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Abstract. A quantum key distribution (QKD) network is an infrastructure that
allows the realization of the key distribution cryptographic primitive over long
distances and at high rates with information-theoretic security. In this work, we
consider QKD networks based on trusted repeaters from a topology viewpoint,
and present a set of analytical models that can be used to optimize the spatial
distribution of QKD devices and nodes in specific network configurations in
order to guarantee a certain level of service to network users, at a minimum
cost. We give details on new methods and original results regarding such cost
minimization arguments applied to QKD networks. These results are likely to
become of high importance when the deployment of QKD networks will be
addressed by future quantum telecommunication operators. They will therefore
have a strong impact on the design and requirements of the next generation of
QKD devices.
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1. Introduction

Quantum key distribution (QKD) is a technology that uses the properties of quantum mechanics
to realize an important cryptographic primitive: key distribution5. Unlike the techniques
used in traditional ‘classical’ cryptography, for which the security relies on the conjectured
computational hardness of certain mathematical problems, QKD security can be formally
proven. Secret keys established via QKD are information-theoretically secure, which implies
that any adversary trying to eavesdrop cannot obtain any information on the transmitted keys at
any point in the future, even if she possesses extremely large computational resources.

The communication channels needed to perform QKD consist of an optical channel, on
which well-controlled quantum states of light are exchanged, and a classical channel that is
used for signaling during the quantum exchanges and for the classical post-processing phase,
namely key reconciliation. Their combination forms a communication link, over which QKD
allows two distant users to exchange a specific type of data, in particular secret keys. In this
sense, QKD is by nature a telecommunication technology, and so QKD links can be combined
with appropriately designed nodes to form QKD networks.

The performance of QKD links has rapidly improved in the last years. Starting
from pioneering experiments in the 1990s [1], important steps have been taken to bring
QKD from the laboratory to the open field. Thanks to the continuous efforts invested in
developing better QKD protocols and hardware, in parallel to the advancement of security
proofs (see [2]–[4] for reviews), the performance that can now be achieved, in terms
of attainable communication distance, secret key generation rate and reliability, positions

5 More accurately, the primitive is that of secret key agreement using a public quantum channel and a public
authenticated classical channel.
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QKD as the first quantum information processing technology reaching a level of maturity
sufficient to target deployment over real-world networks. Indeed, off-the-shelf QKD systems
are now commercially available [5], and the first QKD networks have recently been
implemented [6]–[8].

Up till now, research in QKD has focused on building and optimizing individual systems
to reach the longest possible distance and/or the highest possible secret bit rate, without
taking into account the cost of such systems. However, as the perspective of deploying QKD
networks becomes a reality, the question of optimal resource allocation, intrinsically linked to
cost considerations, becomes relevant and important, as is the case for any telecommunication
network infrastructure. It therefore becomes necessary to consider QKD from a cost perspective,
and in particular study the potential trade-offs of cost and performance that can occur in this
context.

Following the above arguments, we consider in this work the design of QKD networks from
a topology viewpoint, and present techniques and analytical models that can be used to optimize
the spatial distribution of QKD devices and QKD nodes within specific network architectures
in order to guarantee a given level of service to the network users, at a minimum cost. We also
study how cost minimization arguments influence the optimal working points of QKD links. We
show in particular that, in the perspective of QKD networks, individual QKD links should be
operated at an optimal working distance that can be significantly shorter than their maximum
attainable distance.

This paper is structured as follows. In section 2, we define a QKD network and discuss the
topology and characteristics of the network architecture that we consider in this work. We also
introduce the concept of a backbone network structure. In section 3, we present our calculations
and results on network topological optimization based on cost arguments. In particular, we
provide a comprehensive set of modeling tools and cost function calculations in specific network
configurations, and discuss the effect of our results on the design of practical QKD networks.
Finally, in section 4, we discuss open questions and future perspectives for QKD networks.

2. QKD networks

2.1. Definition and types of QKD networks

Extending the range of QKD systems to very long distances, and allowing the exchange of
secret keys between multiple users necessitates the development of a network infrastructure
connecting multiple individual QKD links. Indeed, QKD links are inherently only adapted to
point-to-point key exchange between the two endpoints of a quantum channel, while the signal-
to-noise ratio decrease occurring with propagation loss ultimately limits their attainable range.
It is then natural to consider QKD networks as a means to overcome these limitations.

A QKD network is an infrastructure composed of QKD links, i.e. pairs of QKD devices
linked by a quantum and a classical communication channel connecting two separate locations,
or nodes. These links are then used to connect multiple distant nodes. Based on these resources
and using appropriate protocols, this infrastructure can enable the unconditionally secure
distribution of symmetric secret keys between any pair of legitimate users accessing the
network.

QKD networks can be categorized in two general groups [9]: networks that create an end-
to-end quantum channel between the two users, and networks that require transport of the key
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over many intermediate trusted nodes. In the first group, we find networks in which a classical
optical function such as switching or multiplexing is applied at the node level on the quantum
signals sent over the quantum channel. This approach allows multi-user QKD but cannot be
used to extend the key distribution distance. Much more advanced members of this group
are the quantum repeater-based QKD networks. Quantum repeaters [10] can create a perfect
end-to-end quantum channel by distributing entanglement between any two network users.
The implementation of quantum repeaters, however, requires complex quantum operations and
quantum memories, whose realization remains an experimental challenge. The same is true
for the simpler version of quantum repeaters, namely quantum relays [11], which on the one
hand do not require a quantum memory but on the other cannot arbitrarily extend the QKD
communication distance.

2.2. Trusted repeater QKD networks: characteristics and assumptions

In this work, we are interested in the second group of networks, which we call trusted repeater
QKD networks. In these networks, the nodes act as trusted relays that store locally QKD-
generated keys in classical memories, and then use these keys to perform long-distance key
distribution between any two nodes of the network. Therefore, trusted repeater QKD networks
do not require nodes equipped with quantum memories; they only require QKD devices and
classical memories as well as processing units placed within secure locations, and can thus be
deployed with currently available technologies. Indeed, the implementation of such networks
has been the subject of several international projects [7, 8, 12, 13].

