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Abstract. Typical quantum communication schemes are such that to achieve
perfect decoding the receiver must share a reference frame (RF) with the sender.
Indeed, if the receiver only possesses a bounded-size quantum token of the
sender’s RF, then the decoding is imperfect, and we can describe this effect
as a noisy quantum channel. We seek here to characterize the performance of
such schemes, or equivalently, to determine the effective decoherence induced
by having a bounded-size RF. We assume that the token is prepared in a
special state that has particularly nice group-theoretic properties and that is near-
optimal for transmitting information about the sender’s frame. We present a
decoding operation, which can be proven to be near-optimal in this case, and we
demonstrate that there are two distinct ways of implementing it (corresponding to
two distinct Kraus decompositions). In one, the receiver measures the orientation
of the RF token and reorients the system appropriately. In the other, the receiver
extracts the encoded information from the virtual subsystems that describe the
relational degrees of freedom of the system and token. Finally, we provide
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explicit characterizations of these decoding schemes when the system is a single
qubit and for three standard kinds of RF: a phase reference, a Cartesian frame
(representing an orthogonal triad of spatial directions), and a reference direction
(representing a single spatial direction).
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1. Introduction

Many communication protocols implicitly require that the communicating parties share a
reference frame (RF) [1]. For instance, if one party, Alice, transmits qubits to another party,
Bob, using spin-1/2 particles, the quantum state of the collection can only be recovered by Bob
if he and Alice share a RF for orientation. Lacking such a shared RF (for instance, by lacking
knowledge of the relation between their local RFs) is equivalent to having a noisy channel; the
density operator relative to Bob’s local frame is the average over rotations of the density operator
relative to Alice’s local frame. For a single qubit, such an average over rotations yields complete
decoherence—no information about the quantum state survives. Nonetheless, Alice and Bob can
still achieve perfect classical and quantum communication by encoding the information into
the rotationally invariant degrees of freedom of many qubits [2]. Indeed, in the limit of large
numbers, the cost of not sharing a RF is only logarithmic in the number of systems. Similarly, if
Alice and Bob lack a phase reference, they can still encode classical and quantum information
in phase-invariant states of composite systems [1]. However, such communication schemes are
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Figure 1. (a) Alice describes the RF token R by the state |e〉〈e| and the system S
by the state ρ. Bob, who is not correlated with Alice’s RF, describes the joint state
of R and S as the twirling of Alice’s description, namely G(|e〉〈e| ⊗ ρ). (b) We
can consider Alice’s act of adjoining the RF token to the system together with
the twirling as an encoding operation E . Composing this with Bob’s decoding
operation R, the resulting channel can be described as an effective R ◦ E .

technically challenging to implement because they make use of highly entangled states of many
qubits [3, 4]. Such schemes will be referred to here as ‘calibration-free’.

A more straightforward strategy for coping with the lack of a shared RF is for Alice and
Bob to begin their communication protocol by setting up a shared RF, that is, they begin
by calibrating or aligning their local RFs. Thereafter Alice transmits her quantum systems
normally. This strategy is illustrated in figure 1. The problem of aligning RFs using finite
communication resources has been well studied [1], [5]–[9]. If only finite communication
resources are devoted to the task, then the token of Alice’s RF that is transmitted to Bob
will be of bounded size. Assuming the RF in question is associated with a continuous degree
of freedom, this bound leads to a nonzero probability of error in the decoding of messages.
Nonetheless, this scheme has two advantages over its calibration-free counterpart: (i) Alice does
not need to implement any entangling operations to encode classical bits or logical qubits into
the physical qubits, nor does Bob require such operations to decode (they may require entangling
operations to prepare and measure the RF token, but the preparation and measurement they
require is always the same and their effort does not scale with the size of the message). (ii) If
Alice wishes to communicate a classical bit string or a string of logical qubit states, she can
encode one logical bit or qubit per physical qubit, and Bob can decode one logical bit or qubit per
physical qubit (in other words, the blocks of physical qubits into which they encode and decode
their logical bits and qubits can be as small as one, unlike the calibration-free scheme). By virtue
of (ii), Alice does not need to know the entire message string at the outset to achieve her optimal
communication rate, nor does Bob need to store all of the systems coherently until he has
received the entire sequence of physical qubits, whereas such capabilities are required to achieve
the optimal rate of communication in the calibration-free scheme. We are therefore motivated
to explore how well Alice can communicate quantum information to Bob after supplying him
with a bounded-size token of her RF.

The general case we consider is that of a RF associated with a compact Lie group G. If the
system is prepared in the state ρ and the RF token in the state |e〉 relative to Alice’s local RF,
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then relative to Bob’s local RF, the pair is in the state

E[ρ] = G(|e〉〈e| ⊗ ρ) , (1)

where G averages over the collective action of the group and is termed the G-twirling operation
(see figure 1). This state encodes ρ. We consider the case where the RF token is prepared
in a particular state |e〉, suggested by previous investigations [9, 10], which is near-optimal
for transmitting information about the group element and which makes the mathematics
particularly simple. We then determine how well Bob can reconstruct the state ρ. It turns out
that the recovery (or decoding) operation R that is equal to the Hilbert–Schmidt adjoint of E ,
normalized to be trace-preserving, is provably near-optimal (in a sense we will define later). The
composition of encoding and decoding yields an effective decoherence of the form

(R ◦ E)(ρ)=

∫
dg p(g)US(g)ρU †

S (g) , (2)

where

p(g)∝ |〈e|UR(g)|e〉|
2 (3)

is a probability distribution over the group with dg the group-invariant measure, US and UR

are unitary representations of G on the system S and the RF token R, respectively. With our
particular choice of reference state |e〉, we find that p(hgh−1)= p(g) for all h ∈ G, ensuring
that R ◦ E is a G-invariant map (it commutes with the action of every g ∈ G). The figure of
merit relative to which the decoding operation is judged to be near-optimal is the entanglement
fidelity.

We also demonstrate two distinct ways of implementing this decoding operation. The first
is an obvious scheme: Bob estimates the orientation of the token relative to his local frame
and then re-orients the system appropriately. We call this the ‘measure and re-orient’ scheme.
The second is less intuitive, but reveals more about the structure of the problem: Bob projects
into the virtual subsystems that support the representation of the group induced by relative
transformations of the system and token and implements an isometry that maps these onto a
single Hilbert space. We call this the ‘extract from the relational subsystems’ scheme. These
relational subsystems are the places in the Hilbert space of the combined token and system
where the quantum information associated with ρ is to be found. Their characterization is the
key technical result of the paper. The second scheme is also particularly interesting because,
with a slight modification, it can yield a decoding that is probabilistically perfect, that is, one
which sometimes fails but which yields a perfect decoding when it succeeds.

We work out the explicit form of the recovery operation R and the effective decoherence
R ◦ E for several interesting examples: (i) a phase reference, (ii) a Cartesian frame (representing
an orthogonal triad of spatial directions)6 and (iii) a reference direction (representing a single
spatial direction). In each case, we consider a system consisting of a single qubit. The explicit
form of the decoherence map is actually quite simple in this case. BecauseR ◦ E is a G-invariant
map, it follows from the results of [11] that it is a sum of irreducible G-invariant maps called
moments. But in the case of a qubit, there is only a single nontrivial moment—the G-twirling
map G. Thus, we have

R ◦ E = (1 − p)I + pG , (4)

6 Note that although the term ‘Cartesian frame’ is commonly used to refer to a RF for both orientation of the axes
of an object as well as the object’s position, it is here used only for orientation.
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where I is the identity map. We show that for our examples, p is inversely proportional to the
size of the RF token,

p ∝
1

size of RF
, (5)

where the size of the RF is given by the quantum number of the highest irreducible
representation appearing in the state of the token. It is also shown that in probabilistically perfect
decoding schemes, the probability of failure is inversely proportional to the size of the RF token.
These results are specific to the special form of RF state that we consider here.

The idea that bounded-size quantum RFs induce an effective decoherence is not new.
The effect of a bounded-size clock, which is a kind of phase reference, has been considered
previously by many authors [12]–[15] and that of a bounded-size directional frame has been
considered by Poulin [16]. Our results go beyond this work in several ways. For one, the case of
a Cartesian frame, which is particularly significant given that it is representative of the general
non-Abelian case, has not been examined before. More significantly, we consider many different
sorts of RFs within a unified framework and we provide insight into the structure of the problem.
It should be noted that although our method can be applied to a system of arbitrary dimension,
we here obtain explicit expressions for the effective decoherence only in the case of the simplest
possible system: a qubit. We hope to provide a discussion of the foundational implications of
modeling bounded-size RFs by effective decoherence in a subsequent paper.

Finally, it is worth pointing out that the problem of communication in the presence of
a bounded-size RF has interesting connections with a disparate set of topics in quantum
information theory and the theory of quantum RFs:

Partially correlated RFs. When some information is known about the relative orientation
of Alice and Bob’s local RFs, they are said to share partially correlated RFs. This is a resource
that interpolates between having and lacking a shared RF. Its quality can be characterized by
the probability distribution over the relative orientation—the more peaked the distribution, the
better the correlation. What can be achieved with this resource is an interesting question that has
only begun to be addressed. We gain some insight into the question in this paper because the
‘measure and re-orient’ implementation of the recovery operation begins with a RF alignment
protocol [1], [5]–[9] that leaves Alice and Bob holding partially correlated RFs.

