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Abstract. Sonoluminescence is the intriguing phenomenon of strong light
flashes from tiny bubbles in a liquid. The bubbles are driven by an ultrasonic
wave and need to be filled with noble gas atoms. Approximating the emitted
light by blackbody radiation indicates very high temperatures. Although
sonoluminescence has been studied extensively, the origin of the sudden energy
concentration within the bubble collapse phase is still controversial. It is hence
difficult to further increase the temperature inside the bubble for applications like
sonochemistry and table top fusion. Here, we show that the strongly confined
noble gas atoms inside the bubble can be heated very rapidly by a weak
but highly inhomogeneous electric field as might occur naturally during rapid
bubble deformations. An indirect proof of the proposed quantum optical heating
mechanism would be the detection of the non-thermal emission of photons in
the optical regime prior to the light flash. Our model implies that it is possible to
increase the temperature inside the bubble with the help of appropriately detuned
laser fields.
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1. Introduction

In 1934, Frenzel and Schultes [1] accidentally discovered a phenomenon that later became
known as multi-bubble sonoluminescence [2, 3]. In order to speed up the development process of
pictures, they applied ultrasonic waves to a tank with a photographic fluid. What they observed
were tiny imploding bubbles emitting light at low intensity. Interest in this phenomenon
increased again in 1989, when Gaitan et al [4] were able to produce the cavitation of a single
bubble. Optimizing the experimental set-up, they created a stable bubble whose radius changed
periodically in time. In each cycle, the bubble suddenly collapses and emits a sharp light
pulse. In its new form, the phenomenon became known as single-bubble sonoluminescence.
Later, the groups of Putterman [5]–[12], Suslick [14]–[19] and others [20]–[27] perfected
these experiments. Luminescence of a cavitating bubble has even been induced by pulsed laser
excitation [28].

Figure 1 shows a typical single-bubble sonoluminescence cycle and indicates the relevant
timescales [29, 30]. The period of the applied sound wave is around 60 µs. The time dependence
of the bubble radius is in good agreement with the laws of classical physics and can be described
by the Rayleigh–Plesset equations [31]. For most of the cycle, the bubble radius increases
isothermally. Each expansion phase is followed by a rapid collapse phase. Close to point A,
i.e. about 20 ns before the minimum radius is reached, the accelerating bubble wall becomes so
fast that the bubble becomes thermally isolated from the liquid. Close to its minimum radius
of about 0.5 µm, i.e. between points B and C, the bubble might be filled with up to 108 noble
gas atoms. At this point, a rapid increase of the energy density occurs which is accompanied
by the sudden emission of light. In the case of argon atoms, the light flash lasts for about 40 ps.
Afterwards a re-expansion phase begins in which the bubble oscillates around its equilibrium
radius until it regains its stability.

Detailed measurements of the spectra of the picosecond light flash between points B and
C in figure 1 have been made. Associating the continuum underlying these sonoluminescence
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Figure 1. Time dependence of the driving sound pressure and of the bubble
radius in a typical single-bubble sonoluminescence cycle. Point A marks the
beginning of the collapse phase in which the bubble approaches its minimum
radius very rapidly and becomes thermally isolated from the liquid. At point
B, the temperature within the bubble is significantly increased and a strong
light flash occurs. Point C denotes the beginning of the expansion phase
in which the bubble oscillates around its equilibrium radius until it regains
its stability.

spectra with blackbody or bremsstrahlung radiation indicates temperatures of at least 103–104 K
inside the bubble [7, 9, 11, 12, 32, 33]. It is even possible to observe light emission in the
ultraviolet regime which hints at temperatures of about 106 K [6]. Noteworthy is the discovery
of sharp emission lines in the optical regime [17, 29, 32]. These indicate the population of highly
excited energy eigenstates of noble gas [15, 16, 18, 19] and metal atoms [17], which cannot be
populated thermally. These excitations prove the formation of an opaque plasma core inside
the bubble and have been observed in several single- and in multi-bubble sonoluminescence
experiments [18, 32, 34]. Recent experiments [15, 16, 18, 19] already verified the existence of
a dense plasma inside the bubble.