As we will see in detail in the following section, the analysis of trusted repeater QKD
networks from a topology viewpoint and with the goal of achieving optimization based on cost
considerations involves modeling several characteristics of such a network, namely the user
distribution, the node distribution, the call traffic and the traffic routing. The user and node
distributions, denoted by 5 and M , respectively, will be considered as Poisson stochastic point
processes, and will be thus modeled using convenient stochastic geometry tools. Modeling the
traffic demand is particularly subtle because of the variation with respect to time and distance
that this traffic may feature in a real network. Calculations here will neglect these variations and
will be performed under the assumption of a uniform call volume between any pair of users,
denoted as V .

Finally, routing in trusted repeater QKD networks is performed according to the following
general principle: first, local keys are generated over QKD links and are stored in nodes that
are placed on both ends of each link. Global key distribution is then performed over a QKD
path, i.e. a one-dimensional (1D) chain of trusted relays connected by QKD links, establishing
a connection between two end nodes. Secret keys are forwarded, in a hop-by-hop fashion,
along these QKD paths. To ensure their secrecy, one-time pad encryption and information-
theoretically secure authentication, both realized with a local QKD key, are performed. End-
to-end information-theoretic security is thus obtained between the end nodes, provided that the
intermediate nodes can be trusted.

2.3. Quantum backbone network architecture

Introducing hierarchy into network design can be an extremely convenient architectural tool
because it allows us to break complex structures into smaller and more flexible ensembles.
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Indeed, such hierarchical levels offer an efficient way to help solve resource allocation problems
arising in networks, ranging from network routing to network deployment planning. In this
work, we will associate the notion of hierarchy in QKD networks with the existence of what we
will call a quantum backbone network.

In classical networks and especially the Internet, a backbone line is a larger transmission
line that carries data gathered from smaller lines that interconnect with it. By analogy with this
definition, the backbone QKD network is an infrastructure for key transport that gathers the
traffic of secret key from many individual QKD links. QKD backbone links and nodes clearly
appear as mutualized resources shared to provide service to many pairs of users. Keeping the
fruitful analogy with classical networks, we will call access QKD links the point-to-point links
used to connect QKD end users to their nearest QKD backbone node.

The principle of traffic routing that we described above can be conveniently transposed in
the context of backbone networks. In this case, traffic from individual users is gathered locally
to backbone QKD nodes. This mutualized traffic is then routed hop-by-hop over the backbone
structure. Furthermore, it is important to note that the node and user point process distributions
are distinct when a backbone network is considered, which might not be the case in a network
without backbone.

In the following, we will derive cost functions for different QKD network configurations,
under the above assumptions regarding the topology and the way traffic is routed in these
networks, and as a function of the characteristics of individual QKD links. We will then use
the results to discuss how QKD networks should be dimensioned, the optimal working points
of QKD links, as well as the interest of adopting a hierarchical architecture, materialized by the
existence of a backbone, in QKD networks.

3. Topological optimization based on cost arguments

3.1. QKD links: characterizing the rate versus distance

The main element underlying the cost optimization related to the deployment of quantum
networks is the intrinsic performance of QKD links. This performance can essentially be
summarized by the function R(`), which gives the rate, in bit s−1, of secret key that can be
established over a QKD link of length `.

Clearly, this secret key bit rate varies from system to system and comparisons between
systems are thus difficult to establish. Moreover, comparisons have to be related to the security
proofs for which the secret key bit rates have been derived. Security proofs are not yet fully
categorized, although important steps in this direction have been taken [4].

As shown in figure 1, the typical curve describing the variation with distance of the
logarithm of the mean rate of secret bit establishment R(`) can be essentially separated into
two parts:

• A linear part that is the region where the rate of secret key establishment varies as a given
power of the propagation attenuation. Since the attenuation η(`) is exponentially increasing
with distance, log R(`) is linear in `.

• An exponential drop-off at longer distances, where the error rate rapidly increases due to
the growing contribution of detection dark counts. In this region, the decrease of the secret
key rate is multiexponential with distance. The slope of the curve representing log R(`) is
thus becoming increasingly steep until a maximum distance is reached.
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Figure 1. Typical profile of the rate versus distance curve for a single QKD link.

For completeness, it is also important to mention the possibility that, for short distances,
the secret bit rate could be limited by a saturation of the detection setup. This will be the case
if the repetition rate at which the quantum signals are sent in the quantum channel exceeds the
bandwidth of the detector. We will, however, not investigate this possibility any further in the
remaining of this work.

The behavior of the secret bit rate function R(`) can be described using essentially three
parameters, schematically shown in figure 1:

1. the secret bit rate at zero distance, R0;

2. the scaling parameter λQKD in the linear region such that R(`)= R0 e−`/λQKD; and

3. the distance at which the scaling of the rate becomes exponential, which is comparable
with the maximum attainable distance, Ddrop ∼ Dmax.

R0 is determined by the maximum clock rate of the QKD system. In QKD relying on
photon-counting detection setups, R0 is limited by the performance of the detectors, and is
usually in the Mbit s−1 range. Clearly, the solutions allowing to improve the performance of
the detectors have a direct impact on R0 [14]–[17]. For QKD systems relying on continuous
variables [18], based on homodyne detection performed with fast photodiodes, the experimental
bound on R0 can be significantly higher, potentially in the Gbit s−1 range. The computational
complexity of the reconciliation, however, currently limits R0 in the Mbit s−1 range in the
practical demonstrations performed so far [19].

The scaling parameter λQKD is essentially determined by the attenuation η(`) over a
quantum channel of length `, and by a coefficient r that is mainly related to the security
proof that can be applied to the experimental system. In the case of a typical network based
on optical fibers, the attenuation η(`) can be parameterized by an attenuation coefficient α (in
dB km−1) as η(`)= 10−α`/10 (for scaling of the attenuation in free space, see [4]). In the linear
part of the curve shown in figure 1, the rate R(`) varies as a given power r of the attenuation,
R(`)= R0 η(`)

r . We can thus define the scaling parameter as λQKD = 10/(α r log(10)).
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For QKD performed at telecom wavelengths, with protocols optimized for long distance
operation, we can take α = 0.22 dB km−1 and r = 1, which leads us to λQKD = 19.7 km, as the
typical scaling distance for such QKD systems. This parameter is important since, as we shall
see in the following, the optimal working distance of QKD links will essentially scale as λQKD.

