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Abstract. The paper demonstrates the possibility to control the collective
behavior of a large network of excitable stochastic units, in which oscillations are
induced merely by external random input. Each network element is represented
by the FitzHugh–Nagumo system under the influence of noise, and the elements
are coupled through the mean field. As known previously, the collective behavior
of units in such a network can range from synchronous to non-synchronous
spiking with a variety of states in between. We apply the Pyragas delayed
feedback to the mean field of the network and demonstrate that this technique
is capable of suppressing or weakening the collective synchrony, or of inducing
the synchrony where it was absent. On the plane of control parameters we
indicate the areas where suppression of synchrony is achieved. To explain
the numerical observations on a qualitative level, we use the semi-analytic
approach based on the cumulant expansion of the distribution density within
Gaussian approximation. We perform bifurcation analysis of the obtained
cumulant equations with delay and demonstrate that the regions of stability of
its steady state have qualitatively the same structure as the regions of synchrony
suppression of the original stochastic equations. We also demonstrate the delay-
induced multistability in the stochastic network. These results are relevant to the
control of unwanted behavior in neural networks.
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1. Introduction

An excitable system is a system with input and output, and its characteristic feature is that
it demonstrates two drastically different kinds of response to different kinds of input: when
input is lower than a certain threshold, the excitable unit demonstrates only small oscillations
around the steady state, but if the input exceeds the threshold, the unit responds with a high
spike whose duration and shape are almost independent of the shape or duration of the input
signal. A single excitable unit is widely used as a simplified model of a typical neuron. Neural
networks are responsible for information processing in animals (including humans) [1], and
similar structures exist even in plants [2]. Because of that, their study and modeling attracts a
lot of research attention. Networks of excitable units are popular models of the biological and
artificial neural networks.

Depending on the properties of a single unit entering the network, and on the kind of
coupling between them, the neural networks can display a rich variety of behaviors, but common
to most of them are pattern formation and synchronization phenomena. The collective behavior
of biological neural networks and of their models can be characterized by parameters such
as timescale, regularity and synchronization strength. It is believed that synchronization in
biological neural networks enhances information processing [3, 4], but it is also linked to
neural disorders like epilepsy and Parkinson’s disease [5]–[8]. Therefore, depending on the
circumstances one might wish to strengthen synchronization or to destroy it, or to change
other parameters of the behavior. The desired control method should apply an intelligent weak
perturbation capable of adjusting the behavior of the network gently, but efficiently. With this, it
should not require any change in the connections or in the units within the network, and ideally
not even detailed knowledge of the system structure. Finally, a good control tool should allow
application on a macroscopic scale rather than on a scale of individual units.

Recently, a number of methods have been proposed for the suppression of synchrony
in the arrays of coupled oscillators in which oscillations are self-sustained [9]–[11]. In this
paper, we consider the possibility to manipulate the behavior of a large stochastic network
of coupled excitable units, each demonstrating noise-induced spiking and unable to oscillate
without external noise.

It was earlier proposed to control oscillations induced merely by random noise in a
single [12]–[14], or in two mutually coupled [15] excitable units by means of delayed
feedback [16, 17] that was originally developed to control deterministic chaotic dynamics. The
controlling force is proportional to a difference between the current system state and its state τ

time units before. The main advantage of this technique is that it does not add new, or change the
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positions of the old, steady states, meaning that the disruption to the system is minimal. Also,
for deterministic chaos it can be non-invasive. Indeed, a skeleton of a chaotic attractor consists
of a countable set of unstable periodic orbits (UPOs), and if τ is equal to the period of one
of them, the orbit may become stable. Also, it was recently shown that the delayed feedback
can suppress any oscillations in a deterministic system altogether [18, 19]. In both the latter
cases, the controlling force vanishes, which is of course advantageous particularly in biological
applications. However, when oscillations are induced by noise, there are no embedded periodic
orbits, and although the control force can be minimized at optimal τ and strength, it never
vanishes completely [12]–[15].

