LDC) and the quantum data (LDQ). The pulses emitted from LDQ are first
attenuated by an optical attenuator (ATT), and then sent through an intensity modulator (IM)
to create signal and decoy states with different mean photon numbers. To create vacuum decoy
states, no electrical pulses are sent to LDQ. The horizontally polarized faint pulses are then
transmitted through a polarization beam splitter (PBS), and combined with the strong, vertically
polarized pulses from LDC. All pulses are then sent to a polarization modulator (PM), where
horizontal (H), vertical (V), right (R), or left (L) circular polarization states can be created.

Quantum and classical data are transmitted to Bob through a quantum channel. At Bob’s
end, 10% of the light is directed towards a fast photo detector (PD) followed by a logic device
(LOG). The detector and the logic device, which were not implemented in our investigation,
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(a) (b)

(c) (d)

Figure 3. Schematics of (a) the one-way polarization modulator, (b) the basic
unit, (c) the two-way polarization modulator based on the basic unit and (d) the
two-way IM based on the basic unit.

will read the information encoded in the classical data and take appropriate action, e.g. for
clock synchronization, optical routing, or communication of protocol specific information used
by Bob for the measurement and subsequent processing of the quantum data.

The remaining light is split at a 50/50 beam splitter (BS), and directed to two polarization
stabilizers (PSs) (PS1 and PS2) followed by PBSs (PBS1 and PBS2) and single photon detectors
(SPDs). PS1 ensures that horizontally polarized classical data, and hence qubits, emitted at
Alice’s arrive unchanged at PBS1. Similarly, PS2 is set up such that right circular polarized
classical data and qubits emitted at Alice’s always impinge horizontally polarized on PBS2.
Since the transformation in the quantum channel is described by a unitary matrix (i.e. orthogonal
states remain orthogonal), our stabilization scheme ensures that qubits prepared in H and V,
or R and L states arrive horizontally and vertically polarized on PBS1 or PBS2, respectively.
Hence, the two sets of PS, PBS and two SPDs both allow compensation of unwanted
polarization transformations in the quantum channel, and projection measurements onto H, V,
R and L, as required in the BB84 protocol. Note that our scheme does not prevent H and V
created at Alice’s from arriving in an arbitrary superposition of H and V at PBS2 (similar for
R and L at PBS1). However, these cases do not cause errors as they are eliminated during key
sifting.

4. Polarization and IMs

4.1. One-way polarization and IM

Initially, we used a commercial LiNbO3 phase modulator (PM) and a Mach–Zehnder IM in
a one-way configuration to achieve fast polarization and intensity modulation. Figure 3(a)
shows the schematics of the polarization modulator, i.e. a phase modulator with polarization
maintaining input fibre (PMF) whose slow axis is rotated 45◦ (R45) with respect to the
optical axis of the modulator waveguide, and standard single mode output fibre (SMF). Hence,
horizontally polarized input light, which propagates parallel to the slow axis of the PMF, is
split into two components, where each one propagates along one axis of the waveguide. By
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applying a control voltage to the phase modulator, a phase shift is introduced between the two
components, resulting in a polarization modulation.

Unfortunately, the phase modulator features significant polarization mode dispersion
(PMD) for 500 ps long optical pulses resulting in a polarization extinction ratio (PER), i.e. the
ratio between optical power in two orthogonal polarization states, of only 16 dB. Moreover,
we found both the phase and IM to be temperature sensitive—a change of environmental
temperature or heating caused by passing a current through the impedance matching resistance
inside the modulators causes a variation of the polarization state, or the intensity level, of the
output light. This would have a direct impact on the quantum bit error rate (QBER) and stability
of our QKD system.

4.2. The ‘basic unit’

To overcome these problems, we designed a ‘basic unit’ (see figure 3(b)) consisting of a
phase modulator (PM) with 45◦ rotated input PMF and a Faraday mirror (FM) [23]. As
explained below, this allows building stable polarization and IMs by means of a go-and-return
configuration (the light travels twice and in orthogonal polarization states through the phase
modulator).

To explain how the basic unit works, we calculate the polarization evolution of light using
Jones calculus:

Jout = MBU · Jin. (1)

Jin and Jout denote the Jones polarization vectors of the input and output light, respectively, and
MBU is the polarization transformation matrix of the basic unit:

MBU =
←−
M PMF · R

†
45 ·
←−
M WG ·

←−
M SMF · F M ·

−→
M SMF ·

−→
M WG · R45 ·

−→
M PMF. (2)

MSMF, MPMF and MWG denote the polarization transformation matrices of the single mode fibre,
the polarization maintaining fibre and the waveguide, respectively, and the arrows on top of the
matrices specify the direction of light propagation. F M denotes the effect of the Faraday mirror,
and R45 characterizes the rotation between the polarization maintaining fibre and the waveguide.
Assuming that one can neglect all temperature or mechanical stress mediated changes of the
properties of the fibres and the waveguide between two subsequent passages of a pulse of light
(around 10 ns in our setup), and that these elements do not feature polarization dependent loss,
we have

←−
M PMF = M†

PMF,
−→
M PMF = MPMF,

MPMF =

[
1 0

0 eiφPMF

]
, (3)

where M† stands for the adjoint matrix of M and φPMF is the phase shift caused by the
birefringence of the polarization maintaining fibre. Furthermore, we have

←−
M SMF = M†

SMF,
−→
M SMF = MSMF,

MSMF =

[ √
a

√
1− aeiα

√
1− aeiβ

−
√

aei(α+β)

]
, (4)
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where MSMF is the most general unitary matrix describing polarization transformations. The
matrices of the waveguide are given by

−→
M WG =

[
1 0

0 ei(φin
m +φe)

]
,
←−
M WG =

[
1 0

0 e−i(φout
m +φe)

]
, (5)

where φin
m and φout

m denote the phase shifts during the two subsequent passages of the light
through the waveguide, as determined by the modulation voltage applied to the waveguide,
and φe refers to an additional, wavelength and polarization-dependent phase shift (leading
to PMD).

