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Abstract. We consider a gas of ultracold two-level atoms confined in a cavity,
taking account of atomic center-of-mass motion and cavity-mode variations. We
use the generalized Dicke model (DM), and analyze separately the cases of a
Gaussian, and a standing wave mode shape. Owing to the interplay between
external motional energies of the atoms and internal atomic and field energies,
the phase-diagrams exhibit novel features not encountered in the standard DM,
such as the existence of first- and second-order phase transitions between normal
and superradiant phases. Due to the quantum description of atomic motion,
internal and external atomic degrees of freedom are highly correlated leading
to modified normal and superradiant phases.
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1. Introduction

Progress in trapping and cooling of atomic gases [1] has made it possible to coherently couple
a Bose–Einstein condensate to a single cavity mode [2]. These experiments pave the way to
a new subfield of AMO physics; many-body cavity quantum electrodynamics. In the ultracold
regime, light-induced mechanical effects on matter waves lead to intrinsic nonlinearity between
the matter and the cavity field [3, 4]. In particular, the nonlinearity renders novel quantum
phase transitions (QPT) [5]. Other related QPTs in cavity QED models have been presented
in [6]. Such nonlinearity, due to the quantized motion of the atoms, is absent in the so-called
standard Dicke model (DM). Explicitly, the DM describes a gas of N non-moving two-level
atoms interacting with a single-quantized cavity mode [7]. The interplay between the field
intensity/energy, the free atom energy, and the interaction energy leads to a quantum phase
transition (DQPT) in the DM. Motivated by the novel phenomena arising from a quantized
treatment of atomic motion [4, 8], it is highly interesting to extend the DM to include atomic
motion on a quantum scale, and in particular to analyze how it affects the nature of the DQPT.
It is clear that such generalization of the DM results in new aspects of the system properties.
The atomic motion is directly affected by the shape of the field induced potentials, which in
return is determined by the system parameters and the field intensity. In addition to the terms
contributing to the total energy in the regular DM, in this model we have to take into account
the motional energy of the atoms. This enters in a nontrivial way since the interaction energy
depends on the motional states of the atoms.

The DM was first introduced in quantum optics to describe the full collective dynamics of
atoms in a high-quality cavity. The DM Hamiltonian, given in the rotating wave approximation
(RWA), reads

HD = h̄ωâ†â +
h̄�

2

N∑
i=1

σ̂ z
i +

h̄λ
√

N

N∑
i=1

(
â†σ̂−

i + σ̂ +
i â
)
. (1)

Here, the boson ladder operators â† and â create and annihilate a photon of the cavity mode, the
Pauli σ̂i -operators act on atom i , ω, � and λ are the mode and atomic transition frequencies
and effective atom–field coupling, respectively. The DM is a well-defined mathematical
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model for any value of its parameters. Note, however, that whether this model describes
faithfully some physical situation for any choice of parameters is not guaranteed. For
moderate λ, the DM appropriately describes the dynamics of atoms coupled to the cavity
field, and it has been thoroughly discussed in terms of collapse-revivals [9], squeezing [10],
entanglement [11] and state preparation [12]. Considerable interest, however, has been devoted
to the normal–superradiant phase transition [13]–[15].

In the thermodynamic limit (N , V → ∞, N/V = const) the system exhibits a nonzero
temperature phase transition between the normal phase and the superradiant phase. In
the normal phase, all atoms are in their ground state and the field in vacuum, whereas the
superradiant phase is characterized by a nonzero field and a macroscopic excitation of the
matter. Its critical coupling and critical temperature are [13]

λc =
√

�ω,

(kBTc)
−1

=
2ω

�
arctanh

(
�ω

λ2

)
.

(2)

As was shown in [14], the critical coupling can be seen as a condition on the atomic density
ρ = N/V . Interestingly, the DQPT is of second-order nature without the RWA, whereas it is first
order if the RWA has been imposed [16]. The corrections due to the RWA to various physical
observables have been considered [15, 17].

More detailed analysis of miscellaneous aspects of the DQPT have been presented in
numerous publications. In particular, various extensions [18, 19] as well as approximate
methods [20] concerning the DQPT have been outlined. Recently, Emary and Brandes applied
the algebraic Holstein–Primakoff boson representation to the DM. The method turned out to be
very powerful and has since then been applied frequently to the DM [21].

