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Abstract. We have implemented an optical quantum eraser with the aim of
studying this phenomenon in the context of state discrimination. An interfering
single photon is entangled with another one serving as a which-path marker.
As a consequence, the visibility of the interference as well as the which-path
information are constrained by the overlap (measured by the inner product)
between the which-path marker states, which in a more general situation are non-
orthogonal. In order to perform which-path or quantum eraser measurements
while analysing non-orthogonal states, we resort to a probabilistic method for
the unambiguous modification of the inner product between the two states of the
which-path marker in a discrimination-like process.
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1. Introduction

The principle of complementarity states that quantum systems have properties that are real
but mutually exclusive [1]. A classic example of this is the so-called wave–particle duality
where wave-like and particle-like behaviours of a quantum system cannot be perfectly and
simultaneously observed in a single experiment2. The Young’s double-slit experiment is
perhaps the simplest physical realization that displays wave–particle duality and illustrates
complementarity: if one measures the path (slit) taken by the particle with certainty, the
interference is completely destroyed. Einstein tried to circumvent this statement by introducing
the classic recoiling slit gedanken experiment: the position of the particle in a far screen and
the momentum that it transfers to the double slit would be measured such that interference and
which-path would be retrieved. However, resorting to the uncertainty principle formulated by
Heisenberg [2], Bohr refuted Einstein’s idea, showing that an uncontrollable momentum transfer
in the which-path measurement would wash out the interference [3]3.

The role of entanglement in wave–particle duality came later and was first discussed by
Wootters and Zurek [15] when analysing Einstein’s gedanken experiment. After this, Scully
and Drühl [16], Scully and Walther [17] and Scully et al [18] reinforced this idea showing that,
in some circumstances, the entanglement between interfering particles and the measurement
device (which is a quantum system) is the reason for the loss of interference, and not the

2 Complementarity is not limited to wave- and particle-like properties of a quantum system. Any set of maximally
incompatible observables, as for instance the three Pauli operators, satisfy the statement of our first sentence.
3 The connections of the uncertainty principle to the concept of complementarity have been an active focus
of research. The interpretation of the uncertainty inequality derived by Kennard [4], as posing a lower bound
for the products of experimental errors or inaccuracies along a simultaneous measurement of non-conmuting
observables [5], has been studied by several authors [6]–[10]. It has been argued by Appleby [11] that the
quantities entering into the Heisenberg inequality cannot be interpreted as experimental errors since they are
intrinsic properties of quantum states and do not involve extrinsic properties such as the state of the measuring
device. This has led to the discovery of other classes of inequalities [11]–[13] in an attempt to capture the essence
of Heisenberg’s principle. Also, the link between complementarity and uncertainty relations beyond the classic
example of wave–particle duality is addressed by Björk et al [14].

New Journal of Physics 11 (2009) 073035 (http://www.njp.org/)

http://www.njp.org/


3

uncertainty principle4. The states of the device serve as which-path markers (WPM) of the
possible paths of the interfering particle, and if they are orthogonal, the interference is destroyed
even if they are not measured. However, they have shown that this which-path information
(WPI) can be ‘erased’ and interference can be recovered by correlating measurements on the
interfering particle with suitable measurements on the WPM. This phenomenon is referred to
as a quantum eraser [16]–[18], and has been the subject of intensive research in the last three
decades (for a nice review see [23]).

Quantum erasers have previously been experimentally demonstrated for different physical
systems, as for example, atoms [24, 25], nuclear magnetic resonance [26, 27] and many optical
implementations employing two-photon states from spontaneous parametric down-conversion
(SPDC) [28]–[34]. A common feature of these optical realizations is the use of von Neumann
measurements to obtain WPI. Furthermore, with the exception of [31], these experiments
employ maximally entangled states among the interfering photon and the WPM.

In this article we report the implementation of an optical quantum eraser with the aim
of studying this phenomenon in the context of state discrimination. Here a photon pair is
produced by SPDC in a polarization-entangled state and one photon of the pair is sent through
a double slit. A single-photon interference pattern is observed at the far field, independent
of the polarization state of the pair. In order to introduce WPI, a quarter-wave plate (QWP)
is placed behind each slit with their fast axes orthogonally oriented (see figure 1(b)). This
birefringent double slit couples the polarization and spatial degrees of freedom of the interfering
photon, and thanks to the initial polarization entanglement the WPI becomes available in the
polarization of both photons. Until this point there is a clear resemblance with the setup reported
in [32]. However, the main distinguishing characteristics of our experiment are as follows.
Firstly, we start with polarization-entangled states with an arbitrary degree of entanglement,
which can make the WPM be non-orthogonal states. Secondly, we place a suitable polarization
projector right after the birefringent double slit, which makes the WPI be carried just by the
spatially separated photon. In [32], the WPI is carried into two orthogonal maximally entangled
polarization states and hence it can be erased by a suitable projection of the polarization of
any photon of the pair, either the spatially separated photon or the interfering photon itself.
Finally, we use a polarization-sensitive Mach–Zehnder interferometer to manipulate locally
and probabilistically the inner product of the WPM states, rather than resorting to polarization
projections. With this setup, the measurement of WPI or quantum erasure is closely related to
the problem of discriminating among non-orthogonal states. The use of the interferometer will
allow us to map, probabilistically, the initial states of the WPM onto pairs of states with any
desired inner product at one of the output ports. Thus, it is possible, for instance, to map initial
non-orthogonal states onto orthogonal ones to obtain complete WPI, or onto collinear states to
restore maximum interference. Finally, it is important to note that all the key ingredients for an
optimal demonstration of a quantum eraser [37] are present: (i) possibility of delayed choice,
i.e. analysis of the WPM is carried out after the interfering particle has been detected [35, 36],