The effect of the FM is to transform the polarization state of an arbitrary input state of light
Jin with components j1, j2 into the orthogonal state [3]:

F M · Jin = F M ·

[
j1
j2

]
=

[
j∗2
− j∗1

]
≡ J⊥in. (6)

Hence, from equation (6), we obtain the identity

F M ·M · Jin = F M ·

[
A B

C D

]
· Jin

=

[
D∗ −C∗

−B∗ A∗

]
· F M · Jin (7)

and thus

M†
· F M ·M · Jin =

[
A B

C D

]†

· F M ·

[
A B

C D

]
· Jin

=

[
A∗ C∗

B∗ D∗

]
·

[
D∗ −C∗

−B∗ A∗

]
· F M · Jin

= (A∗D∗− B∗C∗) ·1 · F M · Jin

= det(M∗) · J⊥in, (8)

where M is an arbitrary two-by-two matrix, which may describe wavelength-dependent
polarization rotations or polarization-dependent loss, and 1 is the two-by-two identity matrix.
Equation (8) shows that any polarization transformation is compensated by the FM; the output
polarization state Jout is always orthogonal to the input state Jin, regardless of M .

Calculating the product of all matrices in equation (2), we obtain

MBU = e−i(φSMF+φPMF+φe+φ′m)
·

[
cos 1φm −ieiφPMF sin 1φm

−ie−iφPMF sin 1φm cos 1φm

]
· F M, (9)

where

φ′m =
φin

m + φout
m

2
, 1φm =

φout
m −φin

m

2
and φSMF = π −α−β.
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Accordingly, for a horizontal input state, we find

Jout = MBU ·

[
1

0

]

= e−i(φSMF+φPMF+φe+φ′m)
·

[
−ieiφPMF sin 1φm

cos 1φm

]

= e−i(φSMF+φPMF+φe+φ′m)
·

[
eiφPMF 0

0 1

]
·

[
−i sin 1φm

cos 1φm

]
. (10)

Hence, owing to the use of an FM, the polarization and wavelength-dependent phase shift φe

introduced by the waveguide impacts now on the global phase but does not lead to PMD any
more. Furthermore, all (slow) modifications of the polarization modulation due to changes in
temperature or mechanical stress of the SM and PM fibres are automatically compensated. The
output polarization state thus only depends on the modulation of the waveguide (1φm) and the
phase shift induced by the polarization maintaining fibre (φPMF).

4.3. Two-way polarization modulator

We complemented the basic unit to a polarization modulator by preceding it by a polarization
maintaining circulator (CIR) that allows separating the input and output optical pulses (see
figure 3(c)). By applying appropriate, short voltage pulses, which are synchronized with
the propagations of the optical pulse, to the phase modulator, we can generate horizontal
(1φm = π/2), vertical (1φm = 0), right-hand (1φm =−π/4), or left-hand circular polarization
(1φm = π/4) states. We point out that the existence of the phase introduced by the PM
fibre, φPMF, makes circular polarization states unstable. However, note that the four generated
polarization states always form two mutually unbiased bases, regardless of the value of this
phase, as required for secure QKD. Furthermore, as the change in the polarization maintaining
fibre is slow, it can be compensated by a PS at Bob’s, allowing for the establishment of a sifted
key with a small QBER.

We obtained a PER of 20 dB for horizontal and vertical polarization states (limited by the
light source used to test the polarization modulator), see figure 4, and of 15 dB for left and right
circular polarization. We believe the reduced ratio to be caused by state-dependent PMD in the
circulator, which will be replaced in the near future.

4.4. Two-way intensity modulator

Similarly, we built an intensity modulator by preceding the basic unit by a PBS, as shown in
figure 3(d). The PBS reflects the vertical component of the impinging light. Hence, by varying
the polarization state of the light at the output of the basic unit, we can vary the intensity of the
vertical component at the output of the PBS.

The intensity extinction ratio, i.e. the ratio between the maximum and minimum intensity
at the output of the PBS, exceeds 20 dB (see figure 5(a)). Moreover, as the phase, φPMF, does
not impact on the output intensity, our modulator features an outstanding stability, as depicted
in figure 5(b). This is important when implementing a decoy state QKD protocol, which relies
on accurate preparation of average photon numbers per faint laser pulse.
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outputs (H and V) as a function of the modulation voltage. The PER is defined
as the ratio between the power in the two outputs.
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Figure 5. Tests of the two-way IM. Panel (a) shows the output power as a
function of the applied voltage pulse to the phase modulator. The modulator
features an extinction ratio of 23 dB. Panel (b) depicts the output power as a
function of time. For this measurement, the output power was set to 50% of its
maximum value. The total variation in 12 h is less than ±1.5%. This is mostly
determined by the power fluctuations of the laser diode, which we found to be
±1.15% in 3 h (note that the latter can be further reduced using external power
control).