Programmable operations. There have been many investigations into the possibility of
encoding an operation into a quantum state such that the state can subsequently be used to
implement the operation on another system. If the system into which the operation is encoded
is bounded in size, then it is known that one can only achieve an approximate version of the
operation or a perfect version with non-unit probability [17]–[19]. The token of the quantum
RF in our communication protocol is an instance of a program that encodes the unitary that
relates Alice’s local RF to Bob’s. Bob subsequently uses it to implement the inverse of this
unitary on the system. Our results therefore provide interesting examples of both approximate
and unambiguous programmable operations.

Measures of the quality of a quantum RF. Our results also contribute to the project of
quantifying the extent to which a quantum RF of bounded size can stand in for one of unbounded
size [20]–[22], an important element of a resource theory of quantum RFs. For instance, a
measure of the strength of the effective decoherence associated with the bounded-size RF may
serve as an operational measure of its quality.
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Private channels. If no party besides Bob has a sample of Alice’s RF, then Alice and Bob
are said to possess a private-shared RF. These have been shown to constitute a novel kind of key
that is useful for private communication schemes [23]. Our results establish a lower bound on the
fidelity between input and output in private communication schemes that rely on Bob possessing
a bounded-size token of Alice’s RF. They also establish a bound on the probability of achieving
perfect fidelity by post-selection. This cryptographic application provides a particularly useful
perspective on Bob’s recovery operation: the message is encoded in the relative orientation
between the system and the token of Alice’s RF in the same way that the plain-text in classical
cryptography is encoded in the bit-wise parity of the cypher-text message and the key. Bob
decodes by using the token of Alice’s frame as a key.

Dense coding. As noted above in point (ii), the calibration-free communication scheme
requires Alice to know the entire message to be sent prior to transmitting any systems to Bob if
she is to achieve the maximum rate. In the communication scheme that first sets up a bounded-
size RF, Alice can transmit to Bob the quantum token of her local RF prior to knowing anything
about the message. Consequently, Alice can use the quantum channel at an early time, when it is
perhaps cheaper, to enhance the communication capacity at a future time, when it is known what
message is to be sent. Sending the frame token is therefore akin to establishing entanglement in
a dense coding scheme [24]. One difference, however, is that the fidelity of communication is
never perfect for a bounded-size token, whereas a single maximally entangled state allows for
perfect communication of one qubit.

1.1. Mathematical preliminaries

In this section, we present some formal mathematical tools that are useful for describing
classical and quantum RFs. We follow the notation of [1], to which we refer the reader for
further details. Suppose Alice and Bob are considering a single quantum system described by a
Hilbert space H. Let this system transform via a representation of a group G relative to some
RF. We will restrict our attention to Lie groups that are compact, so that they possess a group-
invariant (Haar) measure dg, and act onH via a unitary representation U , ensuring that they are
completely reducible [25].

Let g ∈ G be the group element that describes the passive transformation from Alice’s to
Bob’s RF. Furthermore, suppose that g is completely unknown, i.e. that Alice’s RF and Bob’s
are uncorrelated. It follows that if Alice prepares a system in the state ρ on H relative to her
frame, then it is represented relative to Bob’s frame by the state

G[ρ] =

∫
G

dg U (g)ρU †(g) . (6)

The action of the representation U of the (compact Lie) group G on H yields a very useful
structure. It allows for a decomposition of the Hilbert space into a direct sum of charge sectors,
labeled by an index q , where each charge sector carries an inequivalent representation U (q)

of G. Each sector can be further decomposed into a tensor product of a subsystemM(q) carrying
an irreducible representation (irrep) of G and a subsystem N (q) carrying a trivial representation
of G. That is,

H=

⊕
q

M(q)
⊗N (q). (7)

Note that this tensor product does not correspond to the standard tensor product obtained by
combining multiple qubits: it is virtual [26]. The spaces M(q) and N (q) are therefore virtual
subsystems.
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Expressed in terms of this decomposition of the Hilbert space, the map G takes a
particularly simple form, given by

G[ρ] =

∑
q

(DM(q) ⊗ IN (q))[5(q)ρ5(q)] , (8)

where5(q) is the projection into the charge sector q , DM denotes the trace-preserving operation
that takes every operator on the Hilbert space M to a constant times the identity operator on
that space, and IN denotes the identity map over operators in the spaceN . A proof of this result
is provided in [1].

Note that the operation G has the general form of decoherence. Whereas decoherence
typically describes correlation with an environment to which one does not have access, in this
case the decoherence describes correlation with a RF to which one does not have access [27].

2. Encoding

Consider a communication scheme wherein Alice prepares a system R in a pure quantum state
|e〉 and sends it to Bob as a quantum sample of her RF, together with a system S (a collection of
qubits for example) that is described by a quantum state ρ relative to her RF. Let R transform via
the unitary representation UR of G, and S via the unitary representation US. The lack of a shared
RF between Alice and Bob implies that the transmitted composite RS is described relative to
Bob’s RF by the G-invariant state

E(ρ)= GRS[|e〉〈e| ⊗ ρ] , (9)

where GRS is the G-twirling operation of (6) for the representation URS = UR ⊗ US of G. This
map E will be referred to as the encoding map. Note that its input space is B(HS) (the bounded
operators on HS), while its output space is B(HR ⊗HS). It maps ρ to a G-invariant state of the
composite RS.

It is useful to define the set of states

{|g〉 = UR(g)|e〉|g ∈ G} , (10)

which form the orbit under the representation UR of G of the fiducial state |e〉 (associated with
the identity element of the group). By expressing the G-twirling operation explicitly and making
use of these, we can express the encoding operation as

E(ρ)=

∫
dg |g〉〈g| ⊗ US(g)ρU †

S (g) . (11)

The encoding map clearly depends on the choice of the state |e〉 for the RF. We turn to this
choice now.

2.1. Quantum reference frames

We begin by considering what properties of a quantum state make it a good representative of a
RF for the group G (the case wherein the RF is associated with a coset space will be considered
in section 6); for a more complete discussion, see [1, 10].

States |g〉 corresponding to different orientations of the RF must be distinct, so at the very
least one requires that the fiducial state |e〉 is not invariant with respect to G or any subgroup
thereof. To emulate a perfect RF for G, these states must in fact be perfectly distinguishable,

〈g|g′
〉 = δ(g−1g′) , (12)
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where δ(g) is the delta-function on G defined by
∫

dg δ(g) f (g)= f (e) for any continuous
function f of G, where e is the identity element in G. If the states {|g〉} of equation (10) satisfy
these requirements, then UR is the left regular representation of G. In the case of a Lie group,
the dimensionality of any system HR that carries the regular representation must necessarily be
infinite. We refer to such an infinite-dimensional quantum RF as unbounded; such systems and
states were considered in [10].

If the Hilbert space dimensionality of the system R serving as a quantum RF is finite, then
we say that the quantum RF is of bounded size. If the RF is associated with a Lie group, having a
continuum of elements, then a bound on the size of the RF implies that the condition (12) cannot
be satisfied precisely. In this case, a key question is: what state on R is the best approximation
to a perfect RF? The answer will depend on the figure of merit for the task at hand, but we will
make use of a generic construction [9, 10] that illustrates the key features.

Suppose the representation UR reduces to a set of irreps {U (q)
R },

UR(g)=

⊕
q

U (q)
R (g)⊗ I , (13)

where the tensor product is the one appearing in the decomposition (7) of HR and where
I is the identity on N (q)

R . We are interested in a special subset of these irreps, namely, the
U (q)

R that appear in the decomposition of UR a number of times greater than or equal to their
dimension dq , i.e. those for which

dq ≡ dimM(q)
R 6 dimN (q)

R . (14)

We denote the set of q that label such irreps by Q R and, in what follows, we will be restricting
our attention to only these irreps. Also, for irreps q ∈ Q R, choose an arbitrary subspace
N̄ (q)

R ⊆N (q)
R with dimension dq , i.e. with dimension equal to that ofM(q)

R .
We now define a new Hilbert space H̄R as

H̄R =

⊕
q∈Q R

M(q)
R ⊗ N̄ (q)

R , (15)

which is of dimension

DR ≡

∑
q∈Q R

d2
q . (16)

The state of R that we will use for our quantum RF is

|e〉 =

∑
q∈Q R

√
dq

DR

dq∑
m=1

|q,m〉 ⊗ |φq,m〉 , (17)

where {|q,m〉} is an arbitrary basis forM(q), and {|φq,m〉} an arbitrary basis for N̄ (q). Note that
the orbit of |e〉 under G has support in H̄R.

The embedding N̄ (q)
R ⊆N (q)

R provides a way of embedding |e〉 in the original Hilbert space
HR, and in addition UR acts on the Hilbert space H̄R in the obvious way. If Q R contained all
irreps of G, then UR would be the (left) regular representation, and for a Lie group the Hilbert
space H̄R would be infinite dimensional. If the quantum RF is of bounded size, then a limited
set of irreps appear in Q R.
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We note that, for the problem of optimally encoding a RF relative to a maximum likelihood
figure of merit, given a general Hilbert space HR the optimal states will not have this precise
form [1, 9, 28, 29]. However, such optimal states do take the form of equation (17) when
restricted to H̄R. These are the states of interest here.