4 The result of Scully et al has not closed the debate about which mechanism enforces complementarity: Storey
et al [19] showed that the uncertainty principle is always relevant since there is a momentum transfer in any which-
path measurement. On the other hand, Wiseman and Harrison [20] pointed out that each side in the debate was using
a different definition of momentum transfer, which caused the disagreement between their results. However, when
considering the case of classical momentum transfer, both results agreed. The results of [20] have been recently
demonstrated in an experiment by Mir et al [21]. Alternatively, Luis and Sánchez-Soto [22] have explained the
complementarity as enforced by random classical phase shifts rather than classical momentum transfer.
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Figure 1. Scheme of the experimental setup (see details in the text). HWP, half-
wave plate; QWP, quarter-wave plate; DS, double slit; POL, linear polarizer;
PBS, polarizing beam splitter; PS, phase shifter; IF, interference filter; D j ( j =

s, 1, 2), single-photon detectors; C, single and coincidence counter. (a) State
generation and state preparation stage; (b) back view of the double slit with
QWPs, (c) polarization-sensitive Mach–Zehnder interferometer and (d) detection
stage.

(ii) the setup employs single particles and (iii) the WPI is carried by a spatially separated system
from the interfering particle.

This paper is organized as follows. In section 2, we describe the experimental setup and
the theory behind our implementation of the quantum eraser. In section 3, we present the
experimental results and we conclude in section 4.

2. Experimental setup and theory

The experimental setup is sketched in figure 1. A 351.1 nm single-mode Ar+-ion laser pumps
with 150 mW two 0.5 mm thick β-barium borate (BBO) nonlinear crystals cut for type-I phase
matching and with their optical axes oriented at 90◦ with respect to each other. Pairs of photons,
usually called signal (s) and idler (i), are generated by SPDC at an angle of 3◦ with the pump
beam and those with the same wavelength of 702.2 nm are selected by 10.0 nm bandwidth
interference filters centred at this wavelength and placed in front of the photodetectors. The
two-photon state generated by this setup is given by [38]

|9〉 = (a|H〉s|H〉i + b|V 〉s|V 〉i)⊗ |9spa〉, (1)

where H (V ) denotes horizontal (vertical) polarization, |a|
2 + |b|

2
= 1 and |9spa〉 describes the

spatial part of the two-photon state, which will be discussed later. The amplitude and phase of
a and b can be controlled by manipulating a half-wave plate (HWP) and a QWP placed in the
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pump beam (figure 1(a)). For our future purposes the state in equation (1) can be cast in the
following form:

|9〉 =
1

√
2
(|+〉s|α+〉i + |−〉s|α−〉i)⊗ |9spa〉, (2)

where

|±〉s =
1

√
2
(|H〉s ± |V 〉s), (3)

|α±〉i = a|H〉i ± b|V 〉i, (4)

and the inner product of the later states is

i〈α+|α−〉i = |a|
2
− |b|

2
≡ α, (5)

which turns out to be real.

2.1. Observing single-photon interference

After the photon pair has been generated, the signal photon is directed through a double slit
placed 26 cm from the crystals. The spatial mode of the idler photon is defined by pinholes
(1.5 mm diameter) placed along its path. In order to observe single-photon interference, one of
the basic requirements for a quantum eraser experiment [37], the pump beam is focused into
the BBO crystals using a 15 cm focal length lens (see figure 1(a)). This procedure increases the
transverse coherence length of the signal photon at the double-slit plane [39]. The spatial part
of the two-photon state right after the double-slit can then be written as

|9spa〉 =
1

√
2
(|ψ1〉s + eiφ

|ψ2〉s)⊗ |ξ〉i, (6)

where |ξ〉 is the spatial mode of the idler photon defined by the pinholes; |ψ j〉 is associated
with the transmission of the signal photon through the slit j = 1, 2, and it is proportional to∫

dq e(−1) j iqd/2sinc(ql)|q〉 [40] (|q〉 is a single-photon state with the transverse component of
the wave vector equal to q; l and d are defined below). The phase φ between the two possible
paths can be set, for instance, by tilting the double slit. Using equations (2) and (6) the total
two-photon state is written (without normalization) as

|9〉 =

∑
m=±

(
|ψ1,m〉s + eiφ

|ψ2,m〉s

)
|ξ, αm〉i. (7)

To show that (6) is in fact the spatial part of the two-photon state and that it is independent
of the polarization degree of freedom, we measure the coincidence and single count rates in
the far field by scanning a ‘pointlike’ detector at the signal arm and detecting the idler with
a ‘bucket’ detector, i.e. a detector that does not register where the photon has arrived. The
measurements are done without analysing their polarization. This corresponds to tracing out
the polarization of both photons (coincidences) or the idler photon and the signal polarization
(single counts). In both cases the detection probability is [40]

I (x)∝ sinc2(klx/z)[1 + cos(kdx/z +φ)], (8)

which is a typical double-slit interference pattern. k is the pump wave number, l is the slit half
width (40µm), d is the slit centre-to-centre separation (280µm), x is the transverse position of
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the signal detector and z is the distance from the double slit to the detector (in this experiment
z is actually the focal length of a lens). The basic setup is shown in figure 1(a), but in this case
there is neither a QWP behind the double slit nor a polarization projector (QWP + polarizer) after
that. Also, the idler is sent directly to a detector without passing through the interferometer. Both
detectors are placed in the focal plane of a 30 cm focal length lens. In front of the signal detector
there is a 50µm × 5 mm slit oriented parallel to the double slit while at the idler detector there
is a 3 mm pinhole.