The light flash at the end of the bubble collapse phase has been attributed to surface
blackbody radiation [9], [11]–[13], neutral and ion bremsstrahlung [35]–[38], collision-induced
emission [39, 40], quantum vacuum radiation [41, 42] and other thermal [10, 43, 44] and
non-thermal processes [45]–[47]. Other authors describe the plasma temperatures inside
the bubble by a converging spherical shock wave [35, 48]. All of these models reproduce the
observed single-bubble sonoluminescence spectra qualitatively. Nevertheless, the origin of the
sudden energy concentration during the final stage of the bubble collapse phase in single-bubble
sonoluminescence experiments remains a mystery [32, 51]. A valid theoretical model needs to
include a mechanism for the formation of a plasma, as well as a mechanism which can increase
the temperature of the plasma even further by at least one order of magnitude. This mechanism
needs to be able to operate in a solid state-like environment and on the very small length scale
given by the radius of the bubble.
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In this paper, we show that a relatively weak but highly inhomogeneous electric field
can cause a coupling between the quantized motion and the electronic states of strongly
confined particles. When combined with spontaneous emission, this coupling results in very
high heating rates. The origin of this heating lies in the fact that the creation of a phonon is
more likely than the annihilation of a phonon. This transfers the particles to higher and higher
temperatures. We then point out that the electric field required for this process might occur
naturally in sonoluminescence experiments during rapid bubble deformations. Moreover, the
noble gas atoms inside the bubble form a van der Waals gas, which reaches its van der Waals
core when the bubble approaches its minimum radius [29, 32]. They hence experience strong
trapping potentials such that their motion becomes quantized. Furthermore, we remark that
noble gas atoms have a stable enough level configuration to undergo a strong heating process.
The quantum optical heating of noble gas atoms might therefore play a crucial role in single-
and multi-bubble sonoluminescence experiments.

Our model does not contradict current models for the description of sonoluminescence
experiments but might explain certain controversial aspects of this phenomenon. In addition to
pointing out a previously unconsidered heating mechanism, it clarifies the role of the noble gas
atoms. Indeed, sonoluminescence experiments require a relatively high concentration of them
inside the bubble [29, 33]. Moreover, our calculations show that the inhomogeneous electric
field accompanying the heating process would result in a non-negligible population of excited
atomic states and the non-thermal emission of light in the optical regime. The detection of a
certain background radiation prior to the light flash during the bubble collapse phase would
hence be a first indirect proof of our model. This radiation is expected to occur on a nanosecond
timescale and should result in sharp emission lines at a typical noble gas transition. Its intensity
should be proportional to the phonon frequency ν and to the number of emitting atoms but does
not depend on their temperature.

The model we use for the description of the proposed quantum optical heating mechanism
is similar to the models typically used to describe laser sideband cooling in ion trap
experiments [49, 50]. In these experiments a red-detuned laser field is applied. Like the above-
mentioned highly inhomogeneous electric field, it establishes a coupling between the quantized
motion and the electronic states of trapped atoms. Based on this analogy, we conclude this paper
with the proposal to enhance the energy concentration in sonoluminescence experiments with
the help of appropriately blue-detuned laser fields. The observation of a certain dependence of
the sonoluminescence phenomenon on the frequency (and lesser on the intensity) of the applied
laser field would support our thesis of quantum optical heating. Increasing the temperatures
inside the bubble via laser driving could assist sonochemistry in the synthesis of a wide range of
nanostructured materials and in the preparation of biomaterials [52]–[54] and might even help
to facilitate nuclear fusion [55, 56].

There are seven sections in this paper. In section 2, we explain the basic idea behind the
considered quantum optical heating mechanism. A theoretical description of strongly confined
atoms inside a highly inhomogeneous electric field is given in section 3. In section 4, we
solve the time evolution of a single atom that is typical for all the atoms inside the bubble. In
section 5, we discuss the emission of a certain background radiation in the optical regime, which
accompanies the heating process prior to the light flash. Section 6 concludes our discussion by
pointing out a mechanism to further increase the temperature inside the bubble. We finally
summarize our results in section 7.
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2. A quantum optical heating mechanism

In this paper, we describe a quantum optical heating mechanism that occurs when a weak but
highly inhomogeneous electric field interacts with strongly confined noble gas atoms. Such
a field might occur naturally during the sudden contractions of the bubble radius in single-
bubble sonoluminescence experiments and during rapid bubble movements and deformations
in multi-bubble sonoluminescence experiments. Polar molecules of the liquid dissolve and
ionized species might be trapped inside the bubble [29, 32, 57], thereby leading to a non-
negligible inhomogeneous charge distribution. This charge distribution is further enhanced by
the formation of a plasma which might create a significant excess of charge density [15, 16, 18,
19, 32, 34]. Although the electric field gradient inside the bubble might be negligible for most
of the time, it might become very high on the relevant micrometre length scale which is given
by the bubble radius, when the bubble approaches its light emission stage.