The restriction to irreps having the special property of equation (14) is in fact critical for
our analysis, because only in this case can we define a useful right action of G on the Hilbert
space [10]. Consider the representation VR of G defined by its action on the covariant set (10)
as

VR(h)|g〉 = |gh−1
〉 , g, h ∈ G . (18)

To obtain an explicit form for this right action in terms of the decomposition of equation (15), we
make use of the fact that the state |e〉 is maximally entangled across the virtual tensor products
M(q)

R ⊗ N̄ (q)
R . Thus, we have for any transformation U (q)

R (h) on a subsystemM(q)
R the identity

U (q)
R (h)⊗ I |e〉 = I ⊗ U (q)

R (h−1)T
|e〉

= I ⊗ U (q)
R (h)∗|e〉 , (19)

where T denotes the transpose, ∗ the complex conjugate, and we have made use of the fact
that U (q)

R is unitary. Given that the complex conjugate of a representation U (q)
R of G is also a

representation of G (called the conjugate representation and denoted by U (q∗)

R ), we can define a
representation VR by

VR(h)=

⊕
q∈Q R

I ⊗ V (q∗)

R (h) . (20)

In contrast to UR, the representation VR acts on the subsystems N̄ (q)
R irreducibly according to the

conjugate representation q∗, and leaves the subsystemsM(q)
R invariant. Clearly, the two actions

UR and VR commute. Furthermore, it is easy to verify that VR satisfies equation (18).
As the states of the RF are restricted to the Hilbert space H̄R, it is useful to consider our

encoding operation E of equation (11) with fiducial state |e〉 of equation (17) as a map from
B(HS) to B(H̄R ⊗HS). For the remainder of this paper, we consider the encoding map to be
defined thus.

Finally, we note that the map E with the fiducial state |e〉 chosen to be of the form (17) is
unital. (Because the input and output spaces of E are of differing dimension, we define unital
for such a trace-preserving map as one which maps the (normalized) completely mixed state to
the completely mixed state.) This result is seen as

E(IS/dS)=

∫
dg |g〉〈g| ⊗ IS/dS

=
1

DR

∑
q∈Q R

IM(q)
R

⊗ IN̄ (q)
R

⊗ IS/dS

=
IH̄R

DR
⊗

IS

dS
, (21)

where dS is the dimension of HS. Here, we have used the fact that the maximally entangled
states

∑dq

m=1 |q,m〉 ⊗ |φq,m〉 in equation (17) have reduced density matrices on N̄ (q)
R that are

proportional to the identity.
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2.2. Relational subsystems

It is illustrative to investigate the action of the encoding map (11) (the fiducial state |e〉 will be
assumed to be given by equation (17) except in the final section of the paper) and to explicitly
identify the subsystems of H̄RS ≡ H̄R ⊗HS into which the system’s state is encoded. The details
of this section require extensive use of the virtual tensor product structure of H̄RS induced by
the unitary representation URS of G, given in equation (7), as well as an application of the
Stinespring theorem for covariant maps [31]; this section may be skipped on first reading. To
facilitate this, we first state the main result of this section prior to our detailed investigation of
the encoding map.
Main result: According to equation (7), the joint Hilbert space H̄RS can be decomposed under
the representation URS of G as

H̄RS =

⊕
q∈Q RS

M(q)
RS ⊗ N̄ (q)

RS , (22)

where Q RS are the set of irreps q of G that appear in the decomposition of URS. The encoding
map (11) yields G-invariant density operators which, in terms of the decomposition (22), are
block-diagonal in the irreps q ∈ Q RS and, within each block, have the form of a tensor product
of the completely mixed state on the subsystemM(q)

RS and some nontrivial state on the subsystem
N̄ (q)

RS . Thus, the action of the encoding can be expressed as

E(ρ)=

∑
q∈Q RS

(d−1
q IM(q)

RS
)⊗ E (q)(ρ) , (23)

where IM(q)
RS

is the identity operator onM(q)
RS, and E (q) is a trace-decreasing map from states on

HS to states on N̄ (q)
RS . We show below that, under the assumption that HS is an irrep of G, each

of these encodings E (q) takes the form

E (q)(ρ)=
dq

DR
A(q)†(IK(q) ⊗ ρ)A(q) , (24)

where IK(q) is the identity operator on a Hilbert space K(q) carrying an irrep q∗ of G, and
A(q) : N̄ (q)

RS → K(q) ⊗HS is a linear map satisfying A(q)† A(q) = IN̄ (q)
RS

. In addition, each map A(q)

takes a very simple form, which depends on the irrep q. Specifically, there is a subset of irreps
Qok

RS ⊂ Q RS such that, for q ∈ Qok
RS, the map A(q) is a bijective isometry, that is, a unitary; in

these instances, the map E (q) can be inverted and ρ can be recovered perfectly. For q not in
Qok

RS, the map A(q) is an isometry that is not surjective, i.e. it maps onto a proper subspace of
K(q) ⊗HS. The map E (q) is not invertible in these cases.

We can identify the relational degrees of freedom in which the message is encoded by
investigating how relational transformations act on the Hilbert space H̄RS. The subsystemsM(q)

RS
carry an irreducible representation of G corresponding to the collective action URS and describe
collective degrees of freedom. In contrast, the subsystems N̄ (q)

RS are relational. However, not
all degrees of freedom in N̄ (q)

RS describe relations of the system S to the RF R; some of these
describe relations among the parts of R (or among the parts of S if the latter are composite
systems). We seek to identify, for each irrep q, the precise subsystem of N̄ (q)

RS into which the
message state ρ is encoded.

The system Hilbert space HS carries a representation US of G. If we act with G on the
system but not on the RF, this will induce a relative transformation of the two; however, this
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action alone is not G-invariant. While it is possible to construct a G-invariant action of US

by using the techniques of [1, 10], it is much more straightforward to make use of the right
action VR of G defined in equation (18). This action commutes with the left action UR, and thus
also commutes with the collective action URS of G. By acting with VR(h) for h ∈ G on a state
ρRS = E(ρ) of the form (9), we have

VR(h)E(ρ)V †
R(h)=

∫
dg |gh−1

〉〈gh−1
| ⊗ US(g)ρU †

S (g)

=

∫
dg′

|g′
〉〈g′

| ⊗ US(g
′h)ρU †

S (g
′h)

= E(US(h)ρU †
S (h)) , (25)

where we have used the invariance of the Haar measure. The action of VR(h) on ρRS yields
another invariant state, but one which is now an encoding of the transformed state US(h)ρU †

S (h).
Thus, VR(h) acts as a transformation of the relation between S and R. A map E satisfying
equation (25) is called G-covariant.

As VR is a relational action, it acts on the subsystems N̄ (q)
RS in equation (22); we now

decompose these subsystems according to the irreps of G under the action of VR, and in doing
so identify the subsystems in which we find the image of ρ under the encoding map.

At this stage, we restrict our attention to the case where US is an irrep of G, labeled qS.
It appears straightforward (although with substantially more burdensome notation) to extend
our results to the general case wherein this restriction is relaxed. Indeed, the U(1) example
considered in section 4 provides evidence of the generality of our theorem. However, we do not
consider the general case here.

Recall that the RF R has a Hilbert space given by equation (15), and the system’s Hilbert
space is HS =M(qS)

S . Thus,

H̄RS = H̄R ⊗HS

=

⊕
q ′∈Q R

(
M(q ′)

R ⊗M(qS)

S

)
⊗ N̄ (q ′)

R

=

⊕
q ′∈Q R

 ⊕
q|(q ′,qS)→q

M(q)
RS ⊗Vq ′,qS

q

⊗ N̄ (q ′)

R

=

⊕
q∈Q RS

M(q)
RS ⊗

 ⊕
q ′∈Q R |(q ′,qS)→q

N̄ (q ′)

R ⊗Vq ′,qS
q

 , (26)

where (q ′, qS)→ q denotes that the irreps q ′ and qS couple to the irrep q, Vq ′,qS
q is the

multiplicity space for the irrep q in tensor representation U (q ′)

R ⊗ US, and where Q RS is the set
of all irreps that are obtained by coupling some irrep q ′

∈ Q R to qS. Comparing the expression
above with equation (22), the subsystems N̄ (q)

RS are given by

N̄ (q)
RS =

⊕
q ′∈Q R |(q ′,qS)→q

N̄ (q ′)

R ⊗Vq ′,qS
q . (27)
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We use the fact that if (q ′, qS)→ q, then (q∗, qS)→ (q ′)∗ [31], and that Vq ′,qS
q ' Vq∗,qS

(q ′)∗

[10]. Thus,

N̄ (q)
RS =

⊕
q ′∈Q R |(q∗,qS)→(q ′)∗

N̄ (q ′)

R ⊗Vq∗,qS
(q ′)∗ . (28)

where each subsystem N̄ (q ′)

R on the right-hand side carries an irrep (q ′)∗ of G under the action
VR. (We note that in the examples presented in the latter sections, with groups U (1) and SU (2),
the subsystems V are trivial and can be ignored.)