We prepare a maximally and a non-maximally entangled polarization state and characterize
them by quantum state tomography [41]. The purities obtained were higher than 95%, which
allowed us to consider the two-photon polarization state to be essentially pure and given by
equation (1). In these measurements, we set φ in (8) to be zero. For the maximally entangled
state, the inner product of {|α±〉i} (see equation (5)) is α = 0.02 ± 0.01 and the results for the
singles and coincidences are shown in figure 2(a). For the non-maximally entangled state we
obtain α = 0.70 ± 0.03 and the results are shown in figure 2(b). The less-than-one visibilities
are due to the finite size of the signal detector and the finite size of the source, which makes the
degree of transverse coherence differ from unity. Nevertheless, it is clear from these graphics
that the spatial part of the two-photon state is well described by equation (6) and that there is no
coupling with the polarization degree of freedom.

2.2. Introducing which-path information

At this point there is no WPI available yet. In order to introduce it we place a QWP behind
each slit with their fast axes orthogonally oriented as shown in figure 1(b). The action of these
wave plates couples the polarization and spatial degrees of freedom of the signal photon and
transforms the two-photon state given by equation (7) into

|9〉 =
(
|ψ1〉s|α+〉i + eiφ

|ψ2〉s|α−〉i

)
|ξ〉i|L〉s +

(
|ψ1〉s|α−〉i + eiφ

|ψ2〉s|α+〉i

)
|ξ〉i|R〉s, (9)

where L and R represent left and right circular polarizations, respectively. This state already
carries WPI in the two-photon polarization state due to the initial polarization entanglement,
which has been shown in [32]. Now, we will see how the spatial interference pattern is affected.
After tracing out the polarization or the idler in (9), the coincidence or single counts detection
probability will be given by

I (x)∝ sinc2(klx/z)[1 +α cos(kdx/z +φ)]. (10)

Comparing with equation (8) one can see that the visibility that was one in that case is now
governed by the absolute value of the inner product, α, of the WPM states given by (5). The
phase of this pattern depends on the sign of α.

Using the same states we made the same set of measurements described previously. For the
initial maximally entangled polarization state the results are shown in figure 2(c). As the WPM
states are (ideally) orthogonal the interference observed in figure 2(a) is destroyed. The residual
visibility observed in this case (0.09 ± 0.03) is due to the non-perfect alignment of the wave
plates behind the slits, which produces states {|α±〉} non-exactly orthogonal. For the initial non-
maximally entangled state, the WPM states are non-orthogonal and the visibility of the pattern
observed in figure 2(b) is reduced to a degree that depends on their inner product. In this case
α = 0.70 ± 0.03, and as shown in figure 2(d) the visibility is 0.72 ± 0.04, which agrees well
with the inner product within experimental error.
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Figure 2. Signal count rates and coincidences (•) in the far field for a double
slit without QWPs ((a) and (b)) and with QWPs ((c) and (d)). In (a) and (c) the
entanglement in polarization is maximal while it is non-maximal in (b) and (d).
The solid lines for the singles are just a guide while for the coincidences they are
theoretical fits obtained from equation (10) using normalization and the visibility
(shown in the insets) as free parameters. The visibilities of the singles are the
same when the background noise is subtracted. Different count rates resulted
from the losses due to the wave plates and the non-identical alignment in the
two cases.

Some of the basic requirements for an optimal demonstration of a quantum eraser have
been fulfilled, that is, we have single-photon interference and can imprint WPI, which can be
either used to detect which-path or erased to restore interference. However, as stressed in [37]
it is pedagogically preferable that the WPI be carried separately from the interfering particle.
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This is not the case for the state in equation (9). To satisfy this condition we must make a further
projection of the signal polarization right after its transmission through the birefringent double
slit. Projecting, for example, onto L the two-photon state in (9) becomes

|9〉 =
1

√
N

(
|ψ1〉s|α+〉i + eiφ

|ψ2〉s|α−〉i

)
, (11)

where N = 2[1 + Re(eiφα〈ψ1|ψ2〉)] is a normalization constant. In this expression, we have
omitted the factorable polarization (spatial) state of the signal (idler) photon to stress that the
interfering particle (signal) and the WPM (idler) are non-locally correlated. This projection just
forces the entanglement between signal spatial degree of freedom and idler polarization, and
in this sense works as a disentanglement eraser [42]. Besides the pedagogical appeal, working
with this state will allow us to manipulate locally the state of the WPM and study the quantum
eraser in the context of state discrimination.