5. The fibre link

5.1. Loss

The link consists of two single-mode dark fibres connecting laboratories at the University of
Calgary (U of C) and the Southern Alberta Institute of Technology (SAIT), see figure 6. The
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Figure 6. Satellite view of Calgary, showing the University of Calgary (U of C)
and the Southern Alberta Institute of Technology (SAIT).

fibres, which we refer to as channel 1 and channel 2, run through tunnels on the two campuses,
and are buried or run through train tunnels in between the two institutions. They feature insertion
loss of 7.8 and 6.5 dB, respectively. The fibre length is 12.4 km, while the straightline distance
between the two laboratories is 3.3 km. A 1300 nm optical time-domain reflectometer (OTDR)
with a 1 km dead zone eliminator was used to characterize the installed fibres. Figure 7 shows
the measured OTDR traces. The figure clearly shows that the last several kilometres of fibre
have bad connections, which result in high transmission loss in our system. The peaks at the
distance of 1 km are induced by the core diameter mismatch between the tested fibre and the
dead zone eliminator, where the latter one is a multi-mode fibre.

5.2. Polarization transformation

We experimentally studied the time evolution of polarization in the installed fibre. In the
experiment, a stable polarized light source was launched into the fibre link, where channels 1
and 2 were looped at SAIT. We used a polarimeter to record Stokes parameters of the output
light every second. Figure 8(a) presents the results of one week of continuous monitoring from
16 April 2008 to 24 April 2008. Figure 8(b) shows the temperature curve for the Calgary
Airport during the measurement (data from Canada Environment Weather Office). Comparing
figures 8(a) and (b), we observe a clear correlation between the variation of temperature and the
fluctuation of polarization. This phenomenon is particularly obvious for the measurement from
19 April to 23 April, where we observe small polarization variation during night, and much
more pronounced variations during day-time. Figure 8(c) is a zoom-in of the measurement on
19 April (around lunch time), where particularly rapid polarization fluctuations are observed.
Even for this case, we find that the polarization is stable on a timescale of tens of seconds. This
sets an upper limit to the duration of quantum data between consecutive stabilization cycles.
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to more reflected power.

6. Field tests

6.1. Setup

A schematic of the complete experimental setup is shown in figure 9. A 10 GS s−1 function
generator (FG1) with two independent outputs drives the quantum laser diode (LDQ) and the
classical laser diode (LDC) via broadband RF amplifiers (APs). Both laser diodes produce
horizontally polarized optical pulses with a duration of 500 ps and a repetition rate of 50 MHz.
By adjusting the temperature, we could closely match the spectral properties of the two laser
diodes. We obtained center wavelengths of 1548.07 and 1548.11 nm, and spectral widths (full-
width at half-maximum (FWHM)) of 0.214 and 0.224 nm for LDQ and LDC, respectively. This
is important to ensure that the polarization transformation sensed by means of the C-frames
(generated with LDC) equals the one experienced by the quantum data (generated with LDQ).

The pulses from LDQ, eventually encoding quantum data at different mean photon
numbers, propagate through a two-by-two PBS and enter the IM, which is described in detail in
section 4. To reduce their energy to the single-photon level, a fixed optical attenuator (ATT)
is placed between the FM and the phase modulator (PM). Birefringence and polarization-
dependent loss of the attenuator are automatically compensated by the Faraday effect and
therefore a stable attenuation is achieved. At the output of the PBS, the now vertically polarized
weak laser pulses are combined with the horizontally polarized strong pulses from LDC, which
encode the C-frame, to form a complete Q-frame. Quantum and classical data are then sent
through the polarization modulator, which is also presented in section 4. The intensity and the
polarization modulator are driven by a function generator (FG2) with a pulse width of 4 ns. Note
that the polarization maintaining circulator (CIR) that is part of the polarization modulator only
allows horizontally polarized light to enter, while the pulses from LDC and LDQ impinge with
orthogonal polarization. Therefore, we aligned the axes of the polarization maintaining fibre
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Figure 8. (a) Time evolution of Stokes parameters during a full week in
2008. The shaded regions indicate night-time from 8:00 p.m. to 8:00 a.m. (b)
Temperature curve for Calgary. (c) Zoom of (a) around 19 April lunch time.

at the output of the PBS at 45◦ with respect to the axes of the polarization maintaining fibre
at the input of the circulator. This alignment makes the circulator work with both directions
of polarization, yet, at the expense of 3 dB loss. Finally, the polarization modulated data are
forwarded to Bob through fibre channel 2.
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Figure 9. Schematic of the QKD setup.

Alice’s electronic equipment is synchronized using a clock signal at 10 MHz from a clock
generator (CG). Using a function generator, a laser diode (LDS), a photodiode (PD) and a delay
generator (DG), the clock signal (reduced to 1 MHz) is also transmitted to Bob, where it provides
trigger signals for the SPDs, synchronized with the arrival time of the quantum data.

At Bob’s side, 90% of the optical power encoded into each Q-frame is transmitted through
a 10/90 BS and is then equally divided by a 50/50 BS. For each part, the C-frames are sensed
by a PS (from General Photonics) to compensate for the polarization change in the transmission
line, and the quantum data are detected by a measurement module consisting of a PBS and two
InGaAs-based SPDs. The SPDs are triggered at 1 MHz, and operated with a gate width of 5 ns,
a deadtime of 10 µs and a quantum efficiency of 10%.

In principle, the length of a C-frame is determined by the response time of the PS, which
is 18 ms. However, due to the small duty cycle of the classical pulse sequence in the current
implementation and the low transmission of the fibre link, the average power of the C-frame
is below the detection threshold of the PS. To resolve this problem, we placed a polarization
maintaining erbium-doped fibre amplifier (EDFA) between LDC and the PBS. The EDFA is
turned off after each C-frame to avoid flooding the SPDs at Bob’s with photons from amplified
spontaneous emission. While the turn-off time is only tens of milliseconds (consistent with
the radiative lifetime of population in the upper laser level), we found the turn-on time of the
EDFA to be as long as 3 s, resulting in 5 s long C-frames. The length of quantum data is set to
2 s, according to the ‘worst-case’ polarization stability of the fibre link, which is discussed in
section 5. From this, we find that our setup currently limits the time for QKD to 30% of the
operation time. Note, however, that the duty cycle of the classical pulse sequence can easily
be increased by several orders of magnitude. In this case, the duration of a C-frame would be
limited by the response time of the PS, and the time for QKD could exceed 99% of the system’s
operation time.