At this stage, we will make use of the G-covariance of the encoding map E , given by
equation (25), to determine how the message is encoded into the relational subsystems N̄ (q)

RS . As
the state E(ρ) is G-invariant under the action of URS for any ρ, it can be expressed according to
the Hilbert space decomposition (22) as

E(ρ)=

∑
q∈Q RS

(
d−1

q IM(q)
RS

)
⊗ E (q)(ρ) , (29)

where IM(q)
RS

is the identity operator onM(q)
RS and E (q)(ρ) is an (unnormalized) density operator

on N̄ (q)
RS . This expression defines a set of trace-decreasing superoperators E (q) : B(HS)→

B(N̄ (q)
RS ); note that the latter can be naturally embedded in the full multiplicity spaces N (q)

RS
of the combined system. From equation (21), we see that the maps E (q) are also unital in
that E (q)(IS) is proportional (because E (q) is trace-decreasing) to the identity on N̄ (q)

RS . Also,
as VR commutes with URS, we have that each term E (q) is itself G-covariant, satisfying
V (q∗)

R (h)E (q)(ρ)V (q∗)†
R (h)= E (q)(US(h)ρU †

S (h)).
We now make use of the Stinespring theorem for covariant CP maps [30]; in particular,

we use a form due to Keyl and Werner [31] for unital covariant CP maps. There exists another
unitary representation W (q∗) of G on a space K(q) and an intertwiner (linear map)

A(q) : N̄ (q)
RS → K(q) ⊗HS , (30)

satisfying A(q)† A(q) = IN̄ (q)
RS

with

A(q)V (q∗)

R (h)= W (q∗)(h)⊗ US(h)A
(q) , (31)

such that

E (q)(ρ)=
dq

DR
A(q)†(IK(q) ⊗ ρ)A(q) . (32)

The form of equation (28) allows us to identify a suitable Stinespring extension. The
representation V (q∗)

R acts on N̄ (q)
RS through what appears to be (ignoring the limits on the sum

q ′
∈ Q R) a tensor representation of an irrep q∗ with an irrep qS. Thus, we can choose our

Stinespring extension in a minimal way such that W (q∗) acts on K(q) irreducibly as the irrep q∗

of G. The operators A(q) intertwine the representation V (q∗)

R with the collective representation
W (q∗)

⊗ US on K(q) ⊗HS. We now consider two cases:

Case A: If q ∈ Q RS is such that, for all q ′ obtained via (q∗, qS)→ q ′ then q ′
∈ Q R

(i.e., Q R contains all of the irreps q ′ that one can obtain by (q∗, qS)→ (q ′)∗), then the direct
sum Hilbert space in equation (28) is given by

N̄ (q)
RS ' K(q) ⊗HS , (33)
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where ' denotes that these spaces are unitarily equivalent; that is, the map A(q) is a bijective
isometry and simply represents the Clebsch–Gordan transformation relating the tensor product
of two irreps with the direct sum decomposition of N̄ (q)

RS given in (28). Let Qok
RS ⊆ Q RS denote

the set of irreps satisfying this condition.

Case B: If, however, q ∈ Q RS is such that the condition of case A fails (i.e. Q R does not
contain all of the irreps q ′ that one can obtain by coupling q∗ and qS), then the intertwiner is
no longer surjective. Rather, the intertwiner maps N̄ (q)

RS onto a proper subspace of K(q) ⊗HS,
specifically the subspace defined by the carrier space of the irreps (q ′)∗, with q ′

∈ Q R, obtained
through the coupling of the irrep q∗ on K(q) with the irrep qS on HS. (This space is necessarily
a proper subspace of K(q) ⊗HS because, by the conditions of case B, Q R does not contain
all irreps obtained in this coupling.) A set of basis states for this subspace can be calculated
explicitly in any particular instance using the Clebsch–Gordan coefficients for the group G.

We now turn to the probabilities of each of these cases. We note that pq = Tr[5qE(ρ)] =

Tr[E (q)(ρ)] is the probability that the system is encoded into the irrep q. We now prove that,
for the case where HS carries an irrep US of G, this probability is independent of ρ. Using
equation (32), we have

pq =
dq

DR
TrN̄ (q)

RS

[
A(q)†(IK(q) ⊗ ρ)A(q)

]
=

∫
dg

dq

DR
TrN̄ (q)

RS

[
V (q∗)(g)A(q)†(IK(q) ⊗ ρ)A(q)V (q∗)(g)−1

]
=

dq

DR
TrN̄ (q)

RS

[
A(q)†(IK(q) ⊗

∫
dg US(g)ρUS(g)

−1)A(q)
]
, (34)

where in the second line we have used the G-invariance of E (q) and in the third line we have
used equation (31). Because HS is an irrep, it follows that

∫
dg US(g)ρUS(g)−1

= IS/dS where
dS = dimHS, and therefore pq is independent of ρ for all q. The SU (2) case, presented in
section 5, provides an explicit example of this.

We note that for the general case, where the system does not carry an irrep of G, then
this probability can be state-dependent. For example, if HS is a direct sum of irreps qS, then∫

dg US(g)ρUS(g)−1
=
∑

qS
Tr(ρ5(qS)

S )5
(qS)

S where 5(q S)

S is the projector onto the qS irrep of
HS. In this case, for q ∈ Qok

RS (where Aq is unitary), we have pq = d2
q/DR, independent of ρ.

However, for q 6∈ Qok
RS, the weight pq can depend on ρ. This occurs for the U(1) case, as seen

explicitly in section 4.
With each map E (q) now defined through equation (32), we can explicitly express E in

Kraus operator form as E(ρ)=
∑

q,m,µ Kq,m,µρK †
q,m,µ, where

Kq,m,µ =
1

√
DR

|q,m〉 ⊗ A(q)†|q, µ〉 , (35)

and where |q,m〉 is a basis forM(q)
RS and |q, µ〉 is a basis for K(q).

Finally, we point out a useful expression for E (q) (which applies regardless of whether HS

carries an irrep of G). From equation (29), it is clear that

E (q)(ρ)= TrM(q)
RS
(5qE(ρ)5q) . (36)
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Combining this with the expression for E in equation (9) and making use of equation (8), we
obtain

E (q)(ρ)= TrM(q)
RS

[
5q(|e〉〈e| ⊗ ρ)5q

]
. (37)

This form will be used frequently when working out explicit examples.

3. Decoding

In the communication protocol we are considering, Bob’s task is to recover the quantum
message ρ by implementing a decoding mapR: B(H̄R ⊗HS)→ B(HS). A useful recovery map
to consider is the following:

R= DRE† , (38)

where the adjoint for superoperators is defined relative to the Hilbert–Schmidt inner
product, Tr(AE†[B])= Tr(E[A]B). The map R is completely positive and linear, because
the superoperator adjoint preserves these features. It is also trace-preserving. To see this
fact, observe that E(IS)= (IR/DR)⊗ IS, where IR = DR

∫
dg|g〉〈g| is the identity operator

on H̄R; consequently, for ρRS ∈ B(H̄R ⊗HS), we have Tr[R(ρRS)] = Tr[ρRSR†(IS)] = Tr[ρRS].
We have therefore verified that R is a valid quantum operation that can be implemented
deterministically.

Assuming that there is no prior information about the input state to E , the map DRE† is
precisely the ‘approximate reversal’ operation for E proposed by Barnum and Knill [32], which
yields an error no more than twice that of the optimal reversal operation. The error here is
defined in terms of the deviation from unity of the average entanglement fidelity for an arbitrary
input ensemble.

3.1. ‘Measure and re-orient’ implementation of decoding

Given a superoperator A, the adjoint A† is easily determined through a Kraus decomposition
of A. Specifically, if A[ρ] =

∑
i KiρK †

i then A†[ρ] =
∑

i K †
i ρKi . The expression (11) for the

encoding map E provides one Kraus decomposition: the covariant set of operators {K (g), g ∈

G}, where K (g)= |g〉 ⊗ US(g). It follows that a covariant set of Kraus operators for E† is
{K †(g), g ∈ G} where K †(g)= 〈g| ⊗ U †

S (g) and consequently

R[ρRS] = DR

∫
dg(〈g| ⊗ U †

S (g))ρRS(|g〉 ⊗ US(g)). (39)

From this expression, we see that one way in which R can be implemented is as follows:
measure the covariant positive operator-valued measure (POVM) {DR|g〉〈g|dg} on R, then
implement the unitary US(g−1) on S, and finally discard R and the measurement result g. We
refer to this as the ‘measure and re-orient’ implementation of the decoding map. (It is the adjoint
of the ‘prepare and G-twirl’ implementation of the encoding map.)

So we see that the decoding map we are considering is in fact the most obvious recovery
scheme one can imagine! Bob simply estimates the relative orientation between Alice’s RF
and his own by measuring how the sample R of Alice’s RF is oriented, then re-orients the
system appropriately (i.e. in such a way that it is finally oriented relative to his RF in precisely
the way that it was initially oriented relative to Alice’s RF). One can view the system R as a
cryptographic key or calibrating system that contains the information for how to recover the
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quantum state of S. It is noteworthy that this implementation of Bob’s decoding map does not
require any entangling operations between R and S. Bob can achieve it with local operations and
classical communication (LOCC) between R and S. Because Bob does not need to possess S to
implement the appropriate measurement on R, it follows that Alice can subsequently transmit
an arbitrary number of systems and Bob can decode these with the same fidelity as the first.

3.1.1. Effective decoherence. Consider the action of the decoding map on states ρRS = E(ρ),
i.e. on states of the form of equation (11). After a measurement on R having outcome g′,
followed by a transformation US(g′)−1 to system S, the reduced density operator on S is

R ◦ E[ρ] = DR

∫
dg |〈g|g′

〉|
2 US((g

′)−1g)ρU †
S ((g

′)−1g)

= DR

∫
dg |〈e|g〉|

2 US(g)ρU †
S (g) , (40)

where the simplification occurs because dg is invariant. Note that the result is independent of the
outcome g′. It is straightforward to check that this state is normalized, as D−1

R =
∫

dg |〈e|g〉|
2.