2.3. Which-path and quantum eraser measurements

In order to make which-path or quantum eraser measurements, the WPM must be projected
onto a suitable state and its detection should be correlated to the detection of the interfering
particle, which in our case is done through coincidence measurements. From equation (11) one
can see that when the entanglement among these systems is maximal, WPI can be retrieved
by measuring an observable spanned by the orthogonal states {|α±〉i}. In this case, the signal
count rate conditioned upon the detection of the idler does not exhibit interference. Actually,
as a consequence of the entanglement the interference is destroyed even when the WPM is
not detected or is detected by a polarization-insensitive measurement, as shown in figures 2(a)
and (c). On the other hand, WPI can be erased and interference restored by measuring
an observable whose eigenstates have equal components on the states {|α±〉i} and then
correlating the results to the detection of the interfering particle. For instance, when the idler is
projected onto the symmetric (|α+〉i + |α−〉i)/

√
2 or antisymmetric (|α+〉i − |α−〉i)/

√
2 state and

its detection is correlated to the detection of the signal photon, interference is restored in the
form of fringes or antifringes, respectively.

A more general situation corresponds to non-maximal entanglement in (11), or equivalently
to a WPM described by two non-orthogonal states. In this case, WPI will be partial, which
reduces the visibility of the interference pattern as can be seen in equation (10) and in
figures 2(b) and (d). This partial WPI can be erased in the same way as in the case of a maximally
entangled state. However, the intensity of each pattern will be modulated by |a|

2 (fringes) and
|b|

2 (antifringes). The retrieval of WPI in this case is a more delicate matter. Non-orthogonal
states cannot be perfect and deterministically discriminated [43] since the eigenstates of any
observable acting on the Hilbert space have non-vanishing components on both states {|α±〉i}.
The best strategy of error-free identification turns out to be of probabilistic nature and considers
the possibility of an inconclusive identification [44, 45].

2.4. Controlling the which-path marker

For arbitrary states of the WPM we can resort to a probabilistic method for the unambiguous
modification of their inner product. In our experiment this is done by using a polarization-
sensitive Mach–Zehnder interferometer depicted in figure 1(c). The first polarizing beam splitter
(PBS) splits the input beam into two propagation paths (H polarization is transmitted and V is
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reflected). In each path an HWP rotates the polarization depending on its angle (γ1 and γ2), and
the paths are then recombined at a second PBS. To understand the role of the interferometer onto
the WPM states, let us suppose that a single photon in the state |α±〉 (equation (4)) enters through
the upper port as indicated in figure 1(c). Assuming that the pathlength difference between the
two arms is zero, the following unitary transformation, UI, is performed:

UI|α±〉 = N1|α
(1)
± 〉 − iN2|α

(2)
± 〉, (12)

where

|α
(1)
± 〉=

1
√

N1

[
a cos(2γ1)|H〉 ± b cos(2γ2)|V 〉

]
|1〉, (13)

|α
(2)
± 〉=

1
√

N2

[
a sin(2γ1)|V 〉 ± b sin(2γ2)|H〉

]
|2〉. (14)

|1〉 and |2〉 indicate the output ports 1 and 2, respectively, and N1 and N2 are the probabilities
that an input photon will exit through the respective port. They are given by

N1 = |a|
2 cos2(2γ1)+ |b|

2 cos2(2γ2), (15)

N2 = |a|
2 sin2(2γ1)+ |b|

2 sin2(2γ2). (16)

The two-photon state in equation (11) when the idler goes through this interferometer is
obtained by applying the transformation UI onto |9〉, which gives

UI|9〉 =

√
N1 M1

N
|81〉 − i

√
N2 M2

N
|82〉, (17)

where the orthogonal two-photon states |8 j〉 (for j = 1, 2) are

|8 j〉 =
1√
M j

(
|ψ1〉s|α

( j)
+ 〉i + eiφ

|ψ2〉s|α
( j)
− 〉i

)
, (18)

with M j = 2[1 + Re(eiφ
〈ψ1|ψ2〉〈α

( j)
+ |α

( j)
− 〉)]. The transformation implemented by the interfer-

ometer maps the initial states of the WPM whose inner product is given by equation (4) onto
states in each output port with the inner products, 〈α

( j)
+ |α

( j)
− 〉, given by

α(1)(9pol, γ1, γ2)=
|a|

2 cos2(2γ1)− |b|
2 cos2(2γ2)

|a|2 cos2(2γ1)+ |b|2 cos2(2γ2)
(19)

and

α(2)(9pol, γ1, γ2)= α(1)(9pol, π/4 − γ1, π/4 − γ2), (20)

with probabilities (15) and (16), respectively (9pol denotes the initial polarization two-photon
state, through coefficients a and b. For instance, angles γ1 and γ2 can be set to transform
the initial non-orthogonal states of the WPM into orthogonal states at a given output port
with a certain probability. In this particular case, the interferometer implements the optimal
unambiguous discrimination of the states {|α±〉i} [46].

Since the action of the interferometer is unitary and local, that is, it affects only the idler
photon, the inner product of the WPM states is preserved, i.e.

α = N1α
(1)(9pol, γ1, γ2)+ N2α

(2)(9pol, γ1, γ2). (21)
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In the same way the signal detection probability in equation (10) does not change. It
is determined only by the initial polarization entanglement. However, the signal detection
probability conditioned upon the detection of the idler (without analysing its polarization) at
output ports 1 or 2 produces interference patterns, I (1)(x) or I (2)(x), respectively, which depend
on the action of the interferometer. They are given by

I ( j)(x)∝ sinc2(klx/z)[1 +α( j)(9pol, γ1, γ2) cos(kdx/z +φ)] (22)

for j = 1, 2. The weighted sum of these two conditional interference patterns gives a pattern
equal to that of equation (10), which can be seen by using equation (21).