When the bubble reaches its minimum radius (cf point B in figure 1 in single-bubble
sonoluminescence experiments), the mean distance between the noble gas atoms becomes so
small that interactions between them can be described by a Lennard–Jones potential. The atoms
experience an equilibrium between repulsive interatomic forces due to overlapping orbitals (also
referred to as Pauli repulsion) and attractive forces. To model the resulting strong confinement
of the atoms inside the bubble, we place each of them into a trapping potential. This allows us
to quantize the atom motion during the collapse phase when the bubble reaches its maximum
compression. For simplicity we restrict ourselves to the assumption of only one phonon mode
per atom and denote its frequency by ν. We expect that the noble gas atoms have a stable enough
level configuration to undergo strong heating processes.

In the next section, we shall see that the gradient of the electric field inside the bubble
establishes a coupling between the quantized motion and the electronic states of each noble
gas atom. To model this we denote the ground state of each noble gas atom by |0〉 while |1〉 is
an excited electronic state. The interaction Hamiltonian contains terms that correspond to the
excitation and to the de-excitation of atoms accompanied by the creation and the annihilation
of a phonon. Crucial for changing the temperature of the atoms is the presence of a large
spontaneous decay rate of the excited state |1〉 which keeps the atoms predominantly in their
ground state. Although the described processes are highly non-resonant, we show below that
they can result in a significant change of the mean phonon number per atom. Within a few
nanoseconds, the temperature inside the bubble can increase by many orders of magnitude.

Before going into a more detailed analysis, let us describe the proposed heating mechanism
in a more intuitive way. Suppose an atom is initially in its ground state and possesses exactly
m phonons. We denote this state by |0, m〉. Figure 2 shows the immediately relevant transitions
for this state which we derive explicitly in the next section (cf equations (8) and (11)). Notice
that phonons are bosons with their annihilation and creation operator b and b† given by

b =

∞∑
m=1

√
m |m − 1〉〈m| and b†

=

∞∑
m=0

√
m + 1 |m + 1〉〈m| (1)

with [b, b†] = 1. Consequently, a transition from the state |0, m〉 into |1, m + 1〉 occurs with a
rate proportional to

√
m + 1, while the rate for a transition from |0, m〉 into |1, m − 1〉 scales

as
√

m. When the spontaneous decay rate of the atom is relatively large, such a transition is
most likely followed by an irreversible and predominantly non-radiative transition back into the
ground state of the atom. It transfers the atom either into its initial state |0, m〉, into |0, m − 1〉,
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Figure 2. Level configuration of a single atom–phonon system indicating the
immediately relevant transitions, if the atom is initially in its ground state |0〉

and possesses exactly m phonons. As in equation (8), � denotes the coupling
constant for phonon conserving transitions to the excited atomic state |1〉, while
3 is due to the electric field gradient inside the bubble and establishes a coupling
between the electronic and the motional states of the atom. Moreover, 0 is the
spontaneous photon decay rate of level 1.

or into |0, m + 1〉. Since the final population in the state with m + 1 phonons is higher than the
population in the state with m − 1 phonons, the net effect of the described excitation and de-
excitation process is an increase of the mean phonon number per atom, i.e. heating.

3. Theoretical model

Let us now have a closer look at the mechanism which creates the coupling between the
quantized motion and the electronic states of the noble gas atom shown in figure 2. To do so we
assume the presence of a weak but highly inhomogeneous electric field and derive effective rate
equations for the time evolution of a single atom–phonon system which is typical for the many
atoms inside the bubble. For simplicity, we approximate each atom by a two-level system.