Finally, the existence of a rapid drop-off of the secret key rate at distances around Ddrop

arises when the probability to detect some signal sent in the quantum channel, ps, becomes
comparable with the probability to detect a dark count per detection time slot, pd. This occurs
around the distance Ddrop, for which we have ps ' exp(−Ddrop/λQKD)ηd, where ηd represents
the detector efficiency. We thus find Ddrop ' λQKD log(ηd/pd). In practice, when working with
InGaAs single-photon avalanche photodiodes (SPADs) operating at 1550 nm, the ratio ηd/pd is
optimized by varying the different external parameters of the detector such as the temperature,
gate voltage or time slot duration. The best published performances for InGaAs SPADs
[20, 21] report values of the dark counts pd ' 10−7 – 10−6 for a detection efficiency ηd around
10%, which leads to Ddrop ∼ Dmax ∼ 100–120 km for QKD systems employing such detectors.
For a similar detection efficiency, the best available superconducting single-photon detectors
(SSPDs) present dark counts pd ' 10−8 – 10−6 [22], leading to a maximum distance that can
reach 140 km.

3.2. Toy model for QKD network cost derivation: a linear chain between two users

3.2.1. The linear chain as a simple asymptotic model of a quantum backbone network. As a
first example of QKD network cost derivation and optimization, we will consider what we will
call the linear chain scenario. In particular, we consider two users, A and B, that want to rely on
QKD to exchange secret keys in a scenario that imposes the use of several QKD links:

• The two QKD users are very far away: their distance is L =‖ AB‖ with L � Dmax.

• The two QKD users are exchanging secret bits at a very high rate. We will call V the
volume of calls between the two users A and B (units of V : bits of secret key), and will
assume V � R0.

Because of the first condition, many intermediate nodes have to be used as trusted key
relays to ensure key transport over QKD links from A to B. Because of the second condition,
many QKD links have to be deployed in parallel to reach a secret key distribution rate capacity
at least equal to the traffic volume.

The linear chain QKD network scenario is in a sense the simplest situation in which an
infrastructure such as a quantum backbone network, described in section 2, is required. It
therefore provides an interesting toy model for cost optimization and topological considerations.

3.2.2. Cost model: assumptions and definitions. The generic purpose of cost optimization is
to ensure a given objective in terms of service, at the minimum cost. In the case of the linear
chain scenario, this objective is to be able to offer a secret bit rate of V bit s−1 between two users
A and B separated by a distance L , while minimizing the cost of the network infrastructure to
be deployed.

In this and all subsequent models, we will consider as the total cost C of a QKD network,
the cost of the equipment to be deployed to build the network. This can be seen as a simplifying
assumption, since it is common, in network planning, to differentiate between capital and

New Journal of Physics 11 (2009) 075002 (http://www.njp.org/)

http://www.njp.org/


8

Alice Bob

L

l

Figure 2. The 1D QKD chain linking two QKD users, Alice and Bob, over a
distance L . Since L is considered much longer than the maximum span of a
QKD link, Dmax, intermediate QKD nodes are needed to serve as trusted relays.

operating expenditures. We have chosen here to restrict our models to capital expenditures of
QKD networks and will consider that their cost is arising from two sources:

• The cost of QKD link equipment to be deployed. We will denote as CQKD the unit cost
per QKD link. CQKD essentially corresponds to the cost of a pair of QKD devices. Note
that here we implicitly assume that the deployment of optical fibers is for free, or more
precisely that it is done independently and prior to the deployment of a QKD network.

• The cost of node equipment, which we denote as Cnode. Cnode typically corresponds to the
hardware cost (for example, some specific kind of routers need to be deployed inside QKD
nodes), as well as the cost of the security infrastructure that is needed to make a QKD node
a trusted and secure location.

As explained before and shown in figure 2, a linear chain QKD network is composed of
a 1D chain where adjacent QKD nodes are connected by QKD chain segments, each segment
being potentially composed of multiple QKD links to ensure that a capacity equal to the traffic
volume is reached.

3.2.3. Total cost of the linear chain QKD network. For convexity reasons, discussed in more
detail at the end of this section, the topology ensuring the minimum cost will correspond to place
QKD nodes at regular intervals between A and B. We denote by ` the distance between two
intermediate nodes, which then corresponds to the distance over which QKD links are operated
within the linear chain QKD network. As we shall see, the question of cost minimization will
reduce to finding the optimum value of QKD link operational distance, `opt, for the linear chain
QKD network.

There are clearly two antagonistic effects in the dependence of the total cost of the
considered network on `:

• On the one hand, if QKD links are operated over long distances, their secret bit capacity
R(`) decreases. This will impose the deployment of more QKD links in parallel, on each
chain segment linking two adjacent QKD nodes, and thus tends to increase the total cost.

• On the other hand, it is clear that increasing the operating distance ` allows us to decrease
the required number of intermediate trusted relay nodes, which leads to a decreased cost.

The optimum operating distance `opt corresponds to the value of ` that minimizes the total
cost function C:

C = CQKD
L

`

V

R(`)
+ Cnode

L

`
. (1)
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It is important to note that, in the above equation, we have made the assumption that we can
neglect the effects of discretization. This means that the length of the chain, L , can be considered
much longer than the length of individual QKD links, `, and that the traffic volume V can be
considered as a continuous quantity, neglecting the discrete jumps associated with variations in
the number of calls.

3.2.4. Cost minimization and optimum working distance of QKD links. In the asymptotic limit
of very high traffic volume V , the cost of nodes can be neglected in comparison with the cost of
QKD devices. The expression of the total cost in equation (1) then reduces to the first term, and
we have the following interesting properties:

• The total cost is directly proportional to the product of the traffic volume V and the total
distance L .

• Optimizing the total cost C is equivalent to minimizing C(`)/` where C(`)= CQKD/R(`)
is the per-bit cost of one unit of secret key rate.

Furthermore, assuming that QKD links are operated in the linear part of their characteristic
(see figure 1), we can write C(`)=

CQKD

R0
e `/λQKD . Then, the value of `opt that minimizes

the quantity C(`)/` can be explicitly derived as

`opt
= λQKD, (2)

where λQKD was defined in section 3.1 as the natural scaling parameter of the function R(`).
In the general case, the second term of the cost function in equation (1), corresponding

to the cost of nodes, cannot be neglected. This second term does not depend on the volume of
traffic V , and is always decreasing with `. As a consequence, the optimum operating distance
that minimizes C will always be greater than λQKD, the value minimizing the first term in
equation (1).