Despite the numerous publications on the DQPT, the existence of this phase transition has
been widely discussed. If the two-level atoms in the DM correspond to atoms in a ground and
excited state, and the transition is direct, then quantum mechanics forbids the transition. This can
be seen either by realizing the necessity of adding the, so-called, A2-term to the Hamiltonian,
or by employing sum rules to bound the coefficients in the DM to the ‘trivial’ thermodynamical
phase [24]. The argumentation of [24] can be generalized to a quite general no-go theorem for
the DQPT [25], but it does not apply if the two-level atoms in the DM correspond to atoms in
two excited states, such as Rydberg states, or if the transition is not direct.

One valuable step towards an experimental realization of the DQPT was taken in relation
with [22], where typical experimental parameters as well as losses were included. These authors
considered the two levels coupled by a non-resonant Raman transition. In such conditions, the
atom–field coupling λ can be tuned more or less independently of the A2 term in an effective
two-level model, and one can reach the regime of DQPT. This paper, however, considers a
situation in which atomic motion can be neglected due to high temperatures, e.g. the standard
DQPT. An alternative situation, in which the atomic motion could be neglected, would be to
consider quantum dots interacting with a cavity mode [19, 23].

In this paper, we extend the DM to take into account atomic motion in a fully quantum
mechanical description. The atomic motion then introduces an additional degree of freedom to
the problem, leading to novel appearances of the system phase diagrams. The gas is assumed
dilute such that atom–atom scattering can be neglected, and that the motion is restricted
to one dimension due to tight confinement in the remaining two directions via external
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trapping. Furthermore, the atoms are assumed trapped by the cavity field itself. Consequently,
a normal–superradiant QPT is not possible, since for a vanishing field the atomic trapping
capability is lost. However, we may assume a lowest bound of the field such that at least
one bound state of the trapping ‘potential’ is guaranteed. This can be achieved by an external
pumping of the cavity, which imposes a non-vanishing cavity field. Our research is partly
carried out in the adiabatic regime, motivated by the ultracold atoms considered and its
justification is numerically verified. In this adiabatic regime, the problem relaxes to solving a
one-dimensional (1D) time-independent Schrödinger equation. In particular, we study the case
of a Gaussian mode profile utilizing this adiabatic method. The situation with a standing wave
mode profile is also considered, however using a full numerical rather than adiabatic approach.
For a Gaussian profile the number of bound states is crucial for the thermodynamics, and we
find great divergences from the regular DM. Among these are the existence of both first- and
second-order QPTs and multiple superradiant phases. The second, standing wave mode, shows
slight similarities to the model of [19] but the QPT is found to be of second order, and the PT
survives for zero temperature and finite ω opposite to the regular DQPT.

The paper is organized as follows. In the next section, we present the generalized DM
that includes the motion of the atom. The adiabatic diagonalization of the single particle
Hamiltonians utilized for the Gaussian mode profile is introduced and the general expression
for the partition function given. The following section 3 considers the situation of a Gaussian
mode profile. We thoroughly discuss the importance of bound states. Section 4 instead considers
a standing wave mode profile in a fully numerical fashion. In the appendix, however, we derive
analytical expressions in the regimes of tight binding, which provides us with various asymptotic
properties. Finally we conclude with a summery in section 5.

2. Generalized DM and its partition function

We consider a gas of N ultracold identical two-level atoms, with mass m and energy level
separation h̄�, interacting with a single cavity mode with frequency ω. For a low-temperature
gas, we include atomic center-of-mass motion and mode variation. In the RWA and dipole
approximation, the extended DM becomes

H = ωâ†â +
N∑

i=1

[
p̂2

i

2
+
�

2
σ̂ z

i +
g(x̂i)
√

V

(
â†σ̂−

i + σ̂ +
i â
)]

. (3)

Here, p̂i and x̂i are the scaled center-of-mass momentum and position of atom i , respectively,
g(x̂) the effective position-dependent atom–field coupling and V the mode volume. Throughout
the paper we will use scaled variables such that h̄ = m = 1. The case of a single atom is given
by the generalized Jaynes–Cummings Hamiltonian studied by numerous authors [26, 28].