In the present work, we probe the delayed feedback as a possible tool to control the
collective behavior of a large stochastic network of excitable units coupled through the mean
field. This is motivated by the fact that, if the size of such a network tends to infinity, although
each element behaves randomly, the mean field and other ensemble-averaged characteristics
behave deterministically. Moreover, it was recently shown that the mean field of such a
network can demonstrate deterministic chaos of various forms [20]. In this case, application
of the delayed feedback to the mean field might produce effects similar to those observed in
deterministically chaotic systems, implying the possibility of the desirable non-invasive control.

In the present work, we first reveal the effects produced by the delayed feedback in the
stochastic excitable network numerically. We show that the feedback is capable of suppressing
or weakening the collective synchrony in the network, and outline the areas on the plane of
the feedback parameters where this effect takes place. Then we make an attempt to explain the
numerically obtained results on a qualitative level. For this purpose, we employ the cumulant
expansion of the probability density of the network, using Gaussian approximation, and derive
the cumulant equations of the system with the feedback. We compare the results of analysis
of the stochastic and cumulant equations and give evidence that the cumulant equations can
explain the main features of the control, although only qualitatively.

Section 2 describes the model used and its collective behavior in the absence of delayed
feedback. Section 3 demonstrates the numerically revealed effects of delayed feedback control
applied to the network. Section 4 considers the dynamics of cumulant equations with delayed
feedback. In section 5, the results of stochastic simulation and of the analysis of cumulant
equations are compared and discussed.

2. Collective motion in the stochastic excitable network

We consider a network of excitable units coupled through the mean field, when each element
is coupled to all other elements in the network with the same strength. This is probably the
simplest form of coupling and represents a rough approximation of coupling in a real neural
network. Each element number i of the network is modeled as a FitzHugh–Nagumo system
influenced by noise, which is a paradigmatic model of a single excitable unit [21] namely,

εẋi = xi −
x3

i

3
− yi + γ (MX − xi), MX =

1

N

N∑
i=1

xi ,

ẏi = xi + a +
√

2T ξi(t).

(1)

Here, ξi(t) is Gaussian white noise with zero mean and unity variance, and the noise sources in
different elements are uncorrelated, i.e. 〈ξi(t)ξ j(t + s)〉 = δi jδ(s); T is the noise intensity that is
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taken to be the same in all units. MX(t) is the averaged input from the rest of the network (mean
field) and γ is the strength of coupling to the mean field.

To ensure that uncoupled units cannot demonstrate repetitive spiking without external
random perturbation, the value of |a| has to be larger than 1. Also, to enable separation of
the x- and y-timescales, ε has to be a small positive number, 0 < ε � 1. In order to allow
straightforward comparison with earlier works [20, 22] where the networks of this type were
considered (without control), we choose ε = 0.01 and a = 1.05. Note that a single spiking
element placed inside the network will continue spiking, but the manner of its spiking may
change considerably. As shown in [20]–[23], equations (1) can demonstrate various types of
collective behavior depending on the level of noise and the strength of global coupling. Namely,
different neurons can spike independently of each other, or spike mostly together, or be in any
state in between these two extremes, i.e. spike simultaneously only occasionally. With this, the
oscillations of the mean field can be of two main types: small subthreshold oscillations (no
synchronization) and superthreshold spiking with large amplitude (synchronization). In their
turn, both subthreshold and superthreshold oscillations can be either periodic, or irregular. As
shown in [20], periodic spiking of the mean field corresponds to the largest degree of synchrony
in the network, while chaotic spiking reflects weaker synchronization when the units spike
together only at certain times. Also, the frequency of the mean field spiking is the largest when
this spiking is periodic, i.e. when the network is maximally synchronized, as compared to the
chaotic spiking.

The mean field obtained by numerical simulation of equations (1) is illustrated in figure 1.
The top panel shows variance σ 2

X of MX(t) as a function of coupling strength γ at a fixed value
of noise intensity T = 3.1 × 10−4 for N = 100 (solid line) and for N = 5000 (circles). One can
see that in both cases there is a range of values of γ in which synchronization occurs. When
the number of coupled units is relatively small (N = 100), the transition from synchronous
to non-synchronous behavior is gradual and is accompanied by the smooth decrease of σ 2

X to
zero. However, in a considerably larger network (N = 5000) this transition is more abrupt. The
behavior of networks of different sizes with otherwise the same parameters is compared in
figure 1 (lower panels) where phase portraits and realizations of the mean field are given.