Under the assumption that the optimum distance will remain in the linear part of the
function log R(`), we can derive the following implicit relation for `opt:

`opt
= λQKD

(
1 +

Cnode

CQKD

R0

V
e−`opt/λQKD

)
. (3)

The above equation allows for a quantitative discussion of the ‘weight’ of the nodes in the
behavior of the cost function. Indeed, we can see that the influence of the node cost is potentially
important and can lead to an optimum working distance that can be significantly greater than
λQKD when Cnode

CQKD

R0
V � 1.

3.2.5. Existence of an optimum working distance and convexity of C(`). In most of the explicit
derivations performed in this work, we assume a purely linear dependency of log R(`) on `.
This assumption is convenient but remains an approximation since it does not take into account
the drop-off of R(`) occurring around Ddrop.

It is, however, possible to demonstrate the existence of an optimum working distance for
QKD links in a more general case, by solely relying on the assumption that the function R(`) is
log-concave, i.e. that log R(`) is concave. The log-concavity of R(`) can be checked on a simple
model inspired by the secret key rate formula for the BB84 QKD protocol with perfect single
photons [4]. In particular, in this case we have R(p)= 1 − 2 h(p), where h(p) is the entropy
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associated with a quantum bit error rate p, and assume that the dependence of the error rate p
on the distance is of the form p = a + b/η(`)= a + b `/λQKD , where a and b are parameters linked
to the detection system. In this setup, it is straightforward to verify numerically that log R(`) is
concave for all reasonable values of a and b.

Since C(`), the per-unit cost of secret bit rate on a QKD link, is proportional to 1/R(`),
the log-concavity of R(`) implies the log-convexity of C(`), which itself implies the convexity
of C(`). Finally, we can write the total cost of the linear chain QKD network as the sum of the
cost of each chain segment and the cost of the node equipment, namely

C(`0, . . . , `n)= V
n∑

i=0

C(`i)+ n Cnode.

In the above equation, `0 denotes the distance between A and the first node, `k , k = 1, . . . , n − 1,
the distance between the kth node and the k + 1th node, and `n the distance between the last
node and B. For a convex function C , the minimization of

∑n
i=0 C(`i) under the constraint∑n

i=0 `i = L , where L is the distance between A and B, is obtained with `i = L/(n + 1) for all
i . Once we set `i = L/(n + 1), the cost expression in the above equation only depends on n, or
equivalently on `= L/(n + 1). For large L , we can disregard the fact that ` is an integer divider
of L and approximate (n + 1)/n by 1, which then leads to equation (1).

3.3. Cost of QKD networks: toward more general models

The linear chain toy model developed in section 3.2 provides an interesting intuition into the
behavior of the cost function. The most important result is that, in the limit of large traffic rates
and/or low cost of QKD nodes, the QKD network cost optimization reduces to the minimization
of C(`)/`∼ 1/(R(`)`). This leads to the existence of an optimum working distance, `opt, at
which QKD links need to be operated in order to minimize the global cost of the network
deployment.

The linear chain QKD network model is, however, too restrictive in many aspects: it is 1D
and limited to the description of a network providing service to two users. We will now consider
more general models, which allow us to study the more realistic case of QKD networks spanning
a 2D area, and providing service to a large number of users.

3.3.1. Modeling network spatial processes with stochastic geometry. Stochastic geometry is a
very useful mathematical tool for modeling telecommunication networks. It has the advantage
of being able to describe the essential spatial characteristics of a network using a small number
of parameters [23]. It thus allows us to study some general characteristics of a given network,
like the behavior of its cost function, under a restricted set of assumptions. This approach fits
well with the objectives of this work, and so we have employed stochastic tools to model a QKD
backbone network.

As we shall see, instead of calculating the cost of a QKD network for fixed topologies and
traffic usage, we will try to understand the general behavior of the cost function by calculating
the average cost function, where the average will be taken over some probability distributions
of spatial processes modeling QKD users and QKD node locations.

The collection of spatial locations of the QKD nodes over the plane will be represented
by a spatial point process M = {X i}. Then, as illustrated in figure 3, we define a corresponding
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u

v

Figure 3. Thick black lines: Voronoï partition associated to a given distribution
of nodes. Thin black lines: the Delaunay graph, connecting the center of
neighboring Voronoï cells. In the backbone QKD network model, backbone
QKD links will indeed correspond to the Delaunay graph, while backbone nodes
correspond to the nucleus of the Voronoï cells. We have also represented in the
same figure a typical end-to-end path, between two QKD users u and v, under
the Markov-path routing policy (see text in section 3.6.2 for details).

partition of the plane6 as the ensemble of the convex polygons {Di}, known as the Voronoï cells
of nucleus {X i}. Each Voronoï cell Di is constructed by taking the intersection of the half-
planes bounded by the bisectors of the segment [X i , X j ] and containing X i . The system of all
the cells creates the so-called Voronoï partition. Finally, we define the Delaunay graph as the
graph, whose vertices are the {X i} and whose edges are formed by connecting each Voronoï cell
nucleus {X i} with the nuclei of the adjacent Voronoï cells.

3.3.2. User distribution and traffic. In the remaining of this paper, and in contrast to the linear
chain toy model developed in section 3.2, we will consider QKD networks providing secret key
distribution service to a large number of users, distributed over a 2D area.

The user distribution will be modeled by a Poisson stochastic point process, 5= {Ui},
defined over the support D of size L × L , while the average number of QKD users will be
denoted byµ. The point process5will also be assumed to have an intensity density f satisfying
µ=

∫
f <∞, which means that for every set E the number of users within E is a Poisson

random variable with mean
∫

E f .

6 More accurately, the geometrical object we consider here is a tesselation, the boundaries of which are neglected.
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Finally, whenever this additional assumption will prove to be useful to perform the
desired calculations, we will consider that the distribution of users is homogeneous over D,
i.e. that the intensity function f is constant over D. We will denote this constant user density
by 1/α2

u so that αu corresponds to a distance (it can be shown that for large L , αu/2 is the
average distance between the origin and the point Ui closest to the origin). We will have in this
case:

µ=

∫
f = (L/αu)

2 . (4)

For the traffic model, we will generalize the assumption made for the linear chain QKD
network model: the traffic between any pair of QKD users will be seen as an aggregate volume
of calls (expressed in units of secret key exchange rate). The volume of traffic will be assumed
to be the same between any pair of users, and will be denoted by V .