3.1. The interaction Hamiltonian

Suppose σ +
≡ |1〉〈0|, σ−

≡ |0〉〈1| and r is the position of a single atom inside the bubble. Within
the usual dipole approximation, the Hamiltonian of the atom is given by the dipole interaction

Hint = e D · E(r) (2)

with e being the charge of a single electron, the (real) atomic dipole moment

D = D01 σ− + H.c. (3)

and the electric field E(r). For simplicity, we assume that all field components point in the same
direction of a unit vector k̂, which allows us to write E(r) as

E(r) =

∑
k

Ek eikk̂·r + c.c. (4)

with amplitudes Ek and wave vectors k = kk̂. Moreover, we consider the motion of the atom
as quantized. For simplicity, we describe its motion in the k̂-direction by only a single phonon
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mode with frequency ν and the annihilation operator b in equation (1). Replacing the position
operator r − R accordingly, we find [58]

k · (r − R) = k1x(b + b†), (5)

where R is the current equilibrium position of the atom, M is its mass, and

1x = (h̄/2Mν)1/2 (6)

would be the width of its ground state wave function when replacing the square-well-like
potential seen by each atom by a harmonic one. An accurate description of the motion of
the atom would involve a continuous range of phonon frequencies. Here ν is the dominating
frequency of the populated phonon modes. This approximation is similar to the approximation
made when describing the light emission from a blackbody by a single frequency in order to
attribute a temperature T .

Equation (6) can be used to get a very rough estimate of the typical phonon frequency ν in
sonoluminescence experiments. Suppose, the bubble has a radius of 500 nm and is filled with
about 107 argon atoms. Although this might vary by at least one order of magnitude, we assume
that the volume of each atom is given by 1x3. Comparing this volume with V/N , where V is
the volume of the bubble, we obtain a typical 1x of about 4 nm. Using equation (6) and taking
as an example the atomic mass of argon into account, we find that the phonon frequency ν is of
the order of 50 MHz. This frequency is roughly of the same order of magnitude (or higher) as
the phonon frequency in typical ion trap experiments [49, 50].

Since the atom is well localized within the wavelength of its trapping potential, i.e.
k1x � 1, we can now apply the Lamb–Dicke approximation which is routinely used in the
theoretical modelling of ion trap experiments. This allows us to assume [58]

exp(ikk̂ · (r − R)) = 1 + ik1x(b + b†). (7)

Substituting this into equation (2), we obtain the interaction Hamiltonian

Hint = h̄� (σ− + σ +) + h̄3 (b + b†)(σ− + σ +) (8)

with the (real and positive) coupling constants

� ≡ (2e/h̄)
∑

k

D01 · Re
(

Ekeikk̂·R
)
, 3 ≡ −(2e1x/h̄)

∑
k

k D01 · Im
(

Ekeikk̂·R
)
. (9)

This Hamiltonian is essentially a Jaynes–Cummings Hamiltonian [59]. A closer look at equation
(9) shows that 3 is proportional to the gradient of � in the direction of the quantized motion of
the atom, i.e.

3 = 1x k̂ · ∇�(R). (10)

A strong atom–phonon coupling therefore does not necessarily require the presence of a strong
electric field. It only requires a highly inhomogeneous electric field inside the bubble.

3.2. The master equation

Dissipation in the form of spontaneous photon emission from the excited electronic state |1〉 is
as usual taken into account by the master equation [59]

ρ̇ = −
i

h̄

[
Hint + h̄ω0 σ +σ− + h̄ν b†b , ρ

]
+ 0

[
σ−ρσ +

−
1

2
σ +σ−ρ −

1

2
ρσ +σ−

]
. (11)
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Here h̄ω0 is the energy of the excited state |1〉 with the spontaneous decay rate 0. Instead of
integrating the master equation, we now use it to obtain a closed set of effective rate equations
which can be solved more easily. Notice that some of the major quantities in these equations are
coherences and not populations.

3.3. Effective rate equations

In this paper, we are especially interested in the mean phonon number per atom and the
population in the excited state |1〉. These are given by

m ≡ 〈b†b〉 and X3 ≡ 〈σ +σ−
− σ−σ +

〉. (12)

As we shall see below, a crucial role in their time evolution is played by the expectation values

X1 ≡ 〈σ + + σ−
〉, X2 ≡ i〈σ−

− σ +
〉,

Y1 ≡ 〈b + b†
〉, Y2 ≡ i〈b − b†

〉, Y3 ≡ 〈b2 + b† 2
〉, Y4 ≡ i〈b2

− b† 2
〉

(13)

and the atom–phonon coherences

Z1 ≡ 〈(σ + + σ−)(b + b†)〉, Z2 ≡ i〈(σ−
− σ +)(b + b†)〉,

Z3 ≡ i〈(σ + + σ−)(b − b†)〉, Z4 ≡ −〈(σ−
− σ +)(b − b†)〉.