In the thermodynamic limit, we let V → ∞ and N → ∞ such that the atomic density is
fixed; ρ = N/V ≡ ρ0. The partition function reads

Z = Tr
[
e−β H

]
, (4)

where β−1
= T and T is the scaled temperature and the trace is over the field and atomic degrees

of freedom. It is convenient to perform the trace of the field in terms of Glauber’s coherent states,
â|α〉 = α|α〉. In the thermodynamic limit, one may replace â → α and â†

→ α∗ in the evaluation
of the partition function [13]. In other words; in the large atom number limit the photon
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ladder operators, or more precisely â/
√

N and â†/
√

N , can be treated as commuting operators.
Using the fact that atomic operators mutually commute between themselves, for example
[x̂i , p̂ j ] = iδi j , the partition function can be written

Z =

∫
d2α

π
e−βω|α|

2
{

Tr
[
e−βh(α)

]}N
, (5)

where the integration is over the whole complex α-plane and

h(α) =
p̂2

2
+

�

2
σ̂ z +

g(x̂)
√

ρ0
√

N

(
ασ̂ + + α∗σ̂−

)
. (6)

In the sense of ultracold atoms as considered here, the kinetic energy of the atoms is
assumed smaller than the effective potential energy. Provided that the adiabatic potentials do not
cross, it is then legitimized to perform an adiabatic diagonalization of the internal states [27]. In
this regime, the single particle Hamiltonian relaxes to two decoupled adiabatic ones

h±

ad(|α|) =
p̂2

2
+ V ±

ad (x̂, |α|
2)

≡
p̂2

2
±

√
�2

4
+

g2(x̂)ρ0

N
|α|2. (7)

This approximation will be imposed in the next section considering a Gaussian mode profile.
However, in the proceeding section dealing with the standing wave mode such an approach
is not advocated, since then the curve crossings between the adiabatic potentials break
adiabaticity [27]. The justification of the adiabatic approximation applied to the Gaussian mode
profile will be discussed at the end of the next section. Within this regime, the problem has
become one of solving for the eigenvalues of two time-independent decoupled Schrödinger
equations. The adiabatic Hamiltonians depend solely on the norm |α| and in polar coordinates
the angle part can therefore be integrated out. By denoting the eigenvalues E±

n (r) respectively,
where r = |α| and n is a quantum number/numbers that can be either discrete and/or continuous,
we get the adiabatic partition function

Zad = 2
∫

∞

0
dr re−βωr2

{
Tr
[
e−βE+

n (r)
]

+ Tr
[
e−βE−

n (r)
]}N

. (8)

Without loss of generality, we can choose ρ0 = 1 as it only scales the effective atom–field
coupling. It is worth mentioning that the numerics deal with exponentially large numbers,
especially for small temperatures, which restrict the analysis to certain ranges.

3. Transversal thermodynamics

3.1. Derivation of the partition function for transversal motion

A Fabry–Perot cavity has eigenmodes that are, to a good approximation, Gaussian in the
transverse and harmonic in the longitudinal direction. Assuming an external deep trap in the
longitudinal direction and one transverse direction, we may consider the 1D problem in which
the atom–field coupling has a spatial Gaussian shape. As is well known [26], and seen from
equation (7), only atoms in the ‘adiabatic’ internal state corresponding to the Hamiltonian
h−

ad(r) will feel an attractive potential, whereas the others will be scattered away from the
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cavity field. We therefore consider only a sub ‘quasi’ Hilbert space containing the bound states
E−

n (r) of

h−

ad(r) =
p̂2

2
−

√
�2

4
+

λ2r 2

N
exp

(
−2

x2

12
x

)
, (9)

where 1x is the transverse mode width.
In order to proceed in an analytic way, we make the following approximate ansatz,√

�2

4
+

λr 2

N
exp

(
−2

x2

12
x

)
≈ ε0 + U0 sech2(qx). (10)

The unknown constants are determined from the conditions: (i) the two functions have the same
asymptotic values for x → ±∞, (ii) their maximum are the same and (iii) they share the same
full-width at half-maximum (FWHM). Explicitly this yields

ε0 =
�

2
,

U0(r
2) =

√
�2

4
+

λ2r 2

N
−

�

2
,

qr2 =

√
2 arcsech

(√
1/2

)
1x

√√√√√√ln

 4λ2r2

N

((√
�2
4 + λ2r2

N + �
2

)2

−�2

)


.