3. Experimental results

To perform the experiment described in the previous section and sketched in figure 1, we place
a QWP followed by a linear polarizer right after the birefringent double slit to project the signal
polarization onto L and produce the state given by equation (11)5. The signal pointlike detector
is placed 20 cm from the double slit. (in this experiment the lens in the signal and idler arm
has not been used.) The idler spatial mode is selected by 1.0 mm pinholes and it goes through
the interferometer which implements the probabilistic modification of the inner product of the
WPM states. The optical path difference between the two arms, within the coherence length
of the idler photon, is adjusted by rotating a 1-mm-thick glass plate inserted in path 1 (PS in
figure 1(c)). A single-photon detector is placed at output port 1, and in front of it there is a 3 mm
pinhole. All the coincidence measurements between Ds and D1 are performed with a specific
configuration of the HWPs in the interferometer and with the signal detector scanning in the
x-direction. The measurements at output port 2 have not been done simultaneously with the
measurements at 1. We just direct the light from 2 to the same detector placed at output port 1
instead. Single and coincidence counts are registered in a counter (C) with a resolving time of
5 ns.

In the following, we show the experimental data and analyse them with the help of the
theoretical expressions of section 2. The results are shown in figures 3–6. In all graphics the
dashed lines correspond to the theoretical predictions considering the setting of angles γ1 and
γ2 of HWPs 1 and 2, respectively, together with the measured values of a and b. Here we do
not assume any correction. On the other hand, the solid lines for the visibility and probability
curves correspond to the theoretical fits using the same parameters and taking into account that
the maximal experimentally obtained visibility with the birefringent double slit was 0.9 (for a
polarization product state) while the minimum was 0.09 (see figure 2(c)). The reasons for this
are the finite size of the signal detector, the less-than-one degree of transverse coherence of
the source and mainly the non-perfect alignment of QWPs 1 and 2. We also assume a small
error in the L polarization projection, which leaves a small percentage of the component with
R polarization in the two-photon state (see equation (9)). For the interference patterns, the fits
(solid lines) were obtained by using equation (22) and taking as free parameters a normalization
constant, the visibility and a phase offset. It is clear from all figures that the fit with corrections
provides better agreement between theory and experimental results.

5 During the alignment of the birefringent double slit in this experiment we set the phase φ to be π in equation (6)
(and every subsequent equation where it appears).
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Figure 3. Experimental results (•) for an initial maximally entangled polarization
state. Coincidence counts (C.C.) were recorded by scanning the signal detector
in the x-direction and detecting idler photons at output port 1 (figure 1) keeping
γ2 = 0◦ and (a) γ1 = 0◦, (b) γ1 = 15◦, (c) γ1 = 30◦ and (d) γ1 = 45◦. (e) Erasing
WPI and restoring interference for the experiment in (a). The fringe (antifringe)
is obtained by projecting the idler photon onto |V 〉〈V | (|H〉〈H |). (f) Visibility
and probability versus HWP1 angle for measurements (a)–(d). Dashed lines
correspond to the theoretical prediction based on equation (22) for interference
patterns, (15) for probability and the absolute value of (19) for visibility. Solid
lines are the theoretical predictions with corrections described in the text.
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Figure 4. Experimental results (•) for an initial non-maximally entangled
polarization state. Coincidence counts (C.C.) were recorded by scanning the
signal detector in the x-direction and detecting idler photons at output port 1
(figure 1) keeping γ2 = 20◦ and (a) γ1 = 0◦, (b) γ1 = 10◦, (c) γ1 = 20◦, (d) γ1 =

30◦, (e) γ1 = 35◦, (f) γ1 = 40◦ and (g) γ1 = 45◦. (h) Erasing WPI and restoring
interference for the experiment in (e). The fringe (antifringe) is obtained by
projecting the idler photon onto |V 〉〈V | (|H〉〈H |). Dashed lines correspond to
the theoretical prediction based on equation (22). Solid lines are the theoretical
predictions with corrections described in the text.
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Figure 6. Interference patterns measuring the idler at output port 2 (figure 1)
keeping γ2 = 20◦ and (a) γ1 = 20◦, (b) γ1 = 35◦ and (c) γ1 = 45◦. These graphics
might be compared with those in figures 4(c), (e) and (g), respectively. Dashed
lines correspond to the theoretical prediction based on equation (22). Solid lines
are the theoretical predictions with corrections described in the text.

3.1. Orthogonal which-path marker states

Figure 3 shows the results for an initial maximally entangled polarization state. In this
experiment, the coincidences between signal and idler were measured with idler photons exiting
through output port 1 only. The angle of HWP 2 (γ2) was kept fixed at 0◦ while the angle of
HWP 1 (γ1) changed from one measurement to another. For γ1 = 0◦ the interferometer does
not act on the states of the WPM. Since in this case these states are nearly orthogonal, the
interference is nearly destroyed even when the idler polarization is traced out. This is shown in
figure 3(a), where the visibility of the pattern is 0.11 ± 0.04. Any change of γ1 will only increase
the absolute value of α(1)(9pol, γ1, γ2) (see equation (19)). Consequently, WPI decreases and
the interference starts to show up: the intermediate cases are shown in figures 3(b) and (c). The
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complete erasure of WPI and restoration of the interference with maximum visibility is reached
when γ1 = 45◦, in which case the state of the WPM is |V 〉. This is shown in figure 3(d) with
a visibility of 0.89 ± 0.04, which is close to the maximum value achievable in this setup. The
visibilities of the interference patterns as well as the probabilities that the idler exit through port
1 for the experiments of figures 3(a)–(d) are shown in figure 3(f) as a function of γ1.