Two different kinds of irregular oscillations of the mean field for 10 000 oscillators are
illustrated in figures 2(a) and (b) and 5(a) and (b). Namely, in figure 2(a) the mean field is
spiking in a manner that reminds of chaotic oscillations, and this behavior will be further
referred to as chaotic spiking (it was called intermittent spiking in [20]). In figure 5(a), the
mean field is oscillating in a chaotic manner in the close vicinity of the fixed point. The former
case corresponds to weak synchronization in the network, while the latter case to the absence
of collective synchrony. In the next section these states will be taken as reference states, and
we will find out if it is possible to change them by inducing, strengthening or weakening the
existing synchrony.

3. Delayed feedback control of the collective behavior

In a real network it is natural to suppose that noise level and strength of coupling are likely to be
determined by the environment and by the structure of the system, and it would not be easy to
change their values without serious intervention with the network structure. However, the kind
of behavior the network is displaying might not be satisfactory for some reason. For example, in
humans the healthy state of the neural network of the brain is associated with non-synchronous
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Figure 1. Upper panel: variance of the mean field as a function of coupling
strength γ at a fixed noise strength T = 3.1 × 10−4. Lower panels: phase portraits
and realizations of the mean field at different values of γ indicated to the right of
each row for two different network sizes: N = 100 (black) and N = 5000 (gray,
green online). Realizations of MX for different N are shifted against each other
for clarity.

oscillations of individual neurons. However, conditions like epilepsy, Parkinson’s disease and
essential tremor [5]–[8] are often associated with synchronization, which in this situation would
have a detrimental effect to the functioning of the organism and needs elimination. On the other
hand, synchronization is sometimes thought to enhance information processing by a group of
neurons [24, 25], and might therefore be desirable. In this context, the problem arises to control
the properties of collective behavior of a neural network by some simple method requiring
minimal invasion into the system.

In the theory of control of deterministically chaotic oscillations a method is known which
satisfies some of the requirements of the given task. It is the method of delayed feedback control
originally proposed by Pyragas [16] with the aim of turning deterministically chaotic behavior
into a periodic one. One registers an experimental signal s(t) coming from the chaotically
oscillating system and forms a feedback force F(t) as follows:

F(t) = K (s(t) − s(t − τ)), (2)

where s(t) is some experimental signal, K is the strength of the feedback and τ is time delay.
It is well known that a chaotic attractor has a skeleton formed by a countable set of UPOs with
different periods. If τ is equal to the period T of a certain UPO, then the given orbit may become
stable and periodic oscillations with period T will be observed in the experiment. Remarkably,
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Figure 2. Effect of delayed feedback control on the stochastic network
equations (3) when the latter is originally in the state of synchronized chaotic
spiking (a) and (b) at N = 10 000, T = 0.000 28, γ = 0.1. Phase portraits and
realizations of the mean field are shown. (a) and (b) No feedback, K = 0, original
synchronized chaotic state; (c) and (d) K = 1, τ = 0.8, synchronized periodic
spiking; (e) and (f) K = 0.1, τ = 0.73, non-synchronized state.

after all transients die out, the force F(t) vanishes and this control appears non-invasive, which
is particularly appealing when it comes to medical and biological applications.

However, there is another fact about the delayed feedback control which is of particular
interest to us in the context of the given problem. In [19], the effect of the control force (2), on
a deterministically chaotic system was studied for a large range of parameters K and τ . It was
shown that on the (K , τ ) plane there are areas where all oscillations stop, and the feedback force
F(t) tends to zero. These results are consistent with the earlier reported results on the feedback
control of a periodic system [18].

The meaning of these results for a large stochastic network is as follows. Although each
element of the network behaves stochastically, the probability density distributions (PDDs),
the mean field and other ensemble averaged characteristics of the network are deterministic
values, typically changing in time. As mentioned in section 2, the mean field can demonstrate
a wide range of behaviors, including no oscillations, small periodic and chaotic oscillations,
and large chaotic or periodic spiking—all of these regimes behaving deterministically. We
hypothesize that if such a network is subjected to the delayed feedback control, in which the
reference variable is the mean field, the ensemble averaged variables of the system should
respond like the variables of a deterministic system. In particular, we can expect the suppression
of oscillations of the mean field for some values of the feedback parameters, and this would
imply desynchronization of the network.