This is precisely how a state ρ relative to Alice’s frame would be redescribed relative to Bob’s
frame if their relative orientation g was known to be distributed according to the probability
distribution p(g)= DR|〈e|g〉|

2. If |〈g|e〉|2 as a function of g is highly peaked around the identity
group element e, then the only unitary that will contribute significantly in the integral will be
the identity operation, and we will have R ◦ E[ρ] ' ρ. It is the narrowness of the distribution
|〈g|e〉|2, a measure of the quality of the quantum RF, that determines the degree to which one
can recover the quantum information.

We see that for bounded-size samples of Alice’s RF, the decoding map we have described
achieves approximate error correction. Further on, we will show that the degree to which it
deviates from perfect error correction is inversely proportional to the size of the quantum RF.

3.2. ‘Extract from the relational subsystems’ implementation of decoding

Recall that the ‘measure and re-orient’ implementation of the recovery operationRwas inferred
from the adjoint of the Kraus decomposition {|g〉 ⊗ US(g) | g ∈ G} of E . We exhibited a different
Kraus decomposition of the encoding operation in equation (35). The adjoint of the latter
provides a novel Kraus decomposition of R and therefore also a new way of implementing
the recovery operation. We will refer to it as the ‘extract from the relational subsystems’
implementation. We find that R= DRE† can be written as

R(ρRS)=

∑
q∈Q RS

R(q)
(

TrM(q)
RS

[
5(q)ρRS5

(q)
])
, (41)

where we define

R(q)(·)= TrK(q)
[
A(q)(·)A(q)†

]
, (42)

as a map from B(N̄ (q)
RS ) to B(HS). Recalling the form of the encoding map E (q) of equation (24),

we see that R(q) = dqE (q)†.
This implementation of the decoding map R differs from the ‘measure and re-orient’

scheme in that it requires joint (i.e. non-separable) operations on R and S. Specifically, it is
implemented via a joint unitary on RS followed by a trace on R.
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Finally, we highlight another decomposition of R(q) that will be useful to us further on. It
is the one obtained by taking the adjoint of equation (37),

R(q)(·)= dq〈e|IM(q)
RS

⊗ (·)|e〉 . (43)

3.2.1. Effective decoherence. Given equations (23) and (41), the composition R ◦ E can be
written as

R ◦ E[ρ] =

∑
q∈Q RS

R(q) ◦ E (q)[ρ] . (44)

Substituting the expressions for E (q) and R(q) in equations (32) and (42), we obtain

R ◦ E[ρ] =

∑
q∈Q RS

dq

DR
TrK(q)

[
A(q)A(q)†(IK(q) ⊗ ρ)A(q)A(q)†

]
. (45)

We now consider the two subsets of Q RS from section 2.2. In case A, where q ∈ Qok
RS,

the intertwiner A(q) is a bijective isometry, and consequently A(q)A(q)† is the identity and
R(q) ◦ E (q)[ρ] = (d2

q/DR)ρ. Therefore, in this case the quantum information is perfectly
recovered by the decoding map. In case B, however, P (q)

= A(q)A(q)† is a nontrivial projection
on K(q) ⊗HS and the recovery is not perfect. We can express equation (45) as

R ◦ E[ρ] =

∑
q∈Qok

RS

d2
q

DR

 ρ +
∑

q /∈Qok
RS

dq

DR
TrK(q)

[
P (q)(IK(q) ⊗ ρ)P (q)

]
. (46)

This is just an alternative Kraus decomposition of the effective decoherence map of
equation (40).

3.3. Comparison of implementations

We have shown two very distinct ways of implementing one and the same decoding operation.
If we describe the RF token R as an ancilla, then what we have is an example wherein a
single map can be implemented either by a joint unitary followed by a trace on the ancilla,
or by a measurement of the ancilla followed by a unitary rotation on the system that depends
on the outcome of the measurement. The existence of many different implementations of
an operation is familiar in quantum information theory. For instance, Griffiths and Niu have
made use of a similar multiplicity of possibilities for the optimal eavesdropping strategies in
quantum cryptography [33].

The multiplicity of ways of implementing a single operation is analogous to the multiplicity
of mixtures that lead to the same density operator. Two Kraus decompositions of our G-invariant
recovery operation differ in their transformation properties under the group: one is a G-covariant
set of operators (a continuous set in the case of a Lie group) and the other is a discrete set
of G-invariant operators. Similarly, a G-invariant density operator ρ on a finite-dimensional
Hilbert space admits two sorts of convex decompositions: a spectral decomposition with a
discrete number of G-invariant elements, and the decomposition induced by ρ-distortion of
a G-covariant POVM (continuous if G is a Lie group) [34].

Recognizing this multiplicity of convex decompositions and the fact that no particular
decomposition is preferred has been important for resolving many conceptual confusions [35].
Furthermore, each decomposition may yield important insights. In quantum optics, for example,
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a Poissonian mixture of number eigenstates is equivalent to a uniform mixture over coherent
states with the same mean number but differing in phase. The decomposition into states with
well-defined phase is particularly useful for making predictions about wave-like phenomena,
such as interference experiments, whereas the number state decomposition is best for particle-
like phenomena, such as determining number statistics [36].

Similarly, each of the two decompositions we have provided of our decoding operation
provides some insight into our problem. The ‘measure and re-orient’ scheme is clearly the most
intuitive and demonstrates that joint operations on reference token and system are not necessary
to implement our recovery map. The ‘extract from relational subsystems’ scheme demonstrates
that if Bob begins by measuring the irrep of the composite of R and S, he learns whether the
state was in a ‘good’ irrep or not and consequently whether or not he has achieved a perfect
decoding. This sort of post-selectively perfect decoding operation is discussed in the following
section.

3.4. Post-selectively perfect decoding

Thus far we have only judged decoding schemes by their average performance. It is also
possible to say something about the best and worst case performance. The ‘measure and re-
orient’ scheme is not particularly interesting in this regard: one achieves precisely the same
fidelity of recovery regardless of the outcome of the covariant measurement on the RF token,
so that the best and worst case recoveries are equivalent to the average. On the other hand, in
the ‘extract from the relational subsystems’ scheme, we found that the fidelity of the recovery
depends on the irrep of the composite of RF token and system into which the input state was
encoded. Furthermore, given that the decoding operation was incoherent over these irreps, it is
always possible to make a projective measurement that distinguishes these. Depending on the
measurement outcome, one can achieve decodings with fidelities that are sometimes better and
sometimes worse than the average.

Indeed, by enhancing the ‘extract from the relational subsystems’ scheme with such a
measurement, Bob can achieve perfect decoding with some probability. Specifically, if he finds
one of the ‘good’ irreps, q ∈ Qok

RS, then E (q) is invertible and the decoding operation R(q) of
equation (42) recovers the quantum message perfectly. (Of course, if he achieves one of the
‘bad’ irreps, q 6∈ Qok

RS, then he achieves a decoding that is worse than the average.) Recalling
equation (46) and making use of equation (16), the probability of perfect recovery is

pperfect =
1

DR

∑
q∈Qok

RS

d2
q =

∑
q∈Qok

RS
d2

q∑
q ′∈Q R

d2
q ′

. (47)

Such a decoding scheme achieves post-selectively perfect error correction [37]. It is akin to
achieving unambiguous discrimination of a set of non-orthogonal quantum states [38].

For this implementation of the decoding, note that Bob must be able to store the quantum
token of Alice’s RF coherently until the time when he receives the message systems. Another
point worth noting: if Alice is sending a large number of systems and Bob wishes to implement
probabilistically perfect error correction on some subset of them, he must wait until he
has collected all of the systems in that subset. The reason is that he must perform a joint
measurement on the composite of these and the RF token. Furthermore, after his measurement
is complete, he has disrupted the state of the RF token and he can no longer achieve perfect
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error correction for any other systems. The tradeoffs involved in such post-selectively perfect
decoding schemes are an interesting topic for future research.

Finally, we can consider modifying the encoding operation rather than the decoding in
a similar way. Note that if, immediately after implementing her encoding operation, Alice
implements a projective measurement of the irrep of the composite of RF token and system,
she can come to know whether a subsequent decoding operation will achieve a perfect recovery
or not. In addition, if it happens that Alice has a classical description of the quantum message
rather than merely having a sample, then she can prepare the quantum state many times and
only initiate transmission when her measurement finds one of the ‘good’ irreps. In this case, the
quantum message is perfectly encoded into a pure G-invariant state of the composite of system
and RF token. Such a scheme therefore achieves a relational encoding akin to the one presented
in Bartlett et al [2]. The precise connection of our results to the latter encoding is an interesting
topic for future research (as is the application of the mathematical tools developed here to the
general problem of calibration-free communication schemes discussed in the introduction).