For the experiment of figure 3(a), WPI can also be erased and interference restored via
polarization projection [32]. When arm 1 (2) of the interferometer is blocked, idler polarization
is projected onto V (H ), which leads to an interference pattern in the form of fringes
(antifringes), as φ = π in equation (11) (see footnote 5). The results are shown in figure 3(e).
Note that the averaged sum of these two patterns gives an interference pattern roughly equal to
that of figure 3(a).

This particular experiment is similar to that of [32], although in our case it is not
necessary to include or remove a polarizer in the idler path to access all the situations shown in
figures 3(a)–(d) and we also have access to the idler exiting through output port 2, which is not
possible by using just a polarizer. The main differences arise when the initial states of the WPM
are non-orthogonal, which will be discussed next.

3.2. Non-orthogonal which-path marker states

For this experiment, we used the same initial non-maximally entangled polarization state as
in section 2. The coefficients of this state are |a| = 0.92 and |b| = 0.38, which gives α = 0.7
(see figure 2(d)). The interference patterns (in coincidence) were obtained with the angle γ2

kept fixed at 20◦ and different values of γ1. Figure 4 shows these patterns for measurements
at output port 1 with the angles of HWP 1 shown in the insets. The graphics (a)–(e) show
interference antifringes because the inner products (equation (19)) are non-negative for the
values of parameters a, b, γ1 and γ2 while φ = π in equation (22) (see footnote 5). On the
other hand, patterns (f) and (g) exhibit fringes as a consequence of the negative values of (19)
for those values of γ1.

The theoretical behaviour of the visibility (for the used parameters) is shown in the
dashed line of figure 5(a). For γ1 6 20◦ it is greater than or equal to the initial value of 0.7
(equality holds for γ1 = γ2). As γ1 increases, the visibility decreases until it reaches zero at
γ1 = 35.6◦ and starts to increase again until 0.7 at γ1 = 41◦. Thus, in the range 20◦ < γ1 < 41◦

the interferometer maps the initial non-orthogonal states of the WPM onto states {|α
(1)
± 〉i} with

smaller absolute values of the inner product. In particular, for γ1 = 35.6◦ the interferometer
maps non-orthogonal states onto orthogonal ones at output 1. A further increment of γ1 leads to
an increment of the visibility until reaching the maximum value of one at γ1 = 45◦, in which case
the projection onto |1〉 is associated with a WPM with polarization V that erases completely the
WPI. The experimental results followed this behaviour, and when corrections for experimental
imperfections were taken into account the agreement with theory became even better, as can be
seen in the solid lines of figure 5(a). For γ1 = 35◦ the visibility obtained was 0.17 ± 0.04; this is
close to the value expected for this angle (0.14), which is not exactly the same one that would
generate nearly orthogonal states. The worse case happened for γ1 = 45◦, where the visibility
obtained was just 0.73 ± 0.04 when we expect to see at least a value close to 0.9. This indicates
that there is still some WPI, and we believe that the reason for this is the setting of the HWP
angle (γ1). The slope of the visibility curve in figure 5(a) indicates that any small displacement
from the right value of γ1 = 45◦ implies a non-negligible variation of the visibility.
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Table 1. Conservation of inner product. The values shown here are calculated
from the right side of equation (21).

HWP1 Expected Theory with Experimental
angle (γ1) value corrections results

20◦ 0.70 0.64 0.65 ± 0.09
35◦ 0.70 0.60 0.58 ± 0.09
45◦ 0.70 0.51 0.56 ± 0.08

Figure 4(h) shows the erasure of the WPI for the experiment in figure 4(e), where the WPM
states were nearly orthogonal. We place a linear polarizer in front of the idler detector at output
port 1. When the polarizer projects the idler polarization onto V , the interference is restored
in the form of fringes. When the projection is onto H the interference is restored in the form
of antifringes. The averaged sum of these two patterns gives a pattern roughly equal to that of
figure 4(e).

Interference patterns for measurements at output port 2 are shown in figure 6. Antifringes
are observed because the inner product in equation (20) for the values of γ1 shown in the insets is
positive while φ = π in equation (22) (see footnote 5). The patterns (a)–(c) might be compared
with those of figures 4(c), (e) and (g), respectively. The obtained visibilities are (a) 0.66 ± 0.4,
(b) 0.73 ± 0.3 and (c) 0.77 ± 0.3, which are in good agreement with equation (20) when you
consider the corrections described previously.

As shown in equation (21) the initial inner product of the WPM states (α) might be
preserved. Here this quantity is 0.7, and the same value is obtained on substituting parameters
|a|, |b| and γ2 in the right side of equation (21) as a function of γ1. Using the experimentally
measured probabilities, visibilities as well as the phase of the patterns (which determine the
sign of the inner product) we calculate the right side of equation (21) for the three related
measurements shown in figures 4 and 6. The obtained values are given in table 1. Although far
from the expected value, when we take into account the limits and errors of the experiment6, we
see that the experimental results are in good agreement with the values that could be reached,
as can be seen in table 1.