(11)

The bound eigenvalues of the Hamiltonian

h−

ad(r) =
p̂2

2
−

�

2
− U0(r

2) sech2(qr2 x) (12)

are known to be [29]

E−

n (r 2) = −
�

2
−

q2
r2

8

[
−(1 + 2n) +

√
1 +

8U0(r 2)

q2
r2

]2

. (13)

Let us introduce the number of bound states, for a given set of parameters, as Ñ and define the
function

g1(r
2) =

Ñ∑
n=0

e−βE−
n (r2). (14)

With this, the partition function (8), considering only bound states, becomes

Zad = 2
∫

∞

0
dr re−βωr2+N ln[g1(r2)]. (15)

By the variable substitution y = r 2/N we get

Zad = N
∫

∞

0
dy eN [−βωy+ln[g1(y)]]. (16)
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In the thermodynamic limit, this integral is solved by the saddle point method [30]

Zad = N
C1
√

N
max

06y6∞

{
eN [−βωy+ln[g1(y)]]

}
, (17)

where C1 is a constant. Note that y has the meaning of scaled field intensity.
One obstacle of the above model already mentioned in the introduction, is the fact that for

a shallow potential well the number of bound states will vanish. In this limit, the cavity field can
no longer serve as a trap for the atoms. Consequently the ground state is the one of zero atoms,
and we cannot have a proper thermodynamic limit N → ∞. We therefore add the constraint
that a minimum of one bound state is assumed. This can be met experimentally by including an
external driving of the cavity mode, so that the field is nonzero throughout. Thus, the ‘normal’
phase will contain a nonzero cavity field, which is sustained by the external pumping. We have
numerically checked that this does not introduce any significant changes in the analysis.

For the number Ñ of bound states, we have

(1 + 2Ñ ) <

√
1 +

8U0(y)

q2
y

. (18)

Naturally, Ñ depends on the system parameters. As Ñ is an integer, a change in the
system parameters may bring about jumps between integer numbers of Ñ . This will cause
discontinuities in the function g1. Letting Ñ = 1 we find U0(y) > q2

y . For small fields, y → 0,
the potential amplitude U0 vanishes and the bound states cease to exist. However, for small but
nonzero fields, the above inequality may be met for large couplings λ and widths 1x .

3.2. Numerical results

To study equation (17), we analyze the parameter dependence of the function

f1(y) = −βh̄ωy + ln [g1(y)] . (19)

Note that f1(y) is the free energy per particle, given a scaled field intensity y. Let us briefly
discuss characteristics of f1(y) before approaching it numerically. The first part arises from the
bare field, and it is energetically favorable to have a vanishing field. The second part contains the
atom–field interactions plus kinetic and potential atomic energies. The interaction energy enters
indirectly into the atomic potential part. Increasing the field amplitude deepens the potential well
and therefore lowers the energy, and it is therefore more beneficial to have a large field. The two
terms therefore compete, and in particular, the location of the maximum of f1(y) depends on
the particular system parameters used. Thus, atomic motion, directly related to the shape and
depth of the adiabatic potential, is a crucial ingredient for the QPT. If the smallest possible
y maximizes the function, the system is said to be in a ‘normal’ phase (in quotes because
the field is still nonzero to guarantee at least one bound state), while if a non-minimal y is
optimal the system is in a superradiant phase. In the limit of large y, the second term diverges as
ln[g1(y)] ∼

√
y, whereas the first term goes as ∼−y, and we conclude that a maximum of f1(y)

is only obtained for a finite y. These reflections are numerically verified in figure 1 showing
f1(y) for four different couplings λ. We see that there is a critical coupling λc: for λ < λc the
system is in a ‘normal’ phase and for λ > λc it is in a superradiant phase.

In figure 2, we display the critical coupling λc as function of ω while keeping the other
parameters fixed. In (a) we present two examples for different T and in (b) two examples
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Figure 1. Examples of the free energy per particle f1(y) of equation (19). The
inserted numbers give the couplings λ and the other dimensionless parameters
are � = ω = 1, 1x = 2 and T = 0.2.

1

1.5

2

2.5

3

0 0.5 1 1.5 2

λ c

ω

(a)

T=0.4

T=0.2

1

1.5

2

2.5

3

0 0.5 1 1.5 2

λ c

ω

(b)

∆x=3
∆x=2

Figure 2. The critical atom–field coupling λc for the potential well (10) as
function of ω. In (a) gray curve corresponds to T = 0.2 and black curve to
T = 0.4, while in (b) for gray curve 1x = 3 and for black curve 1x = 2. In
both plots � = 1, and in (a) 1x = 2 and in (b) T = 0.2. All parameters are
dimensionless.

for different 1x . For the plots, the minimum y is taken so that there is at least one bound
state in the well. To the left of the curves the phase is superradiant, while to the right it is
‘normal’. The structure of the phase diagram is clearly different from the one of the regular
DM in which, at zero temperature, λc ∼