Some other features of the delayed feedback control of a deterministic system include
an essentially multi-leaf structure of the bifurcation diagram on the plane (K , τ ) [18, 19],
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meaning that at the same values K , τ different regimes can be observed depending on the initial
conditions. We can expect the same features to appear in the controlled stochastic network as
well.

We introduce the delayed feedback in the equations for y-variable by analogy
with [12]–[14] where the control of a single stochastic FitzHugh–Nagumo system was
considered:

εẋi = xi −
x3

i

3
− yi + γ (MX − xi),

ẏi = xi + a +
√

2T ξi(t) + K (MY (t − τ) − MY ),

MX =
1

N

N∑
i=1

xi , MY =
1

N

N∑
i=1

yi .

(3)

Here, MY is the mean field at the current time moment and MY (t − τ) is the delayed version of
it. The feedback effects illustrated in this paper were found to be qualitatively the same when the
feedback was introduced through MX in the first equation: the main difference was the feedback
strength K required to produce similar changes.

We first consider the effect of delayed feedback on the network equations (3) in the
initial state of partial synchronization when the mean field demonstrated chaotic spiking
(T = 0.000 28, γ = 0.1, N = 10 000, figures 2(a)). Here, and in other similar figures the length
of each simulated realization was 60 000 time units. The map of regimes on the plane of control
parameters τ and K is shown in figure 3, in which the mean spiking frequency is shown by color
code. Black areas denote zero spiking frequency, which means the absence of spiking during
the observation time and, consequently, the absence of synchronization in the network. One can
see that synchronization can be suppressed even with a very small value of K if τ is chosen
appropriately, which makes the control almost non-intrusive even before the transients die out.
However, areas above the upper borderline of black areas correspond to the higher spiking
frequency than in the initial state and therefore to stronger synchronization in the network, as
shown in [20].

This diagram also illustrates multistability induced by delayed feedback in the network
(see lower parts of the figure). Namely, both lower figures were obtained as τ was changed
with a small step, and the final state of the system from the previous simulation was used as
the initial state for the next calculation, which is an analogue of continuation procedure. The
left figure was obtained as τ was increasing, and the right figure as τ was decreasing. One can
see that these figures are different, in that the upper-right border of the suppression area has
two different locations. Multistability occurs between the left-hand line C of some bifurcation
(possibly non-local), as a result of which the current spiking regime vanishes, and the right-
hand line HB of Andronov–Hopf bifurcation of the steady state. Both lines are shown in the
lower panels of figure 3 by continuous gray (green online) curves. This means that the system
demonstrates bistability: at the same values of K and τ , different initial conditions can lead to
either synchronous, or to non-synchronous states.

The map of regimes in figure 3 is in an excellent agreement with the earlier revealed
bifurcation diagrams of deterministic systems with the feedback [18, 19], at least in the areas
where the steady state of the mean field is stabilized.

Two points on the map of regimes are illustrated in figures 2(c)–(f). Namely, in figures 2(c)
and (d) K = 1, τ = 0.8 (which is outside the range of the diagram but in the region of enhanced
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Figure 3. Effect of delayed feedback on the stochastic network equations (3)
when the latter is originally in the partially synchronous state with chaotically
spiking mean field at N = 10 000, T = 0.000 28, γ = 0.1 (see figures 2(a) and
(b)). Mean spiking frequency of the mean field is shown as a function of the
feedback parameters τ and K .

synchronization above the largest black area) and the spiking of the mean field is periodic,
indicating the perfect synchronization. In figures 2(e) and (f) K = 0.1, τ = 0.73 the mean
field demonstrates no spiking and therefore indicates the absence of synchronization in the
network.