4. Conclusion

The quantum eraser is a phenomenon closely related with several important subjects lying
at the heart of quantum theory: interference, complementarity, entanglement, non-locality,
delayed choice and state discrimination. Here we have mainly exploited this later aspect by
implementing an experiment where an interfering single photon is entangled with another
one serving as a which-path marker and whose states are non-orthogonal. Consequently, we
have neither complete WPI nor a null visibility of the interference pattern. However, we have
shown that it is possible to apply a probabilistic method for unambiguous modification of the
inner product of such states to achieve any desired value of this quantity. Therefore we could,

6 In this case the right side of equation (21) is calculated from the values (solid lines) used to fit the experimental
results shown in figures 5(a) and (b) for |α(1)(9pol, γ1, γ2)| and N1, respectively, and similarly for the quantities
|α(2)(9pol, γ1, γ2)| and N2.
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for instance, map the non-orthogonal states onto orthogonal ones and obtain complete WPI
(destroying the interference) or onto collinear states to recover interference with maximum
visibility. This would not be possible by using just projection analysis.

To perform this experiment we used photon pairs generated by SPDC with an arbitrary
degree of polarization entanglement. Sending one of these photons through a double slit we
observed single-photon interference (by a suitable focusing of the pump beam into the crystals),
showing that such interference is independent of the polarization degree of freedom. Placing
QWPs with their fast axes orthogonally oriented behind each slit we were able to couple
the spatial and polarization degrees of freedom introducing WPI for the interfering photon.
After a suitable projection of its polarization we allowed this WPI to be carried just by the
spatially separated photon, which then goes through a polarization-sensitive Mach–Zehnder
interferometer that implements the protocol described above. In this setup it is possible, for a
suitable setting of the interferometer, to achieve a complete WPI by detecting the WPM at one
output port of the interferometer or maximum visibility interference if the detection is performed
at the other port. The only constraint is that the initial inner product of the WPM states might be
preserved since the unitary operation applied on the WPM is local, which has been shown here.

Acknowledgments

We would like to thank C H Monken for lending us the sanded quarter-wave plates used in
the double slit. This work was supported by Grants Milenio ICM P06-067-F and FONDECyT
N◦1061046 and N◦1080383. LN acknowledges support by Grant FONDECyT N◦11085057.

References

[1] Bohr N 1928 Naturwissenschaften 16 245
[2] Heisenberg W 1927 Z. Phys. 43 172
[3] Wheeler J A and Zurek W H (ed) 1983 Quantum Theory and Measurement (New Jersey: Princeton)
[4] Kennard E H 1927 Z. Phys. 44 326
[5] Bohm D 1951 Quantum Theory (New York: Prentice-Hall)
[6] Ballentine L F 1970 Rev. Mod. Phys. 42 358
[7] Wódkiewicz K 1987 Phys. Lett. A 124 207
[8] Hilgevoord J and Uffink J 1990 In Sixty-Two Years of Uncertainty (New York: Plenum)
[9] Raymer M G 1994 Am. J. Phys. 62 986

[10] de Muynck W M, De Baere W and Martens H 1994 Found. Phys. 24 1589
[11] Appleby D M 1998 J. Phys. A: Math. Gen. 31 6419
[12] Arthurs E and Kelly J L 1965 Bell Syst. Tech. J. 44 725
[13] Braginsky V B and Khalili F Ya 1992 Quantum Measurement ed K S Thorne (Cambridge: Cambridge

University Press)
[14] Björk G, Söderholm J, Trifonov A, Tsegaye T and Karlsson A 1999 Phys. Rev. A 60 1874
[15] Wootters W K and Zurek W H 1979 Phys. Rev. D 19 473
[16] Scully M O and Drühl K 1982 Phys. Rev. A 25 2208
[17] Scully M O and Walther H 1989 Phys. Rev. A 39 5229
[18] Scully M O, Englert B G and Walther H 1991 Nature 351 111
[19] Storey E P, Tan S M, Collett M J and Walls D F 1994 Nature 367 626
[20] Wiseman H M and Harrison F E 1995 Nature 377 584

New Journal of Physics 11 (2009) 073035 (http://www.njp.org/)

http://dx.doi.org/10.1007/BF01504968
http://dx.doi.org/10.1007/BF01397280
http://dx.doi.org/10.1007/BF01391200
http://dx.doi.org/10.1103/RevModPhys.42.358
http://dx.doi.org/10.1016/0375-9601(87)90621-9
http://dx.doi.org/10.1119/1.17657
http://dx.doi.org/10.1007/BF02054787
http://dx.doi.org/10.1088/0305-4470/31/30/009
http://dx.doi.org/10.1103/PhysRevA.60.1874
http://dx.doi.org/10.1103/PhysRevD.19.473
http://dx.doi.org/10.1103/PhysRevA.25.2208
http://dx.doi.org/10.1103/PhysRevA.39.5229
http://dx.doi.org/10.1038/351111a0
http://dx.doi.org/10.1038/367626a0
http://dx.doi.org/10.1038/377584a0
http://www.njp.org/


17

[21] Mir R, Lundeen J S, Mitchell M W, Steinberg A M, Garretson J L and Wiseman H M 2007 New J. Phys. 9
287