3.3.3. QKD networks with or without a hierarchical architecture. As was discussed in
section 2, it is interesting to study to which extent deploying a structure such as a backbone,
which is synonymous to the existence of hierarchy in a network, would be advantageous in the
case of QKD networks. To this end, continuing to place ourselves in the perspective of cost
optimization, we will derive cost functions for QKD network models with or without a quantum
backbone. The obtained results will then allow us to establish comparisons and thus discuss the
interest of hierarchy in quantum networks.

3.4. Cost function for a 2D network without backbone: the generalized QKD chain model

A direct way to generalize the two-user 1D chain model presented in section 3.2 is simply
to assume that a chain of QKD links and intermediate nodes will be deployed between each
pair of users u and v within the QKD network. Each chain will therefore be dimensioned in
order to accommodate a volume V of calls. The routing of calls is trivial on such a
network. The distance between the intermediate nodes on a chain will be denoted by `, as in
section 3.2.

Here as well, we neglect the effects of discretization, i.e. the length of the chains, ‖u − v‖,
will be considered much longer than the length of individual QKD links, `, and the traffic
volume V will be considered a continuous quantity. Under these assumptions, we know that the
cost associated with a pair of users located respectively at positions u and v and exchanging a
volume V of calls is (see equation (1))

Cpair(u, v)= V ‖u − v‖C(`)/` + (‖u − v‖/`)Cnode. (5)

Recall that the distribution of users is described by a Poisson point process 5= {Ui}.
Then, we can calculate the average total cost of the QKD network, C, by summing up the costs
Cpair(Uk,Ul) associated with the QKD chains deployed between each pair of users over k 6= l
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and then average this sum over the stochastic user point process 5:

C = E

∑
k 6=l

Cpair(Uk,Ul)


= E

∑
k 6=l

V ‖Uk − Ul ‖C(`)/`+ ‖Uk − Ul ‖Cnode


= (V C(`)/` + Cnode/`) δ, (6)

where δ is the average sum of distances over all pairs of two different users, namely

δ = E

∑
k 6=l

‖Uk − Ul ‖

 . (7)

For a homogeneous Poisson point process 5 with spatial density of users α−2
u over a square

domain D of size L × L , it is possible to perform the exact integral calculation of δ, yielding

δ = γ L5/α4
u with γ =

1

3
log(1 +

√
2)+

2 +
√

2

15
' 0.5214. (8)

3.5. Cost function for a 2D QKD network with backbone

The backbone architectures we will consider in this work are topological: for a given distribution
of QKD nodes, which will be either deterministic (section 3.6.1) or stochastic (section 3.6.2),
the backbone cells and backbone links will strictly coincide with the Voronoï cells and the edges
of the corresponding Delaunay graph defined above, respectively.

3.5.1. Routing traffic over a QKD backbone network. The backbone hierarchical structure
provides a convenient way to solve the routing problem that we have adopted in our cost
calculations. For a given origin-destination pair of users (A,B) wishing to exchange a volume
of calls VAB, the traffic is routed in the following way:

• The traffic goes from A to its nearest QKD backbone node XA (center of the backbone cell
containing A), through a single QKD link (an access link).

• The traffic is routed through the optimal (less costly) path over the backbone QKD
network from XA to XB (QKD node closer to B).

• The traffic goes from XB to B.

The routing rule defined above can be characterized as geographical, in the sense that it is
driven by distance considerations. However, determining the optimal path in a given backbone
network of arbitrary topology may not be a tractable problem. Even in standard networks, where
the optimal path is the shortest one, an analytic computation of the average length/cost is not
always possible. In the context of backbone nodes distributed as a Poisson point process, an
alternative suboptimal routing policy, the so-called Markov path, has been proposed, and leads
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to analytic computation of the average path length. In QKD networks, the cost is a nonlinear
function of the length and some adjustments are required. We consider two different geometries
for the backbone:

1. A square backbone QKD network (section 3.6.1), i.e. a regular structure where nodes and
links form a regular graph of degree 4. In this case, finding the length of the shortest
path between two nodes is trivial: backbone nodes XA, XB can be designated by cartesian
coordinates (xA, yA), (xB, yB) and the shortest path length is simply |xA − xB| + |yA − yB|.
Moreover, cost calculations are simplified using the fact that the links between two
neighbor nodes of the backbone all have the same length.

2. A stochastic backbone network (section 3.6.2), where backbone nodes are distributed
following a random point process and backbone cells are the corresponding
Voronoï partition. For this stochastic backbone, we have used a routing technique called
Markov-path routing for which, as previously established by Tchoumatchenko et al
[24, 25], the average length of routes can be calculated. In the following, we will adapt
these calculations to our cost function C(`).

3.5.2. Generic derivation of the cost function for QKD backbone networks. For a QKD
network with a backbone structure, we define M = {X i} as the point process of the network node
distribution, and 5= {Ui} as the point process of the network user distribution, with intensity
density f . Each node X i is connected to some nodes in its neighborhood and to the clients
belonging to the associated cell Di . In the following, we will assume that M is statistically
independent of 5, and that the cells Di are the Voronoï cells associated with M , that is

Di =

{
x : ‖x − X i‖6 inf

j 6=i
‖x − X j‖

}
. (9)

In the case of the QKD backbone network, our routing policy allows us to calculate
Cpair(u, v; M), the QKD equipment cost associated with sending one unit of call between users
u and v, over a network whose backbone nodes are described by the point process M :

Cpair(u, v; M)=



C(‖u − X i‖)+ C(‖v− X i‖)

if u, v ∈ Di ,

C(‖u − X i‖)+ C(‖v− X j‖)+ Chop(i, j; M)

if u ∈ Di and v ∈ D j with i 6= j,

where C(`) is the cost spent to send a secret bit on a QKD link over a distance ` and
Chop(i, j; M) is the cost to send a secret bit between the nodes X i and X j of the backbone
for the given routing policy.

Given that the volume between each pair of users is V , the average total cost C of the QKD
network then reads

C = CQKD + Cnode
= V ×E

∑
k 6=l

Cpair(Uk,Ul; M)

 + Cnode N 2,
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where N 2 is the average number of nodes of the backbone deployed in the domain D of size
L × L . Here E denotes the average cost over the spatial distributions of users and backbone
nodes, that is over the realizations of 5 and M . Since M and 5 are supposed independently
distributed, we may compute this average successively with respect to M and 5. The total cost,
averaged only over 5, can be decomposed as follows:

E

∑
k 6=l

Cpair(Uk,Ul; M)

 =

∫
Cpair(u, v; M) f (u) f (v) du dv

=

∑
k

∫
Dk×Dk

{C(‖u − Xk‖)+ C(‖v− Xk‖)} f (u) f (v) du dv

+
∑
k 6=l

∫
Dk×Dl

{
C(‖u − Xk‖)+ C(‖v− X l‖)

+Chop(k, l; M)
}

f (u) f (v) du dv

=

∑
k

∑
l

∫
Dk×Dl

{C(‖u − Xk‖)+ C(‖v− X l‖)} f (u) f (v) du dv

+
∑
k 6=l

∫
Dk×Dl

Chop(k, l; M) f (u) f (v) du dv.