4. Example: phase reference

The quantum state of a harmonic oscillator is always referred to some phase reference [35].
In this example, we consider using one quantum harmonic oscillator (a single mode) as a
phase reference for another, and investigate the effect of bounding the maximum number NR of
excitations in the phase reference. Specifically, consider the single-mode RF to be prepared in
the bounded-size phase eigenstate∣∣eNR

〉
=

1
√

NR + 1

NR∑
n=0

|n〉 , (48)

where |n〉 is the Fock state with n excitations. This state is of the form of our general state (17)
for the case of G = U (1) . For the system, we consider a qubit encoded in the two-dimensional
subspace spanned by |0〉 and |1〉. Note that the system we consider does not carry an irrep of
U(1), and in fact U(1) has only one-dimensional irreps. Because our main result concerning
the representation of the encoding map, presented in section 2.2, was only proven under the
assumption that HS is an irrep, the U(1) example cannot be presented as a special case of this
result. Nonetheless, we find the U(1) example to be in accord with the general result, suggesting
that our theorem applies more generally.

For simplicity, we consider a system prepared in an arbitrary pure state

ρ = |ψ〉〈ψ | , |ψ〉 = α |0〉 +β |1〉. (49)

Our results will directly extend to the mixed-state case via the linearity of convex combination.

4.1. Effective decoherence

The overlap of the RF state |eN R〉 with its rotated version is

|〈eNR |UR(θ)|eNR〉|
2
=

∣∣∣ NR∑
n=0

eiθn
∣∣∣2 =

1 − cos (NR + 1) θ

1 − cos θ
. (50)
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Rotations in U(1) act on the qubit system state as

US(θ)ρUS(θ)
†
=

(
|α|

2 αβ∗eiθ

α∗βe−iθ
|β|

2

)
. (51)

Evaluating equation (40) then gives

R ◦ E(ρ)∝

∫
d θ

2π

1 − cos[(NR + 1)θ ]

1 − cos θ

(
|α|

2 αβ∗eiθ

α∗βe−iθ
|β|

2

)
. (52)

Noting that ∫
d θ

2π

1 − cos[(NR + 1)θ ]

1 − cos θ
= NR + 1 , (53)∫

d θ

2π

1 − cos[(NR + 1)θ ]

1 − cos θ
eiθ

= NR , (54)

which also gives the normalization, we have

R ◦ E(ρ)=
NR

NR + 1

(
|α|

2 αβ∗

α∗β |β|
2

)
+

1

NR + 1

(
|α|

2 0
0 |β|

2

)
=

(
NR

NR + 1
I +

1

NR + 1
G
)

[ρ] , (55)

where G here denotes the U(1)-twirling operation (the dephasing map). It follows that in the
‘measure and re-orient’ scheme for decoding, regardless of the outcome of the measurement,
the reduced density operator is with probability NR/(NR + 1) the state α|0〉 +β|1〉, while with
probability 1/(NR + 1) it is completely dephased in the |0〉, |1〉 basis. The overall effect of
encoding and decoding is to implement a partial dephasing.

4.2. Relational subsystems

Because the irreps of U(1) are all one-dimensional, we have dimM(N )
RS = 1 and consequently,

by equation (23), the encoding operation E may be expressed simply as E(ρ)=
∑

N E (N )(ρ).
By virtue of equation (37), each operation E (N )(ρ) may in turn be expressed as

E (N )(ρ)=5(N )[|eNR〉〈eNR | ⊗ ρ]5(N ) , (56)

which evaluates for different values of N as:

E (N )(ρ)=


α |0, 0〉 , N = 0,

α |N , 0〉 +β |N−1, 1〉 , 0 < N < NR+1,

β |NR, 1〉 , N = NR + 1 .

(57)

The decoding operation has the form R=
∑

N R(N ) where R(N ) ∝ E (N )†. One easily verifies
that R(N ) maps |N , 0〉 to |0〉 and |N − 1, 1〉 to |1〉, so that

(R(N ) ◦ E (N ))[ρ] ∝

|0〉 , N = 0,
α |0〉 +β |1〉 , 0< N < NR + 1,
|1〉 , N = NR + 1 .

(58)

The probability of the outcome N = 0 is |α|
2/(NR + 1), of N = NR + 1 is |β|

2/(NR + 1), and of
each of the other outcomes is 1/(NR + 1). Weighting the decoded statesR(N ) ◦ E (N )(ρ) by these
probabilities, we can verify that equation (55) is recovered.
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In this particular example, taking the adjoint of the encoding operation as one’s recovery
operation is actually optimal. The proof is as follows. For 0< N < NR + 1, the recovery
operation is perfect and consequently optimal. Otherwise, the action of the encoding map is
to measure the system in the {|0〉, |1〉} basis and update it to one of two orthogonal states [as can
be inferred from equation (58)]. It is a well-known result that the update map that maximizes
the entanglement fidelity is simply the Lüders rule (or projection postulate) [39], and this is
precisely what the composition of the encoding with the recovery operation achieves.

The fact that the optimal recovery operation can be achieved using a ‘measure and reorient’
scheme shows that having the classical resource of partially correlated RFs that is obtained
by this scheme is just as good as having the quantum RF token, at least for the purpose of
optimizing average-case performance in decoding. This is a surprising result because one might
have expected the quantum resource to always do better.

Finally, by implementing a projective measurement of the total number and post-selecting
on finding N 6= 0, NR + 1, it is clear that Bob can achieve perfect decoding. This occurs with
probability

pperfect =
NR

NR + 1
. (59)

5. Example: Cartesian frame

For a Cartesian frame, the relevant group is the rotation group7. The charge sectors (irreps) are
labeled by a non-negative integer or half-integer j , and the irreps are (2 j + 1)-dimensional with
the standard basis {| j,m〉,m = − j, . . . , j}. We bound the size of our RF token by bounding
j . Recall that the fiducial state for the frame, equation (17), requires us to work in a subspace
H′

R ⊆HR satisfying equation (14). In the Cartesian case, we are confined to j values such
that dimN ( j)

R > 2 j + 1. We denote the largest such value by jR. (As an example, for an even
number N of spin-1/2 particles, only the highest irrep, j = N/2, fails to satisfy equation (14),
and consequently jR = N/2 − 1. See [1, 9].) For simplicity, we restrict our attention to integer
values of jR (similar results can be obtained if one also allows non-integer values). The fiducial
state of the RF token is

|e jR〉 =

jR∑
j=0

√
2 j + 1

DR

j∑
m=− j

| j,m〉 ⊗ |φ j,m〉, (60)

where

DR =

jR∑
j=0

(2 j + 1)2 =
1

3
(2 jR + 1)(2 jR + 3)( jR + 1). (61)

The system is taken to be a spin-1/2 particle. Because this is an irrep of SU (2), the general
results of section 2.2 apply.

5.1. Effective decoherence

We choose the following parametrization of SU (2),

U (ω, θ, φ)= eiωn · J (62)

7 We use SU (2) rather than SO(3) to allow for spinor representations of the rotation group.
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describing a rotation by angle ω about the unit vector n = (sin θ cosφ, sin θ sinφ, cos θ). Let

|(ω, θ, φ) jR〉 = UR(ω, θ, φ)
∣∣e jR

〉
, (63)

where |e j R〉 is the fiducial RF state of equation (60). Then

〈e jR |(ω, θ, φ) jR〉 =

∑
j

∑
m

2 j + 1

DR
〈 j,m| U ( j)(ω, θ, φ) | j,m〉 (64)

=
1

DR

∑
j

(2 j + 1)χ ( j)(ω, θ, φ) , (65)

where U ( j) is the spin- j irrep of SU (2), and χ ( j)(ω, θ, φ)= Tr[U ( j)(ω, θ, φ)] are the characters
of SU (2). These characters are independent of θ and φ. They are given by

χ ( j)(ω)=
sin[( j + 1/2)ω]

sin[ω/2]
. (66)

Using the following identity:

sin[(n + 1/2)ω]

2 sin[ω/2]
= 1/2 +

n∑
k=1

cos(kω) , (67)

we find that

|〈e jR |(ω, θ, φ) jR〉|
2
=

(
sin[ω( jR + 1)](1 + cos ω)

sin ω(1 − cos ω)
− 2( jR + 1)

cos[ω( jR + 1)]

(1 − cos ω)

)2

. (68)

In terms of this parametrization, the SU (2) invariant measure is

d�=
1

2π 2
sin2 ω

2
sin θ dφ dθ dω, (69)

where 06 φ < 2π , 06 θ 6 π , and 06 ω 6 π . For the rotation US(ω, θ, φ) on the qubit system
in this parametrization, we have

US(ω, θ, φ)=

(
cos ω

2 + i sin ω

2 cos θ ie−iφ sin ω

2 sin θ

ieiφ sin ω

2 sin θ cos ω

2 − i sin ω

2 cos θ

)
. (70)

It follows that the composition of encoding and decoding maps, given by equation (40), is

R ◦ E(ρ)=

(
2 jR + 3

3

)−1 ∫
d� |〈e jR |(ω, θ, φ) jR〉|

2US(ω, θ, φ)ρUS(ω, θ, φ)
†

=
jR

jR + 1
ρ +

1

jR + 1
I/2 (71)

=

( jR

jR + 1
I +

1

jR + 1
G
)

[ρ], (72)

where G is the SU (2)-twirling operation (which is completely decohering for a single qubit).
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5.2. Relational subsystems

Next, we determine the precise nature of the relational subsystems where the quantum
information is encoded. In this example, the multiplicity spaces play a key role. We begin
by describing the group-induced structure of the Hilbert spaces, both for the RF and the total
system. Under the action of the representation UR of SU (2), the Hilbert space for the RF is
decomposed as

HR =

jR⊕
j=0

M( j)
R ⊗ N̄ ( j)

R . (73)

The joint system RS, consisting of the RF plus a spin-1/2 qubit, carries a collective
representation URS = UR ⊗ US of SU (2)which can easily be determined using standard angular
momentum coupling. For coupling a spin- j irrep to a spin-1/2 irrep, we haveM( j)

R ⊗M(1/2)
S =

M( j+1/2)
RS ⊕M( j−1/2)

RS . Thus, the Hilbert space of the joint system RS has a similar decomposition
under the action of URS, given by

HRS =

jR+1/2⊕
J=1/2

M(J )
RS ⊗ N̄ (J )

RS . (74)

The multiplicity spaces for the joint system RS are related to those of the RF as

N̄ (J )
RS =

{
N̄ (J+1/2)

R ⊕ N̄ (J−1/2)
R , J < jR + 1

2 ,

N̄ ( jR)

R , J = jR + 1
2 .