(14)

To obtain a closed and relatively simple system of rate equations, we assume in the
following that

ω0 � ν, 0,�, 3 and m � 1 . (15)

Moreover, we approximate the expectation value of operators of the form 〈Bσ3〉 by 〈B 〉〈σ3〉, as
it applies when the expectation value of B is about the same for an atom in |0〉 and for an atom
in |1〉. Doing so, we find that the time derivatives of the variables in equations (12)–(14) are
given by

ṁ = 3Z3, Ẋ 3 = 2(�X2 + 3Z2) − 0(X3 + 1),

Ẏ1 = −νY2, Ẏ2 = 23X1 + νY1, (16)

Ẏ3 = −2(νY4 + 3Z3), Ẏ4 = 2(νY3 + 3Z1),

while

Ẋ 1 = −ω0 X2, Ẋ 2 = −2(� + 3Y1)X3 + ω0 X1,

Ż1 = −ω0 Z2, Ż2 = −2(�Y1 + 3Y3 + 23m)X3 + ω0 Z1, (17)

Ż3 = 23 − ω0 Z4, Ż4 = −2(�Y2 + 3Y4)X3 + ω0 Z3.

These rate equations hold up to first order in 1/ω0.
Taking into account that ω0 is much larger than all other system parameters (cf equation

(15)), we find that the rate equations in equation (17) can be eliminated adiabatically from the
full set of rate equations. Doing so, X1, X2 and the Z coherences become

X1 =
2(� + 3Y1)X3

ω0
, X2 = 0,

Z1 =
2(�Y1 + 3Y3 + 23m)X3

ω0
, Z2 = 0 ,

Z3 =
2(�Y2 + 3Y4)X3

ω0
, Z4 =

23

ω0

(18)
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in first order in 1/ω0. These quasi-stationary state values are reached on the very fast timescale
given by 1/ω0 which is typically of the order of femtoseconds. Substituting them into equation
(16) we finally obtain the effective rate equations

Ẋ 3 = −0(X3 + 1), Ẏ1 = −νY2, Ẏ2 =
43(� + 3Y1)X3

ω0
+ νY1. (19)

Moreover, we have

ṁ =
23(�Y2 + 3Y4)X3

ω0
,

Ẏ3 = −
43(�Y2 + 3Y4)X3

ω0
− 2νY4,

Ẏ4 =
43(�Y1 + 3Y3 + 23m)X3

ω0
+ 2νY3.

(20)

Notice that the three differential equations (19) decouple from the rest and can be solved
separately.

4. The dynamics of the system

In the following, we consider two cases. First, we discuss the case of time-independent system
parameters in the strong atom–phonon coupling regime with

3 � � and 432 > νω0 (21)

and show that the effective rate equations (19) and (20) can indeed result in a very strong and
approximately exponential heating process. We also identify the most important quantities in the
time evolution of the system. In actual sonoluminescence experiments, the system parameters
can change rapidly in time, especially during the final stage of the bubble collapse phase. As we
shall see below, rapidly changing parameters might enhance the heating of the atom inside the
bubble even further.

4.1. Time-independent system parameters

In the beginning of each sonoluminescence cycle, the atoms experience neither a strong trapping
potential nor an inhomogeneous electric field. We can therefore assume that the coherences
defined in equation (13) are initially zero and that the atom is in its ground state. Due to having
previously been in a hot environment, the mean phonon number per atom, m0, is in general
already relatively high when the trap is formed during the bubble collapse phase. Solving
equation (19) for these initial conditions and the strong coupling regime assumed in equation
(21) yields

X3(t) = −1 (22)

up to first order in 1/ω0. Moreover, we find in good agreement with a numerical solution of the
full rate equations (cf figure 3(a)) that

Y1(t) =
4ν�3

λ2ω0
[cosh(λt) − 1] , Y2(t) = −

4�3

λω0
sinh(λt) (23)
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Figure 3. The Y coherences and the mean phonon number m per atom
as a function of time for ν = 10 MHz while � = 106 Hz, 3 = 1012 Hz, 0 =

1013 Hz,2 and ω0 = 1015 Hz obtained from a numerical solution of the full rate
equations (16) and (17). Good agreement is found with the analytical solutions
in equations (23), (29) and (30) which are represented by the shaded areas.