√
ω. For certain couplings λs, the system is always in

a superradiant phase independent of ω. The location of these resonances are insensitive to the
temperature but not to trap width 1x . The ‘sharpness’ of these points makes it possible to have a
‘normal’–superradiant–‘normal’ QPT by fixing all parameters but the coupling λ which is varied
around λs. This novel feature comes about due to the varying number of bound states Ñ in
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Figure 3. The scaled field intensity I (20) as a function of λ and ω. Here the
other dimensionless parameters are � = 1, 1x = 2 and T = 0.4.

the well. For say ω ≈ 1 and a weak coupling, the system is in the ‘normal’ phase with only
one bound state. As λ is increased the system goes through a QPT into a superradiant phase.
A closer numerical study shows that this QPT is caused by the sudden change of going from
one to two bound states in the trap. As the coupling is further increased, the discontinuity that
arose from the appearance of a second bound state is of less importance and the system reenters
the ‘normal’ state. Hence, the presence of a second bound state ‘forced’ the system out of the
‘normal’ phase by inducing a sudden kink/maximum in the function f1(y). When the coupling
is increased even further, the same may happen again when a third bound state is introduced
in the trapping potential. Eventually, however, the system enters a superradiant phase without
reentering the ‘normal’ phase.

In order to discuss the character of the QPTs we introduce the parameter

I =

{
y; f1(y) = max

y0<y<∞

{ f1(y)}

}
, (20)

that maximizes f1(y). Thus, I is the scaled field intensity where a discontinuity in it indicates a
first-order QPT and a discontinuity in its first derivative signals a second-order QPT. Here y0 is
the lower bound, which assures at least one bound state. The parameter I corresponding to the
T = 0.4 curve of figure 2(a) is presented in figure 3. We note that the ‘normal’–superradiant
QPT by increasing λ is of first order, while the superradiant–‘normal’ QPT for growing
λ is of second order. From the figure it is not clear if the second-order QPT is really a
QPT or a cross-over. Figure 4, showing a slice (ω = 0.8) of figure 3 around one singularity
λs ≈ 1.57, confirms that it is indeed a second-order QPT. Thus, contrary to the regular DQPT of
normal–superradiance, the QPTs can be either of first- or second-order nature in this extended
DM. Figure 3 reveals not only the type of PTs of figure 2, but also that there is a number of
first-order QPTs between various superradiant phases.

Figures 3 and 4 characterize the type of QPT in the λ–ω phase diagram. The structure
of the QPTs of the T –ω phase diagram turns out to be equally interesting. One example of
the T –ω phase diagram is presented in figure 5(a). As for the λ–ω diagram, both first- and
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1.55 1.56 1.57 1.58 1.59 1.6
1

1.005

1.01

1.015

1.02

λ

I

Figure 4. The scaled field intensity I of the previous figure 2(b) as function of
λ when fixing the field frequency ω = 0.8 and the width 1x = 2. This figure
clearly demonstrates the presence of both first- and second-order QPTs.

Figure 5. This figure displays in (a) the same as in figure 3, but for the T –ω

plane (black curve of figure 2), whereas in (b) the number Ñ of bound states are
shown. Note in (a) the large number of different superradiant phases.

second-order QPTs exist. Figure 5(b), displaying the number of bound states, confirms that the
sudden changes (first-order QPTs) are due to additional bound states. The T –ω phase diagrams
again display several different superradiant phases. In this case, however, there are both first- and
second-order PTs between the superradiant phases. Interestingly, our numeric analysis indicates
that the T –ω phase diagrams seem to be fairly independent of �.

Contrary to the regular DM, in the ultracold regime atomic motion plays an important
role for the system characteristics. The confining potential is determined for a given field
intensity y, and consequently, the atomic density ρat(x) per particle also depends on y. In
other words, apart from changes in the field intensity and in the atomic inversion, the phase
transition will also be manifested in the atomic density. A natural consequence of the coupled
system considered here is that the motional state of the atoms is entangled with the internal
state. Thus, the phases (normal and superradiant) are intrinsically different from the ones of the
regular DM. The regular DQPT derives from a competition between the free field energy and
the interaction atom–field energy. While the free field is minimized by vacuum, the interaction
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energy decreases with an increasing field intensity. In the present model the kinetic energy
contributes to the total energy. It is thus an interplay between three terms; free field, atom–field
interaction (containing the bare internal atomic energies) and motional energies. This is not so
evident from the free energy per particle (19), where the kinetic energy is hidden in the second
term. To illuminate the importance of the atomic motion we study the atomic inversion W
defined as the probability for a single atom to be in its excited state |e〉 minus the probability for
it to be in the ground state |g〉. Once the adiabatic approximation has been imposed we are left
with a single internal state; the lower adiabatic state |−〉ad = sin θ |e〉 + cos θ |g〉. In particular,
the angle tan 2θ = 2g(x̂)