6.2. Measurements

We performed a variety of measurements to assess the performance of our QKD system. For
2-detector measurements, Alice repetitively creates sequences of Q-frames with polarizations
HH, HL, HV, HR, LH, LL, LV, LR, VH, VL, VV, VR, RH, RL, RV and RR. The first letter
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indicates the polarization of the C-frame and the second one indicates that of the quantum data.
Bob uses one measurement module to process the frames. The PS compensates the polarization
transformation in the quantum channel for states belonging to the basis indicated by the first
letter, i.e. linear or circular. For 4-detector measurements, Alice modulates the polarization of
the Q-frames in the more complicated order of HH, RH, VH, LH, RH, HH, LH, VH, HR, RR,
VR, LR, RR, HR, LR, VR, HV, RV, VV, LV, RV, HV, LV, VV, HL, RL, VL, LL, RL, HL, LL
and VL. Bob uses two measurement modules to process the Q-frames. The PS of one module
is always activated for odd frame numbers and that of the other module is always activated
for even frame numbers (see figure 1). In this way, the two measurement modules compensate
polarization transformation for states encoded in the linear, or the circular basis, respectively.
We collect the number of trigger events and counts for all SPDs for each combination of
polarization states and different mean number of photons per qubit. This allows calculating
average QBERs and key generation probabilities (KGPs), where the KGP is defined as the
probability of generating a sifted key bit from a qubit encoded into a weak signal state when
Alice and Bob use the same basis:

QBER=
Pwrong

Pwrong + Pcorrect
,

KGP= Pcorrect + Pwrong.

(11)

The probabilities for correct (Pcorrect) and wrong sifted key bits (Pwrong) are obtained from
experimental data by dividing the number of correct, or wrong, detection events by the number
of trigger events. We assume that the probability for both detectors to click simultaneously
can be ignored. In our setup, it was at least four orders of magnitude smaller compared to the
probability for a single click. Note that in an actual implementation simultaneous clicks in two
or more detectors have to be replaced by a randomly selected detection event [24, 25].

Assuming that the photon number per laser pulse satisfies a Poissonian distribution, Pcorrect

and Pwrong can be calculated using

Pcorrect = 1−
∞∑

n=0

µne−µ

n!

(
1−

Y0

2

)
(1− tηa)n

= 1−

(
1−

Y0

2

)
e−µtηa,

Pwrong = 1−
∞∑

n=0

µne−µ

n!

(
1−

Y0

2

)
(1− tη(1− a))

n

= 1−

(
1−

Y0

2

)
e−µtη(1−a).

(12)

Y0/2 is the probability for a detector click without Alice sending a photon, which includes
detection events due to dark counts and stray photons. We found this probability in our setup
to be equivalent to the dark count rate. µ is the average photon number of the weak pulses
at Alice’s output, t is the overall transmission, which includes the fibre link and Bob’s optical
components, and η is the quantum efficiency of the SPDs. Finally, a describes the PER of the
PBS, i.e. the probability for a horizontally polarized photon to be transmitted through the PBS,
normalized to the probability to exit.
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number per weak laser pulse used to encode the polarization qubits. The
squares and circles indicate the experimental results for the 2-detector and
4-detector measurements, respectively, and the solid and dashed lines are the
corresponding theoretical predictions (no fit). Error bars (corresponding to one
standard deviation) are smaller than the size of each experimental data point.

The experimental results of the measurements are summarized in figure 10, together with
the theoretical predictions. Note that all parameters required to calculate the QBER and the
KGP have been obtained through independent measurements. We see that the experimental
values match the theoretical calculations very well. We also find that the average QBER of the
4-detector measurement is larger than that of the 2-detector measurement at the same mean
photon number. This is due to an increased dark count probability of the two additional SPDs,
and slightly worse alignment of the PS in the second measurement module. Furthermore, the
4-detector measurement features a higher KGP as no qubits are lost at the 50/50 BS. The
individual data of the 4-detector measurement with an average photon number of 0.5 photons
per pulse are listed in table 1.

6.3. Long-term stability of the system

To study the stability of the system, we performed a long time measurement over 37 h. In the
measurement, Alice sends qubits encoded into weak laser pulses with an average photon number
of 0.5, and Bob implements a 2-detector measurement using measurement module one. At the
end of each C-frame, i.e. after stabilization, Bob records the polarization of the C-frame with
PS1. Meanwhile, the PS (PS2) in the second measurement module monitors the polarization
of the C-frame without polarization control. In figure 11(a), the red points indicate the Stokes
vectors of the classical pulses measured by PS2, which are randomly distributed on the surface
of the Poincaré sphere due to the time-varying polarization transformation in the transmission
line. The blue points depict the measurements made by PS1, i.e. after polarization control. Even
though the result slightly deviates from a single spot, which is expected in the ideal case, it
clearly demonstrates the good long-term stability of our QKD system.
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Table 1. Results of the 4-detector measurement with an average photon number
of 0.5 photons per pulse, where pol indicates the polarizations of the Q-frames,
det and trg are the number of photon detections and trigger events recorded by
the SPDs, and prob is the detection probability (in dB).