(75)

For simplicity, we consider the qubit state to be pure, expressed in the standard angular
momentum basis as

|ψ〉 =

∑
s=±1/2

αs|1/2, s〉. (76)

The encoded state within the J th irrep is

5(J )(|e jR〉〈e jR | ⊗ |ψ〉〈ψ |)5(J ). (77)

To evaluate this expression, we first evaluate

〈J,M |(|e jR〉|ψ〉), (78)

where we recall that |J,M〉 is defined on the subsystem M(J )
RS . Therefore, the state (78) is an

unnormalized vector on N̄ (J )
RS . We transform |e j R〉|ψ〉 to a coupled basis using Clebsch–Gordan

coefficients ( j1,m1; j2,m2| j,m). In terms of the bases used in (60) and (76), we have

| j,m〉|
1
2 , s〉|φ j,m〉 =

∑
b=±1/2

|J= j+b,M=m+s〉|φ j,m〉( j,m;
1
2 , s| j + b,m + s) . (79)

We note that the states {|φ j,m〉 ,m = − j, . . . , j} for j = J + 1/2 (J − 1/2) form a basis of
N̄ (J−1/2)

R (N̄ (J+1/2)
R ). It follows that the full set of states {|φ j,m〉 , j = J ±

1
2 ,m = − j, . . . , j} form
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a basis of N̄ (J )
RS . We have

〈J,M |(|e jR〉|ψ〉)=

jR∑
j=0

j∑
m=− j

∑
s,b=±1/2

√
2 j + 1

DR
αs|φ j,m〉( j,m;

1
2 , s| j + b,m + s)δJ, j+bδM,m+s

=

∑
s,b = ±1/2

√
2(J − b)+ 1

DR
αs|φJ−b,M−s〉(J − b,M − s; 1

2 , s|J,M) . (80)

We use the following Clebsch–Gordan identity:

( j1,m1; j2,m2| j,m)= (−1) j2+m2

√
2 j + 1

2 j1 + 1
( j,−m; j2,m2| j1,−m1) , (81)

to obtain

〈J,M |(|e jR〉|ψ〉)=

√
2J + 1

DR

∑
s,b=±1/2

αs(−1)s−b+1
|φJ−b,M−s〉(J,M;

1
2 ,−s|J − b,M − s) . (82)

We now consider two cases for J separately.
For J < jR + 1/2, we note that the multiplicity space N̄ (J )

RS is unitarily equivalent to the
tensor product of a spin-J and a spin-1/2 system coupled to total angular momentum J ± 1/2.
That is,

N̄ (J )
RS = N̄ (J+1/2)

R ⊕ N̄ (J−1/2)
R ' K(J ) ⊗HS , (83)

where K(J ) carries an irrep J of SU (2) and ' denotes unitary equivalence. We explicitly define
the bijective isometry A(J ) : N̄ (J )

RS → K(J ) ⊗HS via its adjoint action on a basis for K(J ) ⊗HS as

A(J )†|J,M〉K(J )|
1
2 , s〉HS = (−1)s+1/2

∑
b=±1/2

(−1)b−1/2(J,M;
1
2 , s|J + b,M + s)|φJ+b,M+s〉 . (84)

In terms of this new subsystem structure for the multiplicity spaces, we can express (82) as

〈J,M |(|e jR〉|ψ〉)=

√
2J + 1

DR

∑
s=±1/2

αs A(J )†|J,M〉K(J )|
1
2 , s〉HS

=

√
2J + 1

DR
A(J )†|J,M〉K(J )|ψ〉HS , (85)

where |ψ〉HS is defined by equation (76). It follows that the encoded state for an irrep J where
J < jR + 1/2 is

E (J )(ρ)= TrM(J )
RS

[
5(J )(|e jR〉〈e jR | ⊗ ρ)5(J )

]
=

J∑
M=−J

〈J,M |(|e jR〉〈e jR | ⊗ ρ)|J,M〉

=
2J + 1

DR
A(J )†(IK(J ) ⊗ ρ)A(J ) , J < jR + 1

2 . (86)
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Because A(J ) is bijective, (specifically, because the set of states {A(J )†|J,M〉K(J )|1/2, s〉HS ; M =

−J, . . . , J , s = ±1/2} are orthogonal) we find the qubit faithfully encoded into the relational
subsystem whenever J < jR + 1/2.

However, for the result J = jR + 1/2, the multiplicity space N̄ (J )
RS is exceptional; see (75).

We cannot factorize N̄ (J )
RS as in equation (83). Nonetheless, we can still introduce a Hilbert

space K( jR+1/2), which carries an irrep jR + 1/2 of SU (2) and in terms of it we can define an
isometry A( jR+1/2) : N̄ ( jR+1/2)

RS → K( jR+1/2)
⊗HS, by modifying equation (84) to include only the

b = −1/2 term in the sum. This isometry is simply not surjective. It follows that the set of
states {A( jR+1/2)†

| jR + 1/2,M〉K( jR +1/2)|1/2, s〉HS ; M = − jR − 1/2, . . . , jR + 1/2 , s = ±1/2} are
no longer orthogonal. Therefore, the map

E ( jR+1/2)(ρ)=
2 jR + 2

DR
A( jR+1/2)†(IK( jR +1/2) ⊗ ρ)A( jR+1/2) (87)

is no longer invertible. The action of A( j R+1/2) can be viewed as a projection of uncoupled states
on K( jR+1/2)

⊗HS onto the subspace of states which couple to total angular momentum jR.
The probability assigned to each irrep J is

pJ = Tr
[
5(J )(|e jR〉〈e jR | ⊗ |ψ〉〈ψ |)5(J )

]
=


(2J + 1)2

DR
, J < jR + 1

2 ,

(2 jR + 1)( jR + 1)

DR
, J = jR + 1

2 .

(88)

We note that these probabilities satisfy
∑ jR+1/2

J=1/2 pJ = 1.
The decoding map within each irrep J takes the form

R(J )(·)= TrK(J )[A(J )(·)A(J )†]

= (2J + 1)〈e jR |IM(J )
RS

⊗ (·)|e jR〉 . (89)

For J < jR + 1/2, equation (86) gives

(R(J ) ◦ E (J ))(ρ)= ρ . (90)

For J = jR + 1/2, we make use of equation (87) and find

(R( jR+1/2)
◦ E ( jR+1/2))(ρ)=

(2 jR + 1)( jR + 1)

DR

(
2 jR

6( jR + 1)
I +

(2 jR + 3)

3( jR + 1)
G
) [
ρ
]
, (91)

where G is the SU (2)-twirling operation (complete decoherence). Averaging over the irreps
with the weights given in equation (88), we find the decoded state to be

(R ◦ E)(ρ)=

jR−1/2∑
J=1/2

(2J + 1)2

DR
I[ρ] +

(2 jR + 1)( jR + 1)

DR

(
2 jR

6( jR + 1)
I +

(2 jR + 3)

3( jR + 1)
G
)

[ρ]

=

(
jR

jR + 1
I +

1

jR + 1
G
)

[ρ] , (92)

thereby verifying that equation (71) is recovered.
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We note that our recovery operation is perfect in the non-exceptional irreps and therefore
optimal there. In the exceptional irrep, the error incurred in recovery is at most twice that of
the optimal recovery, as described in section 3, by virtue of being of the form of Barnum and
Knill’s approximate reversal. We leave it as an open problem to prove whether this recovery is
in fact optimal, or if not, to identify what form an optimal recovery map would take.

Post-selectively perfect decoding is achieved if Bob implements a projective measurement
that distinguishes the irreps and obtains J 6= jR + 1/2. By equations (88) and (61) (or by
equation (47) directly), we see that the probability for this to occur is

pperfect =
1

DR

jR−1/2∑
J=1/2

(2J + 1)2 =

∑ jR−1/2
J=1/2 (2J + 1)2∑ jR

j=0(2 j + 1)2

=
2 jR

2 jR + 3
. (93)

6. Example: direction indicator

A directional RF identifies only a single direction in space, as opposed to a full set of axes. Such
an RF is not associated directly with a Lie group, but rather with a coset space. Specifically,
although SU (2) may provide a group of transformations between all possible directional RFs,
any one directional RF is invariant under U (1) rotations about its axis of symmetry; the relevant
coset is then SU (2)/U (1).