A cut-off of this diagram along the line of K = 0.1 is given in figure 4, where a few
characteristics of the mean field oscillations are given as functions of τ . The convenient
quantities that describe the essential properties of the network behavior are (i) the mean
interspike interval (ISI) 〈T 〉 of the spiking mean field MX , that defines the timescale of the
synchronized oscillations; the standard deviation σT of the ISI that characterizes the irregularity
of spiking (the larger the σT , the more irregular the spiking is); mean amplitude 〈A〉 of spiking
that allows one to distinguish between the regimes with and without spiking; and the standard
deviation σX of the mean field MX that allows one to observe the transitions between the
oscillations of different amplitudes. All these characteristics are given in figure 4, one can notice
that variation of τ generally leads to the increase of both the period of oscillations (a) and the
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Figure 4. Effect of the delayed feedback on the stochastic network described
by equations (3) at T = 0.000 28, γ = 0.1 and N = 10 000. Feedback strength
is fixed at K = 0.1, and the parameters of the network are estimated depending
on the value of the delay τ . (a) Mean ISI, (b) standard deviation of the ISIs,
(c) amplitude of the mean field and (d) of standard deviation of the mean
field MX .

standard deviation of ISIs (b), which means less frequent and less regular spiking of the mean
field. This, in its turn, implies weakening of synchronization by the feedback. Within certain
ranges of τ (approximately from 0.25 to 1.2) the period is infinitely large, which, together with
small σX (d) is an indication of the complete loss of synchronization. Where synchronization is
present, the mean field is spiking with approximately the same amplitude (c). Importantly, the
increase of the mean period appears much more drastic than in the case of a single excitable
unit controlled by the same method (compare with [12, 13]).

Next we consider the effect of delayed feedback on the initially non-synchronous network
equations (3), when the mean field demonstrated chaotic subthreshold oscillations (T =

0.000 27, γ = 0.1, N = 10 000, figures 5(a)). The respective map of regimes on the plane (K , τ )

is shown in figure 6. One can see that the feedback can induce high-frequency spiking of the
mean field, and thus strong synchronization in the network, at sufficiently large values of K .
Also, there is an area of weak synchronization at smaller K , which is schematically indicated
as a shaded region (green online) that is bounded by the black region of no spiking from below,
and the region of high-frequency spiking from above. Two points on the map of regimes are
illustrated in figures 5(c)–(f). Namely, figures 5(c) and (d) illustrate the weakly synchronous
regime at K = 0.4, τ = 4. Figures 5(e) and (f) illustrate the strongly synchronous regime at
K = 1, τ = 0.8 (this point is outside the diagram in figure 6), when the mean field spikes
periodically.

The cut-off of the diagram along K = 0.1 is illustrated in figure 7 that shows the same
characteristics as figure 4. As seen from the figure, the feedback is capable of inducing
synchronization at certain values of τ (approximately from 1.2 to 2, see gray area in
figures 7(a)–(d)). The average period 〈T 〉 of the mean field spiking (a), as well as the standard
deviation σT of the ISI (b), has a minimum in the center of synchronization region which
corresponds to the largest degree of synchrony. Inside synchronization domain, the spiking
amplitude 〈A〉 remains constant within numerical accuracy. At the same time the standard
deviation σX of the mean field demonstrates a smooth maximum in the center of synchronization
domain which indicates the highest spiking frequency and thus strongest synchronization.
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Figure 5. Effect of delayed feedback control on the stochastic network
equations (3) when the latter is originally in the non-synchronous chaotic state (a)
and (b) at N = 10 000, T = 0.000 27, γ = 0.1. Phase portraits and realizations
of the mean field are shown. (a) and (b) No feedback, K = 0, original non-
synchronized state; (c) and (d) K = 0.4, τ = 4, chaotic synchronous spiking;
(e) and (f) K = 1, τ = 0.8, periodic synchronous spiking.

Finally, we examine two more initial states of the network at such values of γ = 0.1 and T
when it is strongly synchronized. At T = 0.0003 the network is in a strongly synchronized state
near the borderline of synchronization region [20], and the mean field is spiking periodically.
Application of delayed feedback results in the map of regimes shown in figure 8(a). One can
see that the area, where the synchrony is suppressed, is shrinked as compared to the case when
initially the system was more weakly synchronized (compare with figure 6). When the system
is deeper inside the synchronization region at T = 0.0005, delayed feedback cannot suppress
synchronization completely (figure 8(a)), but can weaken synchronization, as indicated by the
lower values of spiking frequency at nonzero values of K and τ .

The qualitative explanation of the observed effects of the delayed feedback will be
attempted in the next section in terms of the dynamics of the cumulant equations.