As we can see from the last expression, the total cost C can be separated into three terms:

C =: C loc + Cbb + Cnode, (10)

where C loc takes into account all connections from one client to the closest backbone node, Cbb

all connections from one backbone node to another, and Cnode is the cost of node equipment.
The explicit models that we will study will allow us to compare the behavior of these different
terms and thus to understand how QKD network backbone topologies can be optimized.

3.6. Cost calculations for two explicit quantum backbone models

3.6.1. Cost of the square backbone QKD network.

Network model. We consider, as a first simple example, the case of a QKD backbone network
that has a perfectly regular topology, and for which the shortest path length between two
backbone nodes is easily determined.

The architecture we consider is the following: users are distributed as previously over a
large area D of size L × L and the backbone QKD network is a regular graph of degree 4, i.e.
the backbone QKD nodes and links constitute a square network. The structure of the square
backbone QKD network and the way a call is routed is summarized in figure 4. The free
parameter with respect to which we will perform the cost optimization is the size of backbone
cells αbb. We will also make the assumption that the user density function f is uniform over D.
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L

L

l

l

B

A

NA

NB

Figure 4. Structure of a 2D regular square backbone network: a regular array
of cells of dimension αbb spans a region of size L × L . The user distribution is
described by a random point process. In each cell, a central node collects all
the local traffic. Every user in the cell is thus connected via a QKD link to the
central node of its cell. On top of this array of cells, a backbone network connects
first-neighbor QKD nodes with a QKD trunk. Traffic on the backbone network is
routed through the shortest path. The dotted blue line describes the path followed
for the communication between two users A and B (see text for more details).

Computation of Cbb for the square network. We set Xk = kαbb and Dk = Xk +αbb

[−1/2, 1/2]2 with k ∈ Z2 and, for all k 6= l,

Chop(k, l; M)= ‖k − l‖1 C(αbb).

Here, ‖k − l‖1 corresponds to the number of hops between Xk and X l and C(αbb) to the per-bit
cost of one hop.

Calling µi the average number of QKD users in a backbone cell i , we have:

Cbb
= V

∑
k 6=l

µkµl Chop(k, l; M). (11)

Hence,

Cbb
= V C(αbb)µ

T0µ,

where µ is the column vector with entries µk , k ∈ Z2, and 0 is the Toeplitz array indexed on Z2

with entries 0k,l =‖k − l‖1.
Since the density of users f is constant and equal to σ on its support D, where D :=⋃

k∈{0,...,N−1}2 Dk , µk is the same for all cells Dk: µk = µ/N 2, with N 2 denoting the total number
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of backbone cells, and µ= (L/αu)
2 the mean number of users over D (see equation (4)). Hence,

we find

Cbb
= V C(αbb) µ

2/N 4
∑

k,l∈{0,...,N−1}2

‖k − l‖1.

Now, we compute ∑
k,l∈{0,...,N−1}2

‖k − l‖1 =

N−1∑
k1,l1=0

N−1∑
k2,l2=0

2∑
i=1

|ki − li |

= 2
N−1∑

k1,l1=0

N−1∑
k2,l2=0

|k1 − l1| = 2 N 2
N−1∑
k,l=0

|k − l|

= 4 N 2
N−1∑
k=0

∑
l<k

|k − l| = 4 N 2
N−1∑
k=0

∑
l<k

|k − l|

∼
2

3
N 5,

where the asymptotic equivalence holds as N → ∞. Using N ∼ L/αbb and equation (4), we
obtain, as N → ∞,

Cbb
∼ V

µ2

N 4
C(αbb)

2

3
N 5

=
2

3

C(αbbα
4
u)

αbb
L5 V =

2

3

C(αbb)

αbb
µ2V L . (12)

In the latter expression, we have four multiplicative terms:

1. 2/3, a constant depending only on the dimension and the geometry of the backbone
network (for a cube of dimension d, we could generalize our calculation and would find
d/3);

2. C(αbb)/αbb, a cost function depending only on the distance αbb between the nodes of the
backbone;

3. µ2 V , the square of the mean number of users times the volume of call per pair of users,
i.e. in our communication model, the total volume of the communications over which the
total cost is computed;

4. L , the size of the support of f, that is of the domain where the users lie.

To understand better the derived expression for Cbb, it is interesting to compare it with C loc

and Cnode. Indeed, we can show that C loc
' µ2 C , where C stands for the per-bit cost function C

averaged over one cell. In the case of the square network with αbb ×αbb square cells, these cells
are contained between two circles of radius αbb/2 and αbb

√
2/2< αbb. Since C is an increasing

function of distance we have C < C(αbb), and we can thus derive the important following
property: In the limit of large networks, i.e. for L � αbb, the backbone cost is dominant
over the local cost. We will see in the following section that this property is preserved for a
backbone with randomly positioned nodes and an appropriate routing policy. Furthermore, we
will see that for large L , the backbone node equipment cost Cnode is negligible. Therefore, to
optimize the cost (equation (10)), we only need to minimize Cbb. Assuming a square regular
backbone, this means choosing αbb so as to minimize C(αbb)/αbb, exactly as in the case of the
linear chain QKD network model of section 3.2.
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Hence, if we take C(`)=
CQKD

R0
e `/λQKD , the cost is minimized for

α
opt
bb = λQKD. (13)

3.6.2. Cost calculation for a stochastic QBB with Markov-path routing. We now compute C loc

and Cbb in the case where the routing policy is the so called Markov path, as proposed in [25],
where some general formulae are given for computing average costs in a general framework
(see also [24]). The routing policy is defined as follows. First, all pairs of nodes whose cells
share a common edge are connected. The corresponding graph is a Delaunay graph. Next, given
two users A and B with respective positions u and v, we define a finite sequence of the nodes
Xk0, Xk1, . . . , Xkn in the successive cells encountered when drawing a line from u to v. This
routing policy is illustrated in figure 3.