[22] Luis A and Sánchez-Soto L L 1998 Phys. Rev. Lett. 81 4031
[23] Aharonov Y and Zubairy M S 2005 Science 307 875
[24] Dürr S, Nonn T and Rempe G 1998 Nature 395 33
[25] Bertet P, Osnaghi S, Rauschenbeutel A, Nogues G, Auffeves A, Brune M, Raimond J M and Haroche S 2001

Nature 411 166
[26] Teklemariam G, Fortunato E M, Pravia M A, Havel T F and Cory D G 2001 Phys. Rev. Lett. 86 5845
[27] Teklemariam G, Fortunato E M, Pravia M A, Sharf Y, Havel T F, Cory D G, Bhattaharyya A and Hou J 2002

Phys. Rev. A 66 012309
[28] Herzog T J, Kwiat P G, Weinfurter H and Zeilinger A 1995 Phys. Rev. Lett. 75 3034
[29] Tsegaye T, Björk G, Atatüre M, Sergienko A V, Saleh B E A and Teich M C 2000 Phys. Rev. A 62 032106
[30] Kim Y-H, Yu R, Kulik S P, Shih Y and Scully M O 2000 Phys. Rev. Lett. 84 1
[31] Trifonov A, Björk G, Söderholm J and Tsegaye T 2002 Eur. Phys. J. D 18 251
[32] Walborn S P, Terra Cunha M O, Pádua S and Monken C H 2002 Phys. Rev. A 65 033818
[33] Gogo A, Snyder W D and Beck M 2005 Phys. Rev. A 71 052103
[34] Scarcelli G, Zhou Y and Shih Y 2007 Eur. Phys. J. D 44 167
[35] Jacques V, Wu E, Grosshans F, Treussart F, Grangier P, Aspect A and Roch J F 2007 Science 315 966
[36] Jacques V, Wu E, Grosshans F, Treussart F, Grangier P, Aspect A and Roch J F 2008 Phys. Rev. Lett. 100

220402
[37] Kwiat P G, Steinberg A M and Chiao R Y 1994 Phys. Rev. A 49 61
[38] Kwiat P G, Waks E, White A G, Appelbaum I and Eberhard P H 1999 Phys. Rev. A 60 R773
[39] Ribeiro P H S, Monken C H and Barbosa G A 1994 Appl. Opt. 33 352
[40] Neves L, Lima G, Gómez J G A, Monken C H, Saavedra C and Pádua S 2005 Phys. Rev. Lett. 94 100501
[41] James D F V, Kwiat P G, Munro W J and White A G 2001 Phys. Rev. A 64 052312
[42] Garisto R and Hardy L 1999 Phys. Rev. A 60 827
[43] Peres A 1988 Phys. Lett. A 128 19
[44] Chefles A 1998 Phys. Lett. A 239 339
[45] Chefles A and Barnett S M 1998 Phys. Lett. A 250 223
[46] Torres-Ruiz F A, Aguirre J, Delgado A, Lima G, Neves L, Pádua S, Roa L and Saavedra C 2009 Phys. Rev.

A 79 052113

New Journal of Physics 11 (2009) 073035 (http://www.njp.org/)

http://dx.doi.org/10.1088/1367-2630/9/8/287
http://dx.doi.org/10.1088/1367-2630/9/8/287
http://dx.doi.org/10.1103/PhysRevLett.81.4031
http://dx.doi.org/10.1126/science.1107787
http://dx.doi.org/10.1038/25653
http://dx.doi.org/10.1038/35075517
http://dx.doi.org/10.1103/PhysRevLett.86.5845
http://dx.doi.org/10.1103/PhysRevA.66.012309
http://dx.doi.org/10.1103/PhysRevLett.75.3034
http://dx.doi.org/10.1103/PhysRevA.62.032106
http://dx.doi.org/10.1103/PhysRevLett.84.1
http://dx.doi.org/10.1103/PhysRevA.65.033818
http://dx.doi.org/10.1103/PhysRevA.71.052103
http://dx.doi.org/10.1140/epjd/e2007-00164-y
http://dx.doi.org/10.1126/science.1136303
http://dx.doi.org/10.1103/PhysRevLett.100.220402
http://dx.doi.org/10.1103/PhysRevLett.100.220402
http://dx.doi.org/10.1103/PhysRevA.49.61
http://dx.doi.org/10.1103/PhysRevA.60.R773
http://dx.doi.org/10.1364/AO.33.000352
http://dx.doi.org/10.1103/PhysRevLett.94.100501
http://dx.doi.org/10.1103/PhysRevA.64.052312
http://dx.doi.org/10.1103/PhysRevA.60.827
http://dx.doi.org/10.1016/0375-9601(88)91034-1
http://dx.doi.org/10.1016/S0375-9601(98)00064-4
http://dx.doi.org/10.1016/S0375-9601(98)00827-5
http://dx.doi.org/10.1103/PhysRevA.79.052113
http://www.njp.org/

	1. Introduction
	2. Experimental setup and theory
	2.1. Observing single-photon interference
	2.2. Introducing which-path information
	2.3. Which-path and quantum eraser measurements
	2.4. Controlling the which-path marker

	3. Experimental results
	3.1. Orthogonal which-path marker states
	3.2. Non-orthogonal which-path marker states

	4. Conclusion
	Acknowledgments
	References