4. Cumulant equations with delayed feedback

In the previous section, we reported the effects induced by delayed feedback in the stochastic
network of excitable units modeled by equations (3). In particular, it was found that in spite
of the random nature of oscillations in the network, the effects induced by the feedback are
very similar to those in the deterministic systems. In this section, we will try to provide an
approximate deterministic description of the stochastic network and thus to explain the effects
induced by the feedback by analogy with deterministic systems.

The collective state of N stochastic units at a time moment t can be rigorously described by
the joint PDD p2N (x1, y1, x2, y2, . . . , xN , yN , t) of all system variables, which is a deterministic
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function of time. However, this method is inconvenient since p2N is a function of 2N + 1
variables, where N is usually a large number. In order to simplify the description, one can
assume that oscillations in different units of the network are uncorrelated to a certain degree,
and that there are infinitely many coupled units, i.e. N → ∞. This is consistent with the
approximation of molecular chaos often used in statistical physics in order to make the
calculations tractable. Then one can represent p2N as a product of N identical two-dimensional
(2D) PDDs p2(x, y, t). The description of the network will then be reduced to the description
of p2, which is a deterministic function of only three variables. This approximation was
successfully used for noisy self-sustained oscillators [26], bistable units [27]–[29], phase
oscillators [22, 30, 31], and excitable FitzHugh–Nagumo units [20, 22, 23] coupled via the
mean field. In [32] stochastic bifurcations in coupled stochastic FitzHugh–Nagumo units were
studied when N was allowed to be large, but finite.

The time evolution of the collective state of the network can be described by a
Fokker–Planck equation for p2. However, a partial differential equation with delay is generally
quite difficult for the analysis. Alternatively one can derive a system of equations governing
the time evolution of cumulants of p2. A discrete set of cumulant first-order differential
equations might be more convenient for the analysis than partial differential equations, but an
inconvenience arises from the fact that generally there will be infinitely many cumulants. At
this stage, some additional assumptions about p2 might help to reduce the number of nonzero
cumulants considerably and to make the analysis tractable.

The time evolution of p2 is illustrated in figure 9, where several snapshots are shown at
different time moments corresponding to different stages of oscillations of the mean field at
T = 0.000 28, γ = 0.1, K = 0.1 and τ = 1.5. The function p2 is numerically estimated from
N = 10 000 units. The mean field is indicated by a filled circle. It is obvious already from this
figure that p2 has quite a complicated shape. To appreciate the complexity and non-smoothness
of its shape, two 1D densities pX

1 (x, t) are shown in figure 10 for an uncoupled network (a) and
for a network coupled with γ = 0.1 without delayed feedback. One can see that in a coupled
network pX

1 has two maxima most of the time, which are sharp and non-equal, and the whole
density is very non-symmetric.
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oscillations of the mean field. The mean field is shown by a filled circle. The
values above 10 are indicated by black, and the values in [0;10] are indicated by
gray with linearly growing intensity (zero is represented by white).

We would like to use an approximation of the p2 by cumulants up to a certain order.
Namely, given that there exists a system of infinitely many cumulants describing the density
p2 exactly, we could truncate this system at some stage, assuming that the sufficiently high-
order cumulants tend to zero. The plots for the cumulants up to the sixth order are shown in
figure 11. One can see that even the sixth-order cumulants do not show the tendency to go to
zero. With this, the number and complexity of cumulant equations increase considerably with
the order of cumulant expansion. For example, if we use cumulants up to the fifth order, the
number of equations is 20 and the number of terms in them is just under 300. Such a complex
nonlinear high-dimensional system is particularly difficult for the analysis if it includes delay
terms.

With this, if the use of higher-order cumulants is not expected to provide a considerably
better accuracy of the description of the function as illustrated in figure 11, it does not seem
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reasonable to make the problem so difficult for the purposes of qualitative analysis. One can
well use a simpler approximation.