By definition, Xk0 and Xkn are the centers of the cells containing u and v, respectively, and

C loc
= V ×

∫
D×D
E

[
C(‖u − Xk0 ‖)+ C(‖v− Xkn ‖)

]
f (u) f (v) du dv

= Vµ2κ loc, (14)

where µ :=
∫

f is the average total number of users and, by stationarity of the point process M ,

κ loc
= E

[
C(‖u − Xk0‖)

]
+E

[
C(‖v− Xkn‖)

]
= 2E [C(‖X0‖)]

with X0 defined as the center of the cell containing the origin. Note that κ loc denotes the average
local cost per secret bit and per pair of users. If M is a Poisson point process with intensity α−2

bb ,
we further have

P(‖X0‖> t)= P(#{Xk : ‖Xk‖6 t} = 0)= exp(−π t2α−2
bb ),

and hence

κ loc
= 4πα−2

bb

∫
R+

C(t) t exp(−π t2α−2
bb ) dt = 4π

∫
R+

C(αbbu)u exp(−πu2) du. (15)

For Cbb, we can write

Cbb
= V ×

∫
D×D
E

[
n∑

i=1

C(‖Xki − Xki−1 ‖)

]
f (u) f (v) du dv.

Applying [25, theorem 2] or the results (in particular theorem 2.41 and remark 2.4.2) in section
2.4 of [24] (as done in corollaries 2.5.1 and 2.5.2 in [24]), we obtain

E

[
n∑

i=1

C(‖Xki − Xki−1‖)

]
= κbb

‖u − v‖,
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where

κbb := 2α−1
bb

∫
(r,ψ,φ)∈A

C (2αbbr sin({ψ −φ}/2)) {cos(φ)− cos(ψ)} r 2 e−π r2
dψ dφ dr, (16)

and A= R+ × {(ψ, φ) : 0< |φ|6 ψ < π}. Finally, we find that

Cbb
= V κbb δ, (17)

where δ is the average total distance between two different users defined in equation (7) and
computed in equation (8), and κbb denotes the average backbone cost per secret bit and per
length unit of the distance separating a pair of users.

From equations (10), (14) and (17), and observing that here the average total number of
backbone cells N 2

= (L/αbb)
2, we find

C =: C loc + Cbb + Cnode
= V ×

[
µ2κ loc + δκbb

]
+ Cnode(L/αbb)

2, (18)

where µ2 and δ are related to the spatial distribution of the users, and κ loc and κbb are constants
related to the geometry of the backbone and to the routing policy. For users uniformly distributed
in a square of side length L with intensity α−2

u , we have µ2
' (L/αu)

4 and δ ' L5/α4
u .

Using (15), (16), (18) and the above approximations of µ2 and δ, we see that the total cost
C only depends on L , αu and αbb. Now, for given αu and L , we take αbb so that C is minimized
and examine which term in the right-hand side of (18) dominates the total cost C as L → ∞

in this context. To this end, we first study each term separately. We let c denote a constant not
depending on L , αbb in the following reasoning. Observe that since C is convex and increasing,
C(`)> c × `. Using this in (15) and in (16), we get C loc > c αbbL4 and Cbb > c L5, respectively.
Concerning the last term, we have Cnode

≈ c L2/α2
bb. It follows that at fixed L , C loc

→ ∞ as
αbb → ∞ and Cnode

→ ∞ as αbb → 0, from which we can deduce that the optimal αbb stays
away of 0 and ∞. Now, clearly, if αbb stays away from 0 and ∞, the above bounds show
that Cbb dominates as L → ∞. Hence, for large L , the optimal intensity αbb is the one that
minimizes Cbb or, equivalently, κbb. To find this optimal intensity, the following result is useful
for an exponential cost C(`)=

CQKD

R0
e`/λQKD:

Lemma 3.1 Define κbb as in equation (16) with C(`)=
CQKD

R0
e`/λQKD . Then the following

analytical formula holds:

κbb
= CQKD R−1

0 λ−1
QKD

4

π

[
eα

2
bb/(πλ

2
QKD){1 + erf(αbb/(

√
πλQKD))} + λQKD/αbb

]
,

where

erf(x)=
2

√
π

∫ x

0
e−t2

dt.

Proof. Let s = λQKD/αbb. We have∫
(r,ψ,φ)∈A

exp
(
2s−1r sin({ψ −φ}/2)

)
{cos(φ)− cos(ψ)} r 2 e−π r2

dψ dφ dr

= 8
∫ π/2

v=0

∫
∞

r=0
exp(2s−1r sin(v)−πr 2) r 2 sin(v) dv dr.
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Integrating with respect to r yields

κbb
= CQKD R−1

0 λ−1
QKD

[
2

π
+

4s

π

∫ π/2

v=0
sin(v){1 + 2 sin2(v)/(πs2)}

× exp(sin2(v)/(πs2))(1 + erf(sin(v)/(
√
πs) dv

]
.

Further computations yield

κbb
= CQKD R−1

0 λ−1
QKD

4

π

[
e1/(πs2)

{1 + erf(1/(s
√
π))} + s

]
,

which is the desired expression. ut

Using lemma 3.1, the αbb minimizing κbb, denoted as αopt
bb below, can easily be calculated

using a numerical procedure. We find

α
opt
bb ≈ 1.2490 λQKD. (19)

This result should be compared with the result of equation (13), where the backbone geometry
is deterministic and also characterized by the node intensity 1/α2

bb. These two results show that
the choice of the backbone and routing policy does influence the optimal node intensity, albeit
in a modest way.

3.7. From cost optimization results to QKD network planning

3.7.1. Matching QKD network topology with QKD links optimum working distance. The
calculations in sections 3.6.1 and 3.6.2 point to one common result: it appears that, for large
networks, the costs associated with the QKD devices that have to be deployed in backbone
nodes to serve the demand are always dominant over the local costs, associated with the end
connections between QKD users and backbone nodes.

Moreover, the optimization of backbone costs indicates that minimum cost will be reached
when the typical distance between backbone nodes is of the order of λQKD, the scaling parameter
of the curve R(l).