SPD1 SPD2

pol det trg prob (dB) det trg prob (dB)

HH 1569 13 254 716 −39.27 37 639 12 504 218 −25.21
HV 39 642 13 381 789 −25.28 1922 13 385 381 −38.43
RR 1243 13 160 359 −40.25 35 711 12 443 131 −25.42
RL 41 856 13 521 618 −25.09 1979 13 505 244 −38.34
VH 42 567 12 853 157 −24.80 950 12 863 193 −41.32
VV 1569 13 183 509 −39.24 34 723 12 454 406 −25.55
LL 41 800 13 514 989 −25.10 1841 13 114 840 −38.53
LR 959 10 908 918 −40.56 30 270 10 273 810 −25.31

SPD3 SPD4

pol det trg prob (dB) det trg prob (dB)

HH 37 577 12 468 543 −25.21 1050 12 416 198 −40.73
HV 2121 12 145 604 −37.58 35 843 11 410 147 −25.03
RR 35 954 12 409 015 −25.38 1605 12 351 662 −38.86
RL 3222 12 253 689 −35.80 36 378 11 541 004 −25.01
VH 2410 12 817 201 −37.26 39 290 12 046 285 −24.86
VV 36 215 12 403 829 −25.35 925 12 355 805 −41.26
LL 2751 12 270 811 −36.49 36 547 11 534 262 −24.99
LR 29 988 10 247 919 −25.34 1149 10 193 024 −39.48
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Figure 11. Results of the long-term measurement. (a) Stokes vectors of C-frames
with (blue points) and without (red points) polarization stabilization. (b) Average
QBER and temperature for the same time interval as a function of time.
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For a more quantitative analysis, we also recorded the evolution of the QBER over the
same time interval, see figure 11(b). The temperature curve for the Calgary Airport (data from
Canada Environment Weather Office) is shown as well. The QBER varies between 2.85 and
3.35% in over 35 h, and the variation is less than 0.1% in the last 15 h.

7. Security issues

For any cryptographic system, be it of quantum or classical nature, it is important to carefully
analyse the actual implementation for weak points that may compromise its principle security.
Applied to QKD, these include deficiencies in the preparation of quantum data at Alice’s that
can be exploited by an eavesdropper to gain information about the sifted key. We refer to these
kinds of attacks as quantum state attacks. Furthermore, Eve may also attempt to actively sense
the classical devices that create or measure the quantum data, or try to actively impact on the
interaction between quantum and classical systems to influence the outcomes of measurements.
We refer to these kinds of attacks as classical system attacks.

Note that, once the deficiencies are found, it may be possible to eliminate them by devising
a better optical setup, or to remove the corresponding amount of information that Eve may
have obtained through additional privacy amplification [26]. Yet, we point out that loopholes
may also arise from a careless implementation of privacy amplification, e.g. improper choice
of Hash function, or of insufficient authentication of the classical channel. Finally, the size of
the error corrected key has to be considered when calculating the appropriate amount of privacy
amplification, i.e. to distil a secure key [27, 28].

In the following, we will briefly discuss our current optical setup in view of such weak
points. Yet, a complete security analysis of our system is beyond the scope of this article, which
is the introduction of Q-frames. Note that the existence of loopholes in a particular QKD setup
breaks the unconditional security of this particular system, but does not disprove that QKD can,
in principle, be information theoretic secure.

7.1. Quantum state attacks

The use of attenuated laser pulses, as opposed to pairs of entangled photons [3], entails the
possibility that non-orthogonal qubit states (here encoded into the polarization degrees of
freedom) may become distinguishable when taking into account other degrees of freedom
needed to fully describe the quantum data, e.g. frequency, temporal modes, or transverse modes.
Obviously, in this case, the security offered by QKD would break down. We refer to these attacks
as quantum side channel attacks. Furthermore, as the number of photons in the attenuated laser
pulses is described by a Poissonian distribution, it may be possible for an eavesdropper to gain
information based on photon-number-splitting (PNS) attacks.

7.1.1. Attacks exploiting quantum side channels. In our QKD system, all four qubit states
are produced by the same laser diode, which is triggered independently of the subsequent
action of the polarization modulator or IM. Together with the polarization independent spectral
transmission of both modulators and the attenuator, due to the use of the FMs, this ensures that
correlation between polarization state and spectrum or temporal mode do not exist. However,
we recall that the circulator (CIR) at the output of the polarization modulator adds basis-
dependent PMD, which manifests as a basis-dependent QBER. This may induce detectable
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temporal broadening of the photonic wavepackets, i.e. may partially reveal the basis used for
encoding the qubit. The circulator will be replaced in a future, improved setup.

Furthermore, as the entire setup is built with (transverse) single mode optical fibres,
correlation between polarization states and transverse modes, which may be present in a free
space system, are ruled out.

7.1.2. PNS attacks and decoy states. The use of faint laser pulses makes our system principally
susceptible to PNS attacks, which were first mentioned in [29] and have been analysed
thoroughly in [30, 31]. A possibility to remove the threat of the PNS attack is the use of
so-called decoy states [19]–[21]. This allows establishing a conservative lower bound for the
key that can be created from single photons emitted at Alice’s, i.e. key that was not subject to
the PNS attack. As described before, our setup has been devised to allow for the implementation
of decoy states. In the following, we will examine experimentally the accuracy with which the
decoy state method allows bounding the size of the secret key.

With the GLLP method, the secure key rate per emitted faint pulse with mean photon
number of µ is given by [32]

S > 1
2

[
Q1(1− H2(E1))− Qµ f (Eµ)H2(Eµ)

]
, (13)

where the factor 1
2 accounts for basis reconciliation, H2(x)=−x log2(x)− (1− x)log2(1− x)

denotes the Shannon entropy, Q1, Qµ, E1 and Eµ specify the gains and error rates of signal
states and single photons, respectively, and f (Eµ) is the error correction efficiency which is
assumed to be 1.22 [33].