The simplest approximation would be Gaussian and it assumes that p2 can be
approximately described as a Gaussian function of two variables. Then pX

1 (x, t) and pY
1 (y, t) are

approximately Gaussian functions, too. Gaussian distribution can be characterized by only five
nonzero cumulants: mean values m X and mY of variables x and y, respectively, their variances
DX and DY , and their cross-variance DXY . If the Gaussian approximation is valid, the collective
dynamics of the stochastic network of excitable units equations (3) can be described by a closed
system of five differential equations for cumulants.
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In [20, 22] a Gaussian approximation was used to construct the cumulant equations for
system (1) using the method proposed in [27] and improved in [33, 34]. The validity of
this approximation was verified by comparing the dynamics of cumulant equations with the
dynamics of the mean field obtained by numerically solving the stochastic differential equations
(SDEs) (1) at large N . It was found that the Gaussian approximation was capable of capturing
the most essential features of the behavior of the stochastic network, at least on a qualitative
level. In particular, the cumulant equations could demonstrate chaotic or periodic, sub- or
superthreshold oscillations, just like the mean field in the original equations (1). Also, on
the plane of parameters (T, γ ) similar transitions were observed for the mean field estimated
from SDEs and from the approximate cumulant equations. These were the period-doubling
bifurcations, saddle-node bifurcations, and some other, possibly non-local, bifurcations of the
steady states and periodic solutions.

In this work we follow the example of [20, 22] and exploit a Gaussian approximation to
write down the cumulant equations for a network of FitzHugh–Nagumo oscillators equations (3)
with delayed feedback. The appropriate averaging of stochastic equations with delay (3) was
made using the techniques of [27, 33, 34] and the system of the following cumulant equations
was obtained:

ε
dm X

dt
= m X −

m X
3

3
− mY − m X DX ,

dmY

dt
= m X + a + K (mY (t − τ) − mY ),

ε
dDX

dt
= 2

[
DX(1 − γ − m X

2
− DX) − DXY

]
,

dDY

dt
= 2(DXY + T ),

ε
dDXY

dt
= εDX + DXY (1 − m X

2
− DX − γ ) − DY .

(4)

We considered equations (4) at two sets of parameters (T, γ ), at which the system without
feedback (K = 0) was in two distinct chaotic states: chaotic spiking (figures 12(a) and (b))
and subthreshold chaotic oscillations (figures 13(a) and (b)). The first state corresponds to
the weakly synchronous network, and the second state to the non-synchronous one. For each
regime above, we performed bifurcation analysis of equations (4) in the plane (τ, K ) with the
help of a continuation technique using the free software DDE-BIFTOOL [35]. The resulting
bifurcation diagrams are shown in figure 14. On the solid lines Andronov–Hopf bifurcation of
the steady state takes place, and in gray areas the steady state is stable. In the white areas the
oscillations of the mean field are subthreshold, either periodic or chaotic. The green points
show the areas in which the mean field performs some kind of spiking, either periodic or
chaotic. These areas were found by numerical simulation of cumulant equations rather than by
continuation.

First, compare figure 14(a) with figure 3. The black areas of figure 3 correspond to white
and gray areas of figure 14(a). We can see that for small K these areas have similar shapes,
although at large K the similarity vanishes: in the stochastic equations the suppression regions
are bounded from above (at K around 6 or less), while in the cumulant equations these regions
show no tendency for becoming bounded from above in the range of K considered. Another
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Figure 12. Realizations and phase portraits of the cumulant equations (4)
with delayed feedback at T = 0.001 586 and γ = 0.1. (a) and (b) K = 0,
chaotic spiking. Feedback strength is fixed at K = 0.1. (c) and (d) Chaotic
subthreshold oscillations at τ = 0.005, (e) and (f) Periodic period-one
subthreshold oscillations at τ = 0.1.

source of discrepancy is the values of τ corresponding to the centers of suppression regions:
black in figure 3 and white and gray in figure 14(a). From the earlier works on the analysis
of deterministic systems with delayed feedback [18, 19] it follows that the centers of the
suppression regions are determined by the eigenperiods (2π divided by the imaginary part of the
eigenvalue associated with Andronov–Hopf bifurcation) of the steady states without feedback.
For example, the first area is formed around τ close to half of the eigenperiod τ̃ . The same
regularity is observed in the cumulant equations with the eigenperiod of the steady state being
τ̃ ≈ 0.72. Comparing to the SDEs, τ in the bifurcation diagram appears to be rescaled by a
factor of ≈ 2, which can be explained by the inaccuracy of the Gaussian approximation, and
also by the fact that the values of T in the stochastic and cumulant equations were taken to be
different in order to reproduce qualitatively the same behavior.