√
ρ0α/�

√
N depends on the spatial coordinate and the inversion

becomes

W ≡ Tr
[
σ̂zρat(x)

]
=

∫
dx
(
sin2 θ − cos2 θ

)
ρat(x). (21)

The above equation clarifies that the atomic motion enters the problem in a nontrivial way.
It also shows how the internal atomic properties are taken care of even though in the
adiabatic approximation the system properties derive from a single internal state |−〉ad. We have
numerically verified the appearance of the PT in terms of sudden changes in ρat(x) (first-order
PT) or ∂ρat(x)/∂x (second-order PT).

In deriving the phase diagrams, tight confinement of the atoms in two directions has been
assumed. If only the longitudinal motion is frozen out, one regains an effective 2D problem
whose eigenvalues are obtained from the Schrödinger equation with potential V (x, y) =

−λ exp
(
−

x2+y2

12
x

)
. As in the 1D situation studied in this section, V (x, y) possesses a finite

number of bound states and one would expect very similar phase diagrams for this 2D case
as for the 1D model.

3.3. Validity of the adiabatic approximation

We conclude this section by analyzing the adiabatic approximation. By a simple rotation, the
amplitudes α appearing in the single atom Hamiltonian (6) can be taken to be real. For real α,
the two last terms of h(α) are readily diagonalized by the unitary transformation [27]

U =

[
cos θ sin θ

− sin θ cos θ

]
, (22)

where the angle θ was given right above equation (21). Momentum transforms as U p̂U †
=

p̂ − (σ̂ + + σ̂−)∂θ , ∂θ ≡ ∂θ/∂ x̂ . Due to the spatial dependence of θ = θ(x̂), the transformed
Hamiltonian is non-diagonal; h̃(α) ≡ Uh(α)U †

= had(|α|) + hcor(α). Here, had(|α|) is the
adiabatic Hamiltonian (7) and hcor(α) contains the non-adiabatic corrections. Explicitly one
finds [27]

hcor(α) =
1

2

[
(∂θ)2 2i (∂θ) p̂ + ∂2θ

−2i (∂θ) p̂ − ∂2θ (∂θ)2

]
. (23)

The kinetic energy is smaller or of the same order as maxx V +
ad(x, |α|

2), which provides a
measure of hcor(α) in comparison to the adiabatic Hamiltonian had(|α|). For typical parameters,
ω = � = 1, 1x = 3, and y = 2, the terms of hcor(α) are at least one order of magnitude smaller
than the terms of had(|α|), which justifies the use of the adiabatic approximation.
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4. Longitudinal thermodynamics

In the previous section, we studied how the DQPT was modified due to motion of the atoms in
a finite potential well, assuming the atomic motion to be frozen out in the longitudinal and one
transverse direction. Here we instead assume the atoms to move freely along the center axis of
the Fabry–Perot cavity while being tightly bound in the transverse directions.

The corresponding single atom Hamiltonian (6) reads

h(α) =
p̂2

2m
+

h̄�

2
σ̂ z + h̄

λ cos(µx̂)
√

ρ0
√

N

(
ασ̂ + + α∗σ̂−

)
, (24)

where µ is the scaled photon wave number, which will be set to unity hereafter, µ = 1. This
Hamiltonian, with the field still quantized, has been considered in several papers, see for
example [28]. Normally L � 2π , where L is the cavity length, so neglecting boundary effects
is not a crude approximation [28]. The Hamiltonian is of the form of a generalized Mathieu
equation, and hence the spectrum Eν(k) is described by a band index ν and a quasi-momentum
k extending over the first Brillouin zone. Due to the internal two-level structure of the atom,
the Brillouin zone is twice the size of what is imposed by the periodicity of the mode [28].
Clearly, Eν(k) depends on the field amplitude α. The corresponding eigenfunctions are written
as 8k,ν(x) = φ

(e)
k,ν(x)|e〉 + φ

(g)

k,ν |g〉. For a constant coupling g(x) = λ0, these Bloch functions are
simple plane waves giving a constant energy shift independent of system parameters such as λ,
ω and �. For a standing wave mode coupling on the other hand, the Bloch functions cannot be
decoupled from the internal atomic states, and consequently the atomic motion will affect the
structure of the phase diagrams as will be demonstrated below.