In the first analysis, we assume that no PNS attack took place during the measurement,
which is a reasonable assumption. Using equations (12), we can estimate the gain and error rate
for signal states with mean photon number µ:

Qµ = Pcorrect(µ) + Pwrong(µ)

= 2− (1− Y0/2)(e−µtηa + e−µtη(1−a)),

Eµ =
Pwrong(µ)

Pcorrect(µ) + Pwrong(µ)

=
1− (1− Y0/2)e−µtηa

2− (1− Y0/2)(e−µtηa + e−µtη(1−a))
.

(14)

Similarly, the gain and error rate for single photon pulses are given by

Q1 = µe−µ(2− (1− Y0/2)(2− tη)),

E1 =
1− (1− Y0/2)(1− (1− a)tη)

2− (1− Y0/2)(2− tη)
.

(15)

Using equations (13)–(15) and taking into account the measured values for t , η, a and Y0/2, we
can calculate the secret key rate for different µ, see curve A of figure 12.

In the second analysis, which again relies on the assumption of fair loss, we use
equation (14) to calculate the gains and error rates for the signal state with mean photon number
µ and the decoy state with mean photon number ν of 0.1. To calculate the gain and error rate
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Figure 12. Comparison of secret key rates versus mean number of photons in the
signal states. Curve A is the secret key rate calculated from the fraction of single
photons emitted at Alice’s and assuming fair loss (i.e. assuming it is known that
all loss is of technological origin and that there is no PNS attack). Curve B shows
the secret key rate calculated via the decoy state method (using decoy states with
mean photon number of 0.1 and vacuum states) and assuming fair loss. Curve
C is the secret key rate obtained via the decoy state method using experimental
data. All calculations assume an infinite sifted key length.

for single photon pulses, we use equations (34), (35) and (37) from [20]:

Q1 > Qν,0
1 =

µ2e−µ

µν− ν2

(
Qνeν
− Qµeµ ν2

µ2
−

µ2
− ν2

µ2
Y0

)
,

e1 6 eν,0
1 =

Eν Qνeν
− e0Y0

Y L,ν,0
1 ν

,

Y1 > Y L,ν,0
1 =

µ

µν− ν2

(
Qνeν
− Qµeµ ν2

µ2
−

µ2
− ν2

µ2
Y0

)
.

(16)

The resulting secret key rate follows from equation (13). It is shown in curve B of figure 12.
Finally, we calculate the secret key rate using the experimentally measured gain and error

rates for signal and decoy states, as opposed to the previous case where they were calculated.
The gain and error rate for single photons are estimated as before using equations (16). The
result is plotted in curve C of figure 12. Note that the measurement does not rely on the fair loss
assumption.

Comparing the three different curves, we find that the rates estimated from the decoy
state method (curves B and C) is somewhat smaller than the one plotted in curve A. This is
natural as the decoy state method with decoy states of finite photon mean number only yields a
conservative lower bound [20]. As an example, for µ= 0.6, we find the secret key rate (curves
B and C) to be roughly 10% worse than the secret key rate given in curve A. We also find a
reasonably good agreement between the rates estimated and measured using the decoy state
method (curves B and C, respectively). We attribute the remaining discrepancy to a systematic
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error in the estimation of the single photon gain Q1, resulting from a slightly wrong estimation
of the transmission in the link, quantum efficiency of the detectors, or error rate due to wrongly
received photons. Factors like fluctuations in the mean photon number could also have an effect.
This systematic error also affects the estimation of the single photon error rate E1. Furthermore,
curves B and C show that the secret key rate in our QKD system is maximized for signal
states with a mean number of photons of µ≈ 0.6. This value agrees with estimations in [20]
when taking into account the actual values for dark count rates, transmission, detector quantum
efficiency and error rate caused by wrongly received photons. Indeed, we calculate µopt = 0.62,
in very good agreement with our experimental results.

To finish this discussion, we emphasize that the secret key rate in an actual implementation
of an information-theoretic secure QKD session must be calculated using the decoy state method
used in the third analysis and must not rely on assumptions about fair loss in the quantum
channel.

7.1.3. Other deficiencies. We have noted that each faint pulse that encodes a qubit is preceded
by another faint pulse, originating from a reflection on the PBS that is part of the IM
(see section 4). Note that the number of photons in both pulses is comparable. Obviously,
for our assessment of the eavesdropper’s information to be correct, we have to make sure
that this pulse, which also transits through the polarization modulator, does not encode any
polarization information. Therefore, we have carefully adjusted the electrical trigger signal for
the polarization modulator such that it only acts on the ‘real’ faint pulse, and not on the spurious
one.

7.2. Classical system attacks

7.2.1. Trojan Horse attacks. As in any QKD system, regardless of whether it employs one-
way or two-way quantum communication, appropriate measures have to be implemented to
protect against Trojan Horse attacks [34]. In these attacks, the eavesdropper injects light through
the optical fibre into Alice’s or Bob’s preparation or measurement device, respectively, and
analyses the back reflection, which may reveal information about the quantum state created at
Alice’s or the measurement basis to be used at Bob’s. In both cases, the security of the key
distribution would be compromised as Eve either knows the state, or knows in which basis to
perform an intercept resend attack without creating errors. In our QKD system, given the static
setup at Bob’s, Trojan Horse attacks have to be considered only at Alice’s. Towards this end,
a polarization independent optical isolator and a spectral filter that absorbs all wavelengths not
blocked by the isolator should be placed at the output of Alice’s.