Next, compare the figure 14(b) with figure 6. At small and moderate values of K the shapes
of the black regions in the latter match qualitatively the shapes of the white and black regions
of the former. Also, at τ ≈ 0.65 there exists a region of spiking, which is comparable with the
region of mean field spiking in figure 6 around τ ≈ 1.5. Again, at larger values of K the two
diagrams do not match the ones for SDEs.

As predicted by [19], introduction of delayed feedback can induce multistability in the
system which is illustrated in figures 15 and 16. This means that depending on the initial
conditions, at exactly the same values of system parameters the system can demonstrate one of
two (or of more) regimes. Interestingly, in both cases multistability occurs between two different
spiking regimes: periodic and chaotic. The phase portraits of the two regimes do not look very
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Figure 15. Multistability induced by delayed feedback in cumulant equations,
equations (4): regular and chaotic spiking at T = 0.001 585, γ = 0.1, K = 0.1
and τ = 0.769 (see figure 14(a)). (a) Realization m X(t), (b) phase portrait
(m X , mY ) and (c) power spectrum S(ω) computed from m X(t) in the regime
of regular spiking. Panels (d)–(f) show the realization, phase portrait and power
spectrum, respectively, in the regime of chaotic spiking.

different from each other, but the power spectra indicate the distinction between them clearly:
they are discrete (up to numerical accuracy) in the case of periodic spiking and continuous with
additional frequencies in the case of chaotic oscillations.

The cumulant equations even of the second order, that approximately describe the large
stochastic excitable network with delayed feedback, appear capable of capturing the most
essential features of the map of regimes on the plane of the feedback parameters K and τ .
Namely, they reproduce qualitatively the shape of the areas in which there is no synchronization,
and therefore no mean-field spiking, at least for small and moderate values of K . There is no
quantitative agreement, however, which is explained by the expected inaccuracy of the Gaussian
approximation.

5. Summary

In this paper, we considered the possibility to employ delayed feedback in order to control the
collective behavior of a large network of globally coupled stochastic excitable units, each
modeling an excitable neuron in which spiking is induced merely by external random pertur-
bation. It was essential that the delayed feedback was applied through the mean field. The action
of control was initially studied by means of numerical simulation of the large system of stochas-
tic differential equations with delay. A large range of feedback parameters was scanned, and the
maps of regimes were obtained for a few distinct initial states of the network. Namely, it was
shown that where the network was originally weakly synchronized, the feedback was capable
of destroying synchronization even with a small value of K . Where the network was initially
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Figure 16. Multistability induced by delayed feedback in cumulant equations,
equations (4): regular and chaotic spiking at T = 0.001 586, γ = 0.1, K = 0.1
and τ = 0.748 (see figure 14(b)). (a) Realization m X(t), (b) phase portrait
(m X , mY ) and (c) power spectrum S(ω) computed from m X(t) in the regime
of regular spiking. Panels (d)–(f) show the realization, phase portrait and power
spectrum, respectively, in the regime of chaotic spiking.

strongly synchronous, the feedback was shown to be capable of weakening synchronization.
On the other hand, where there was no synchronization from the beginning, the feedback could
induce the latter at certain parameter values. In both cases, it was possible to adjust the network
macro-parameters like timescales and the amount of coherence in the mean field.

The explanation of the observed phenomena on a qualitative level was done by formulating
and analyzing the simplified cumulant equations of the second order, which were reasonably
tractable and allowed for bifurcational analysis using the tools developed for deterministic
systems. In particular, it was shown that chaotic cumulant equations obey the same regularities
that were previously found in other deterministically chaotic systems subjected to delayed
feedback control. The main practical feature of the system being controlled is that there is quite
a large area in the plane of the feedback parameters within which a fixed point is stabilized. In
terms of the original network, this means desynchronization of coupled oscillations.

The results of this study are relevant to the task of non-intrusive control of populations of
neurons, and in particular to the elimination of the unwanted synchronization that is thought to
be linked to neural disorders like epilepsy and Parkinson’s disease.
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