These results lead to the following statements:

• When a QKD network deployment is planned, is seems optimal to choose the location
of network nodes so that QKD links will be operated over distances comparable with the
optimal distance `opt. As we have seen in our different models, `opt is always lower bounded
by a prefactor times λQKD. Indeed, when the total cost of node equipment can be neglected
compared with the cost of QKD devices, as it is the case for large networks, then the
optimum distance `opt is indeed comparable with λQKD, which is roughly equal to 20 km.
This indicates that current QKD technologies, for which Dmax is already significantly larger
than 20 km, are well suited for metropolitan operation. On the other hand, the typical
distance between amplifiers, in optical wide area networks, is of the order of 80 km. If
we wanted to deploy trusted QKD networks with the current generation of QKD devices,
the QKD links would have to be operated close to their maximum distance, where the
unit of secret bit rate becomes very expensive. Although technically already feasible, the
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deployment of wide area QKD networks thus remains a challenge. We can, however,
anticipate that this challenge will be overcome within the next years, as new generations of
QKD protocols and devices, able to generate keys at higher rates, and with larger maximum
distances are already being presented [26]–[28].

• The results on cost minimization that we have obtained could provide some helpful
guidelines for QKD device developers: they may help promoting the idea that what
will really matter, in the perspective of real network deployment, will be to focus on
the optimization of their systems around typical network-optimum working distances.
Optimizing QKD devices in this regime means reducing the cost of a unit bit rate at a
reasonable distance, where the throughput of the QKD link is not considerably smaller
than R0. It will be of course always profitable to design QKD devices that can reach very
long distances, but as discussed in [29], from a system development point of view it can
be significantly different to optimize QKD devices to reach the longest possible distance
Dmax, and to optimize them so that the cost of unit of bit rate is as low as possible, around
the distance `opt minimizing network costs.

3.7.2. In which regime are backbones useful?. We would like now to use our calculation
results to analyze in which regime QKD backbones become economically interesting, i.e. under
which conditions it is interesting to introduce some hierarchy and resource mutualization in
QKD networks, in order to decrease the total deployment cost.

In the previous sections, we have performed cost calculations that can be used to establish
some quantitative comparisons between:

• The cost of a QKD network with no hierarchy as in the generalized linear chain QKD
network, whose cost calculations have been performed in section 3.4.

• The cost of a QKD network with one level of hierarchy, which is the case of the square
backbone QKD network studied in section 3.6.1.

Since these two cost calculations have been performed under the same assumptions
regarding user distribution and traffic demand, we can use the results given in equations (6)
and (12) to compare the total network deployment costs, respectively, for the generalized linear
chain model and for a QKD network with a square backbone (for which we have seen that we
could neglect the cost of the local access network).

The condition under which it will be more cost effective to deploy a quantum backbone
than to connect all pair of users by 1D chains of QKD links can be described by the following
inequality between the respective optimal costs:

Copt,chain
2D,chain > C

opt,square
2D,square ⇔

(
V C(`opt)/`opt + Cnode/`

opt
)
γ σ 2L5

>
2

3
C(αopt

bb )/α
opt
bb σ

2L5 V + Cnode L2/α
opt
bb

2
. (20)

The above equation is not very convenient to handle because in general αopt
bb 6= `opt.

However,

Copt,chain
2D,chain > C

opt,square
2D,square ⇒ Copt,square

2D,chain > C
opt,square
2D,square . (21)
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Thus, we can derive a necessary condition under which the deployment of a backbone for a
QKD network is a better solution than a design that would solely rely on the generalized linear
chain of QKD links to transport the traffic:

Copt,square
2D,chain > C

opt,square
2D,square ⇔ Cnode (σ

2L3α
opt
bb γ − 1) > C(αopt

bb )V σ
2L3α

opt
bb

(
2

3
− γ

)
⇔ Cnode (σ

2/σ ∗2
− 1) > C(αopt

bb ) V σ 2/σ ∗2

(
2

3γ
− 1

)
(22)

with σ ∗
= 1/

√
L3α

opt
bb γ .

Keeping in mind that 2
3γ − 1 is a positive number, we can use the last inequality to make

the following observations:

• First, it appears that, if the user density σ is smaller than σ ∗, which we can qualify as a
critical user density, then equation (22) can never be verified. This means that below σ ∗

it will never be interesting to deploy a backbone. This result has a clear interpretation:
backbone infrastructures can only be interesting in the case where sharing resources offers
a cost reduction. And the incentive to share a backbone infrastructure can only exist if there
are enough users. The minimum total number of users required to have a cost incentive

toward backbone deployment is σ ∗L2
=

√
L/(γ αopt

bb ).

• In the case that σ is larger than the critical user density σ ∗, we enter a regime where there
will be an incentive to deploy a quantum backbone essentially if the cost of a node Cnode

dominates over the cost of QKD link equipment to be deployed, which scales as C(αopt
bb )V .

This also has a clear interpretation: if we take the extreme case where building a node (and
installing node equipment inside it) is zero, we can foresee that there will be no incentive
to build a backbone: it will always be cheaper to deploy direct chains between each pair
of users. The motivation to build a backbone arises when efforts associated with opening
a QKD node are important. This will of course be the case if QKD node equipment is
expensive, as we can see from equation (22), but it is also intuitive that, in case significant
efforts are required to build new QKD nodes, mutualization of nodes through a backbone
structure will be a cost effective solution.

4. Conclusion and perspectives

In this paper, we performed a topological analysis of QKD networks with trusted repeater
nodes. In particular, under specific assumptions on the user and node distributions as well as
the call traffic and routing in such networks, we derived cost functions for different network
architectures. We first considered a linear chain network as a basic model that served the purpose
of illustrating the main techniques and ideas that we used, and then moved on to more advanced
network configurations that were in some cases enhanced with a backbone structure. Using cost
minimization arguments, we obtained results on the optimal working points of QKD links and
spatial distribution of QKD nodes, and examined the importance of introducing hierarchy into
QKD networks.
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Our results indicate that, in the context of QKD networks, it is more cost-effective and
therefore advantageous to operate individual QKD links at their optimal working point, which
is in general significantly shorter than the maximum span of such links. This conclusion
motivates research into new experimental compromises in practical QKD systems, and can
be illustrated by considering examples of such systems where the characteristics of either
a hardware component (for example a single-photon detector) or a software algorithm (for
example a reconciliation code) can be experimentally manipulated as a function of distance [29].

In general, it is clear that, as the realization of more and more advanced QKD networks
approaches the realm of actual deployment, it becomes necessary to orient the research on QKD
devices and links toward cost-related directions, and extend the techniques we have presented
here to more sophisticated network technologies and architectures.
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