7.2.2. Time-shift attacks. In a time-shift attack [35]–[37] the eavesdropper exploits the fact
that the detection efficiency of different detectors may, for a given arrival time of a photon,
be different. It may thus be possible for an eavesdropper to bias the detection probabilities
by actively time-shifting the arrival time of photons and thereby acquire information for each
photon if it was detected in a detector that codes for a bit value 0, or 1. This attack, which is
possible in our current system, can be overcome if Bob randomly rotates the polarization state
of each incoming qubit by 0 or π/2, thereby de-correlating a detection in a particular detector
with a particular bit value. This can be done by placing a rapidly variable λ/2 waveplate in
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Figure 13. Classical post-processing steps.

between the PS and the PBSs, at the expense of rendering Bob’s setup ‘active’, i.e. vulnerable
to Trojan Horse attacks (which then have to be protected against, as discussed above).

8. Classical post-processing

Once the quantum part of the QKD protocol is finished, Alice and Bob must perform a series of
classical steps to go from the raw key to the secret key used for encryption [3]. The steps required
are shown in figure 13. In addition to sifting, error correction is used to ensure that Alice and
Bob have an identical key despite any errors that occur. Privacy amplification is then used to
eliminate any information Eve has obtained about the key, whether through eavesdropping on
the quantum channel or on the classical communication used for error correction. These steps
must also make use of authenticated communication to prevent Eve from performing a man-
in-the-middle attack. Of these steps, error correction is expected to become the bottleneck in
the QKD system once higher raw key rates are achieved. The Cascade protocol [38] that was
originally developed for QKD is not suitable for high key rates as it requires many rounds of
communication between Alice and Bob and is computationally expensive [39].

8.1. Low-density parity-check (LDPC) codes

LDPC codes were originally developed by Gallager in the 1960s [40] for classical
communications, but their potential performance has only been recently been discovered [41].
LDPC codes for QKD differ slightly from those used in the classical case as the parity
information is transmitted over a separate classical channel [39].

A LDPC code is defined using an m× n parity check matrix, H , consisting of zeros and
ones. While either Alice’s or Bob’s sifted key may be considered the ‘correct’ key for the
purpose of error correction, this discussion will use Alice’s sifted key, the n bit column vector
α, i.e. one-way, forward error correction. Alice computes a parity vector as follows:

p= Hα (mod 2), (17)

where the number of bits m in the parity vector is lower bounded by Shannon’s noisy coding
theorem; m = nH 2(QBER) with Shannon Entropy H2. Thus, pi indicates whether the sifted key
bits indicated by the ones in the i th row of H contain an even (pi = 0) or odd (pi = 1) number
of ones. Alice transmits p to Bob, whose task is to determine α using H , p, his sifted key, β,
and an initial estimate of the QBER. This estimate can be based on a characterization of the
quantum channel or on the QBER from previous executions of the protocol.

In order to recover α, Bob uses a process known as belief propagation to refine his initial
probabilities for the entries of α based on β and the QBER. Note that in the following discussion,
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Table 2. Results for rα j=1(i, j).

j β j P0( j) P1( j) rα j=1(i, j) for pi = 0 rα j=1(i, j) for pi = 1

1 1 0.1 0.9 0.82 0.18
2 1 0.1 0.9 0.82 0.18
3 0 0.9 0.1 0.18 0.82

Table 3. Results for P ′0( j) and P ′1( j) values.

rα j=1(1, j) rα j=1(2, j) rα j=1(3, j) qα j=0( j) qα j=1( j) P ′0( j) P ′1( j)

0.82 0.82 0.82 0.0006 0.4963 0.0012 0.9988
0.18 0.82 0.82 0.0027 0.1089 0.0238 0.9762
0.18 0.18 0.82 0.0121 0.0239 0.3361 0.6639
0.18 0.18 0.18 0.0551 0.0052 0.9131 0.0869

Bob has full knowledge of his key vector, β, but his knowledge of the Alice’s key vector, α is
probabilistic. For example, suppose row i of H is a parity check on three bits received by Bob,
β1 = 1, β2 = 1 and β3 = 0, where the expected QBER is 10% (chosen to prevent very small
numbers in this example). The probability that a key bit α j is zero or one based on the received
values and the QBER are denoted P0( j) and P1( j), respectively. For each of his bits β j , Bob
assumes that α j = 1 and computes rα j=1(i, j), which denotes the probability that the parity
check i is satisfied (pi = α1 + α2 + α3(mod 2)) given this assumption. Alternatively, rα j=1(i, j)
may be viewed as the probability that α j = 1 given the value of pi and what is known about the
other bits of α involved in the i th parity check. For example, rα j=1(i, 1) may be computed as
follows:

rα j=1(i, 1)=

{
P0(2)P1(3) + P1(2)P0(3), for pi = 0,

P0(2)P0(3) + P1(2)P1(3), for pi = 1.
(18)

As can be seen in table 2, the probability that the bits retain their received value is high when
pi = 0 since this is consistent with the received values of β. If instead pi = 1, a high probability
for bit flips is obtained since each row assumes that the received values for the other bits are
likely to be correct. This information is useful when combined with the results of other parity
checks.

After doing these computations for each row of H , Bob uses the information from all the
parity checks involving a particular key bit β j to compute new values of P ′0( j) and P ′1( j). If
the j th key bit is involved in three parity checks, Bob computes qα j=0( j) and qα j=1( j), which
represent the probability that α j is zero or one, respectively, based on β j and the QBER, and
that all parity checks involving α j are satisfied:

qα j=0( j)= P0( j)rα j=0(1, j)rα j=0(2, j)rα j=0(3, j), (19)

qα j=1( j)= P1( j)rα j=1(1, j)rα j=1(2, j)rα j=1(3, j), (20)

where rα j=0(i, j)= 1− rα j=1(i, j). Since valid results must be consistent with all parity checks,
P ′0( j) and P ′1( j) are obtained by normalizing qα j=0( j) and qα j=1( j). For example, consider
β j = 1, implying P0( j)= 0.1 and P1( j)= 0.9 as shown in table 3. Even if one parity check
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suggests there is an error in this example, the confidence that β j = 1 (i.e. β j was received
correctly) still increases. With all three parity checks suggesting a bit flip is necessary, a
high confidence is obtained that the received value of β j is incorrect. With two parity checks
suggesting a bit flip is required, the result does not significantly favour either result.