In the previous section, we assumed the adiabatic regime and diagonalized the Hamiltonian
in its internal degrees of freedom. In this case, the adiabatic potentials V ±

ad (x) cross and
adiabaticity breaks down in the range where the QPTs occur. Fortunately, the Hamiltonian is
easily diagonalized numerically by truncating the dimension of the Hamiltonian matrix. We
present, however, asymptotic analytical results in the appendix, which rely on the adiabatic
approximation. These analytical results enable us to extract the limiting situation of large field
amplitudes. Furthermore, as a numerical diagonalization directly renders several of the Bloch
bands we do not restrict the analysis to just the lowest one. However, it turns out that for most
of the presented examples only the lowest band contributes to the dynamics due to the low
temperatures considered. Exceptions are in the plots of the critical temperature where we indeed
go to rather high temperatures and the excited bands become important.

The partition function is written like in the previous section as

Z = N
C2
√

N
max

06y6∞

{
eN f2(y)

}
, (25)

where C2 is a constant and the free energy per particle

f2(y) = −βh̄ωy + ln [g2(y)] (26)

with

g2(y) =

∞∑
ν=1

∫ +1

−1
dk e−βEν(k). (27)

Here, as above, y = |α|
2/N represent the scaled field intensity. As shown in the appendix, the

second part of f2(y) scales asymptotically as ∼
√

y for large y. Thus, a maximum of the free
energy can only be obtained for finite or zero field intensities y.
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Figure 6. The dimensionless critical atom–field coupling λc as function of ω (a)
and � (b). In (a) � = 1 and in (b) ω = 1. The numbers for each curve display
the dimensionless temperature T . Note in particular that for � → 0, the critical
coupling λc 6= 0.
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Figure 7. The dimensionless critical temperature Tc as function of the system
parameters. The inserted numbers give the value of λ. We note that a QPT is
possible at zero temperature and finite ω, and moreover, that for zero � the QPT
may vanish for small temperatures. In (a) � = 1, while in (b) ω = 1.

As in section 3, we derive the critical atom–field coupling λc and temperature Tc. In figure 6
we show the results of how the critical coupling depends on ω (a) and � (b) for different
temperatures. The critical temperature as function of ω and � is displayed in figure 7, where the
inserted numbers indicate the values of the coupling λ. In both cases, the critical quantities show
clear differences compared to the ones of the regular DM, (2). The critical coupling scales as
λc ∼

√
ω for fixed � just like in the regular DM. However, the � dependence does not possess
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the same structure as (2), and especially for small values on � the critical coupling λc is nonzero.
This was also found in a nearest-neighbor coupling model studied in [19].

In the regular DM, for a fixed λ and � the critical temperature diverges for small ω and goes
to zero for large ω. Here we note that for high temperatures the regular behavior is regained,
while for low temperatures, and in particular zero temperature, a QPT takes place for finite ω.
Fixing ω instead and varying � we get even more surprising results. In the regular DM, there is
an upper temperature for which the QPT is lost and at zero temperature a QPT occurs for finite
�. In our model, a similar phase-diagram is obtained for a range of parameters ω and λ, but
there also exist parameter regimes where no QPT occurs for zero temperature.

Like in the previous section the nature of the PTs is studied by introducing the scaled field
intensity I maximizing f2(y). It is found that the QPTs are of second-order character in all cases.

5. Conclusions

In this work, we have studied a new regime in the DM. The atoms are assumed to be trapped
by the cavity field itself and ultracold such that their center-of-mass kinetic energy is of the
order of the atom–field interaction. This calls for a full quantum mechanical treatment of the
atomic motion and at the same time taking spatial mode variations into account. The analysis is
motivated from our earlier findings, where we demonstrated that atomic motion greatly affects
the system dynamics in many-body cavity QED systems [4]. As expected, we have shown that
this is also true for the DM. The analysis is restricted to considering 1D problems, and both the
case of a Gaussian and a standing wave mode profile were treated. However, we postulated that
similar phenomena are expected also for higher dimensional situations. In particular, we made
evident that the varying number of bound states in the potential formed by a Gaussian mode
profile induces novel first-order QPTs. Additionally, we found that for certain couplings λs, the
system is superradiant for any field frequency ω. Moreover, great differences from the regular
DM were also encountered for a standing wave mode profile.
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Appendix. Tight-binding approach