Because of this distinction, we expect this example to proceed differently from the other
two. The distinction is immediately apparent because there is no obvious candidate for a fiducial
reference state as in equation (17). Instead, we take the directional RF to be in an SU (2)-
coherent state of size jR, so that the fiducial state is

|e jR〉 = | jR,m = jR〉 . (94)

We consider a qubit system that is described relative to Alice’s local Cartesian frame by the
state

ρ = |ψ〉 〈ψ | where |ψ〉 = α |0〉 +β |1〉, (95)

where |0(1)〉 = | jR = 1/2,m = ±1/2〉. Note first of all that even if Bob shared a classical
reference direction with Alice, her ẑ-axis for instance, his description of the system is still
related to Alice’s by a dephasing operation. The reason is that he only shares Alice’s ẑ-axis, and
so the rotation about ẑ that relates his local x̂-axis to hers is completely unknown. Averaging
over rotations Rz(θ)= exp(−i θ Jz) yields the dephasing operation

U[ρ] =

∫ 2π

0

d θ

2π
Rz(θ)ρR†

z (θ)= |α|
2
|0〉〈0| + |β|

2
|1〉〈1| . (96)

Consequently, if Bob has a bounded-size token of Alice’s ẑ -axis, his decoding will yield a state
that approaches U(ρ) rather than ρ as one increases the size of the token.
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6.1. Effective decoherence

Define |� j R〉 = UR(�)|e j R〉 where � ∈ SU (2). The encoding of ρ relative to Bob’s local
Cartesian frame is the following state of the composite of RF token and system

E(ρ)=

∫
d�|� jR〉〈� jR | ⊗ US(�)ρU †

S (�) . (97)

To decode, Bob measures the covariant POVM {DR|�′

j R
〉〈�′

j R
|d�′

} on the RF token and
reorients the system accordingly. The net result is

R ◦ E(ρ)= DR

∫
d�|〈e jR |� jR〉|

2US(�)ρU †
S (�) . (98)

The effect of this map will be particularly simple given that |e j R〉 is invariant under U (1)
rotations about the z-axis.

For this calculation, it will be easiest to use Euler angles to parametrize SU (2):

U (�)= e−ia Jz e−ibJy e−icJz , (99)

where a, b, c ∈ [0, 2π ]. (We note this parametrization is different from that used in section 5.)
With this parametrization,

〈e jR |� jR〉 = 〈 jR, jR|U ( jR)

R (�)| jR, jR〉

= e−i(a+c) jR [cos(b/2)]2 jR , (100)

and thus |〈e j R |� j R〉|
2
= [cos(b/2)]4 j R . We can express US(�) as a 2 × 2 matrix in the z-basis as

US(�)=

(
e−ia/2 0

0 eia/2

)(
cos b/2 − sin b/2
sin b/2 cos b/2

)(
e−ic/2 0

0 eic/2

)
, (101)

and our qubit system in Bloch vector notation as

ρ =
1

2

(
1 + z x − iy
x + iy 1 − z

)
. (102)

Using the identities∫ π

0
db sin b cos4 jR(b/2)=

2

2 jR + 1
, (103)∫ π

0
db sin b cos4 jR(b/2) cos2(b/2)=

1

jR + 1
, (104)

we find that

R ◦ E(ρ)= (2 jR + 1)
∫

d� cos4 jR(b/2)US(�)ρUS(�)
−1

=
1

2

(
1 + jR

jR+1 z 0

0 1 −
jR

jR+1 z

)

=

((
jR

jR + 1
I +

1

jR + 1
G
)

◦U
)

[ρ] , (105)

where G is the SU (2)-twirling operation, and U is the dephasing operator defined in
equation (96).
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6.2. Relational subsystems

First, we note that the RF token, consisting of only a spin- jR system, does not possess a
multiplicity space. When coupling this spin- jR system to the spin-1/2 qubit, the resulting
collective system is described by

HRS =M( jR)

R ⊗M( 1
2 )

S =M( jR+1/2)
RS ⊕M( jR−1/2)

RS , (106)

and does not possess any multiplicity spaces either.
Given that the fiducial state, equation (94), is not of the form of equation (17), the derivation

of equation (23) is no longer valid. Nonetheless, the encoding map defined by equation (97) may
still be written in the form of equation (23), namely,

E(ρ)=

jR+1/2∑
J= jR−1/2

d−1
J IM(J )

RS
⊗ E (J )(ρ) , (107)

where

E (J )(ρ)= TrM(J )
RS

[
5(J )(|e jR〉〈e jR | ⊗ ρ)5(J )

]
, (108)

which is of the same form as equation (37). To see that this decomposition exists, simply express
equation (97) as E(ρ)= G(|e jR〉〈e jR | ⊗ ρ) where G is the SU(2)-twirling operation. Then, using
equations (8) and (106), we have

E(ρ)=

jR+1/2∑
J= jR−1/2

DM(J )
RS

[
5(J )(|e jR〉〈e jR | ⊗ ρ)5(J )

]
, (109)

which is equivalent to equations (107) and (108). Note that E (J ) is still a map from B(HS) to
N (J )

RS , but in this case N (J )
RS = C, so that it maps density operators to scalars. Specifically,

E (J )(ρ)=


2 jR

2 jR + 1
|α|

2 +
1

2 jR + 1
, J = jR + 1

2 ,

2 jR

2 jR + 1
|β|

2 , J = jR −
1
2 .

(110)

We see that the encoding operation in this case can be described as follows: after adjoining the
RF token to the system, destructively measure the total angular momentum J2 of the composite
and upon obtaining quantum number J , reprepare the system in the associated SU (2)-invariant
state d−1

J IM(J )
RS

.
The decoding operation defined in equation (98) is clearly proportional to the

Hilbert–Schmidt adjoint of the encoding operation. Consequently, it admits a decomposition
into irreps via the adjoints of equation (107), namely,

R(ρRS)=

jR+1/2∑
J= jR−1/2

R(J )
[
TrM(J )

RS
(5(J )ρRS5

(J ))
]
, (111)

where R(J ) ∝ E (J )† is a map from C to B(HS). This is of the same form as equation (41). To
determine R(J ), we calculate the adjoint of equation (108) and determine the normalization by
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requiring that Tr[R(J )(1)] = 1 for all J . We obtain

R(J )(p)=
2 jR + 1

2J + 1
〈e jR |IM(J )

RS
|e jR〉 × p , (112)

where p ∈ C. Except for the constant of proportionality, this has the form of equation (43). It
evaluates to

R(J )(p)= p ×


2 jR + 1

2 jR + 2
|0〉〈0| +

1

2 jR + 2
|1〉〈1| , J = jR + 1

2 ,

|1〉〈1| , J = jR −
1
2 ,

(113)

[which one could also infer by taking the adjoint of equation (110)]. Consequently, the decoding
operation may be described as follows: destructively measure the total angular momentum
(squared), J2, on the composite of RF token and system and upon obtaining quantum number
jR ± 1/2, reprepare the system in one of the two states in equation (113).

The composition of encoding and decoding yields

R ◦ E(ρ)=

jR+1/2∑
J= jR−1/2

R(J ) ◦ E (J )(ρ)

=
1

jR + 1

(
1

2
|0〉〈0| +

1

2
|1〉〈1|

)
+

jR

jR + 1
(|α|

2
|0〉〈0| + |β|

2
|1〉〈1|)

=

((
jR

jR + 1
I +

1

jR + 1
G
)

◦U
)

[ρ] , (114)

in agreement with equation (105). We note that this coincides with the result obtained by
Poulin [16].

This recovery operation is of the form of the approximate reversal operation described
by Barnum and Knill [32] and is therefore near-optimal in the sense described in section 3.
Although it is not itself the optimal recovery map, the latter is easy to find in this example and
we do so presently.

Given that the only pure states of the system that one can hope to reconstruct in the limit
of an unbounded RF token are the Jz eigenstates, denoted here by |0〉〈0| and |1〉〈1|, it is natural
to take as our figure of merit the average input–output fidelity equally weighted over these two
input states (because then one can achieve fidelity 1 in the limit of an unbounded RF token). The
only information about the state of the system that is encoded in E(ρ) is encoded in the relative
weights of its two SU (2)-invariant terms. Consequently, the optimal decoding operation must
consist of a determination of J followed by a repreparation of the system state.

We make use of previous work on the optimal estimation of the relative angle between a
spin-1/2 system and a spin- jR RF [23]. These results show that a measurement of J2 on the
composite is in fact optimal for estimating whether the system state was |0〉〈0| or |1〉〈1| given
a uniform prior over the two. It is also shown there that the posterior probabilities one ought to
assign to these two states upon obtaining outcomes jR + 1/2 and jR − 1/2 are

p(0|+)=
2 j+1
2 j+2 , p(1|+)=

1
2 j+2 ,

p(0|−)= 0 , p(1|−)= 1 .
(115)
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In order to optimize the fidelity, one must reprepare the state that is most likely given
the outcome, so that one should reprepare |0〉〈0| given the ‘+’ outcome and |1〉〈1| given the ‘−’
outcome.R falls short of this optimal recovery because, by equation (113), it does not reprepare
|0〉〈0| given the ‘+’ outcome; instead, it prepares a mixed state reflecting Bob’s knowledge of
the state given the measurement outcome.

Finally, we note that there is no possibility for post-selectively perfect recovery of U(ρ)
from E(ρ). Both irreps, jR ± 1/2, encode the state of the system imperfectly.
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