Bob can then select the most likely value for each bit to form β ′, and compute p′ =
Hβ ′ (mod 2). If p′ = p, the protocol is finished. Otherwise, additional iterations of the
protocol are performed. With the additional modification that Bob also computes conditional
probabilities, P ′0(i, j) and P ′1(i, j), to use in (18) during subsequent iterations, this procedure is
generalized as the sum-product algorithm [39, 41].

8.2. Hardware LDPC decoding

Interest in LDPC codes stems not only from their potential to perform near the Shannon limit.
Since the computations for each parity check and each key bit are independent, the structure
of the sum-product algorithm lends itself to parallel computation. This makes sum-product
decoding of LDPC codes well suited for high speed implementation in custom hardware or
in reconfigurable devices such as Field Programmable Gate Arrays (FPGA) [42]. However,
floating-point computations are expensive in terms of the amount of logic required. Thus, it
is desirable to implement LDPC decoding using fixed-point arithmetic (equivalent to integer
arithmetic) with as few bits as possible to represent the values. In initial simulations of fixed-
point decoding, we found that the primary obstacle for a small bit length was the very small
values obtained for the probabilities. This problem manifested as ‘divide by zero’ errors during
the normalization since both q0( j) and q1( j) had rounded to zero. We overcome this limitation
by modifying the algorithm to set any occurrences of zero in the q( j) values to the smallest
possible nonzero value.

A LDPC code was designed with a 1200× 4000 parity check matrix using parameters
similar to [39] (QBER= 3%, parity checks on 20 key bits. Note that this QBER also reflects
our experimental results, see section 5). It has been shown that having the key bits take part in a
variable number of parity checks results in better performance [43]. Thus, H has a fixed number
of ones in each row, known as the row weight, and a variable number of ones in each column,
known as the column weight. The method presented in [43] was used to determine the column
weights by applying a well-known optimization technique with the constraints ensuring that the
design criteria (QBER and code rate) are met. In place of the arbitrary cost function in [43],
we use a function reflecting the computational complexity. Our code was simulated over 40
iterations, with the number being selected based on tests that showed very little improvement
beyond this point. The results in figure 14 show that 24-bit fixed-point and floating-point have
very similar decoding performance.

Using VHDL (a hardware description language) code generated in Matlab, we are able to
create code for parallel implementations of sum-product decoding for arbitrary values of H .
While a Register Transfer Level (RTL) simulation of the 1200× 4000 LDPC code is possible,
a fully parallel implementation is not possible at this time. A 60× 200 LDPC code with a row
weight of 12 that is capable of operating at 50 MHz was synthesized using the Artisan 3.0 logic
cell library for 0.18 µm CMOS technology (several generations behind state of the art). This
code uses 12-bit arithmetic and requires 46 clock cycles (0.92 µs) per iteration of the algorithm.
Simulation results for the performance of this code with a maximum of 40 iterations are given in
table 4. The design contains 1 860 429 cells with a total cell area of approximately 47.24 mm2.
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Figure 14. Simulation results of the 1200× 4000 LDPC code using 16-bit fixed-
point (– – –,ut), 24-bit fixed-point (— ·—, ∗) and floating-point (· · · · · ·,◦). The
inset shows the region where the performance begins to drop in more detail.

Table 4. Simulation results for 60× 200 LDPC decoding.

QBER (%) Success rate (%) Mean iterations Sifted key rate (Mb s−1)

2.5 99.00 4.1070 52.9319
3.0 91.65 8.6785 25.0494
3.5 69.80 17.9455 12.1146

Attempts to synthesize a larger LDPC code using the current VHDL code have failed as the
synthesis tool does not have sufficient memory to complete the process. The size of the design
also suggests that a 1200× 4000 code would be impractical to implement (as a comparison, a
processor is typically of the order of 100 mm2, including interconnect). However, larger codes
are preferred because they experience less variance from the mean QBER and perform better
relative to the Shannon limit.

It is important to note that we obtained these results without using any advanced techniques
to reduce the size of the design. More efficient multiplier designs or the use of alternative
number systems such as the multidimensional logarithmic number system (MDLNS) [44] have
the potential reduce the hardware required to perform the computations. Larger block sizes
could also be achieved using the partially parallel implementations proposed in [45], where
efficient schedules are used rather than updating all probabilities at once, reducing the number
of computations done in parallel, while mitigating the cost in terms of the run time.

New Journal of Physics 11 (2009) 095001 (http://www.njp.org/)

http://www.njp.org/


25

9. Conclusion and outlook

We have proposed a novel, fibre-based QKD system employing polarization encoding and
Q-frames, and have demonstrated in a long-term (37 h) QKD proof-of-principle study that
polarization information encoded in the classical C-frames can indeed be used to stabilize
unwanted qubit transformation in the quantum channel. All optical elements in our setup can be
operated at Gbps rates, which is a first requirement for a future system delivering secret keys at
Mbps. In order to remove another bottleneck towards a high rate system, we are investigating
forward error correction based on LDPC codes [40, 41]. Work on the implementation of
a system that distributes a quantum key, building on the here presented proof-of-concept
demonstration, is under way.
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