Here, we analytically consider the large field asymptotic expressions for the energy per
particle f2(y) in the case of a standing wave mode profile. In this regime, one may utilize
the tight-binding approximation [31] to derive the spectrum. We further assume the adiabatic
approximation to be valid and that we can restrict the analysis to the lowest energy band. The
adiabatic potentials are given by

V ±

ad (x) = ±h̄

√
�2

4
+ λ2 cos2(x)y, (A.1)
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where y = |α|
2/N is as before the scaled field intensity. A convenient base for writing down

the periodic Hamiltonian in matrix form is to use the Wannier states w±

j (x) = 〈x | j〉w,± [31].
The function w±

j (x) is localized in the j th ‘well’ of the potentials V ±

ad (x). By the tight-binding
approximation we assume w,±〈i |h±

ad| j〉w,± = 0 unless i = j or i = j ± 1. Within the validity
regime of this approximation we may as well replace the Wannier functions by Gaussian
functions [4]. The widths of the Gaussians are given by approximating the potential wells by
harmonic oscillators, giving

w±

j (x) ≈ w±

G(x − x j) ≡
1

4
√

πσ 2
e−[(x−x j )

2/2σ 2], (A.2)

where

σ 2
=

(
∂2V ±

ad (x)

∂x2

∣∣∣∣
x=x j

)−1

(A.3)

and x j is the position of the j th potential well. To avoid un-physical contributions from the
non-orthogonality of the Gaussians we impose

∫
dx wG(x − x j)wG(x − xi) = δi j . We further

introduce the matrix elements

Ei(y) =

∫
∞

−∞

dx w±

G
∗
(x−x j)

(
−

1

2

∂2

∂x2

)
w±

G(x−x j+i),

J ±

i (y)=

∫
∞

−∞

dx w±

G
∗
(x−x j)V ±

ad (x, |α|
2)w±

G(x−x j+i),

(A.4)

where we only consider i = 0, 1. We note that the Wannier functions are directly related to
the depth of the corresponding potential and therefore their width σ will also depend on y.
This explains the field intensity dependence of Ei(y). Another important observation is that
w±

G(x − x j) are localized where |V ±

ad (x)| are close either to their maxima or minima, resulting
in different coupling elements J ±

i (y), indicated by the ±-superscript. In this notation we get the
lowest band tight-binding energy

E±

1 (k) = E0(y) + J ±

0 (y) +
[
E1(y) + J ±

1 (y)
]

2 cos(k). (A.5)

The part in front of the cosine function is strictly negative resulting in the ground-state energy
being given by k = 0. The kinetic energy integrals of (A.4) are readily solvable, and one finds

E0(y) =
1

4σ 2
,

E1(y) = −
1

8σ 4
exp

(
−

π 2

4σ 2

) (
2σ 2 + π2

)
.

(A.6)

The potential integrals of (A.4) are not analytically solvable for the given potentials (A.1).
Instead we make the same kind of approximation as in section 3

V ±

ad (x) ≈ ±A ± B cos2(x), (A.7)
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and identify

A =
�

2
,

B =

√
�2

4
+ λ2 y −

�

2
.

(A.8)

Within this regime we find

J ±

0 (y) = ±
�

2
+

1

4
√

mσ 2

(
1 ∓ e−σ 2

)
,

J ±

1 (y) = ±
1

4σ 2
e−π2/4σ 2

e−σ 2
.

(A.9)

We emphasize that the width σ 2 depends on the field intensity y;

σ 2
=

1

2B
. (A.10)

The applied approximations are only reliable for z < 1 [4], and it turns out that the QPTs
occur beyond these approximations. Nonetheless, we may find the asymptotics for the free
energy f2(y). In the large y limit, we find that ln [g2(y)] ∼

√
y. Consequently, the field intensity

I will always be finite, regardless of parameter choices. We have verified numerically the y
square-root dependence of ln [g2(y)] for large intensities.
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[24] Rza̧żewski K, Wódkiewicz K and Żakowicz W 1975 Phys. Rev. Lett. 35 432
[25] Białynicki-Birula I and Rza̧żewski K 1979 Phys. Rev. A 19 301
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