with the (real) frequency λ defined as

λ ≡ ν

(
432

νω0
− 1

)1/2

. (24)

Equation (22) shows that the atom remains predominantly in its ground state. Its role is to act
as a catalyser for the heating process described in section 2. For times t of the order of 1/λ, Y1

and Y2 are only of the order of 1/ω0. We can hence safely assume that

�Y2 � 3Y4 and � � 23m (25)

2 The assumption of a relatively high spontaneous decay rate can be justified by the presence of collective effects
inside the van der Waals gas formed by the noble gas atoms and ions.
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on a timescale of a few nanoseconds. Taking this and equation (22) into account, we find that
the expressions for Z1 and Z3 in equation (18) simplify to

Z1 = −23(2 m + Y3)/ω0 and Z3 = −23Y4/ω0 (26)

in first order in 1/ω0. The remaining variables m, Y3 and Y4 in equation (16) hence evolve
according to the differential equation

v̇ = Mv (27)

with v ≡ (m, Y3, Y4)
T and

M ≡ −
2

ω0

 0 0 32

0 0 −(232
− νω0)

432 232
− νω0 0

 . (28)

Solving this equation for m(0) = m0 and Y3(0) = Y4(0) = 0, we find

Y3(t) = −
832(232

− νω0)

λ2ω2
0

m0 sinh2(λt), Y4(t) = −
432

λω0
m0 sinh(2λt), (29)

which is in good agreement with the numerical solution of the full rate equations in figures 3(b)
and (c). The mean number of phonons per atom evolves according to

m(t) = m0 +
834

λ2ω2
0

m0 sinh2(λt). (30)

Figure 3(c) shows that this equation indeed describes an approximately exponential heating
process. However, as shown in figure 4, the relative heating rate ṁ/m is not constant in time
but has a relatively strong time dependence itself. At t = 0, we have ṁ/m = 0. It then increases
rapidly and assumes values well above 2λ after a very short time. From equations (27) and (28)
we see that

ṁ

m
= −

232

ω0

Y4

m
. (31)

For times t of the order of 1/λ, the relative heating rate ṁ/m hence approaches 2λ, since the
expressions 2sinh2(λt) and sinh(2λt) in equation (29) are of about the same size in this case.

4.2. Time-dependent system parameters

Up to now we considered only time-independent system parameters. However, in actual
sonoluminescence experiments, system parameters like the phonon frequency ν and the
atom–phonon coupling constant 3 might change very rapidly in time. The reason for this is that
3 originates from a highly inhomogeneous electric field which depends, for example, strongly
on the bubble radius. The phonon frequency ν also relates to the radius of the bubble since it
depends on the trapping potential experienced by each atom. To take this into account, we now
analyse the effect of time-dependent parameters ν(t) and 3(t). The concrete size of 0 and �

is less crucial for the time evolution of the mean phonon number m, as we can see from the
absence of these two parameters in equation (28).

Let us assume that ν and 3 change on a timescale t which is long compared to the
very short timescale given by 1/ω0. Then the above adiabatic elimination of the differential
equations (17) remains valid and the dynamics of the atom–phonon system is given by
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Figure 4. Logarithmic plot of the heating rate ṁ/m as a function of time in
units of 2λ for ν = 10 MHz and ν = 100 MHz and for ω0, �, 3 and 0 as in
figure 3. Again, good agreement is found between the numerical solution of
the full rate equations which can be found in equations (16) and (17) and the
analytical solution (cf equations (29)–(31)).

equations (19) and (20). Moreover, we have seen in the previous section that Y1 and Y2

effectively do not contribute to the time evolution of m, Y3 and Y4. Their dynamics is hence
to a very good approximation given by equation (27). In the following, we solve this differential
equation for rapidly changing system parameters ν and 3 for different situations analytically
and numerically.

To do so, we first notice that the eigenvalues λi of M are given by

λ1 = 0 and λ2,3 = ±2λ (32)

with λ as in equation (24). The corresponding eigenvectors ui of M are given by

u1 =
1

√
2
√

ν4 + λ4

 ν2
− λ2

2(ν2 + λ2)

0

 , u2,3 =
1

√
5(ν2 + λ2)

 ∓(ν2 + λ2)

±2(λ2
− ν2)

4νλ

 . (33)

These eigenvectors are in general not pairwise orthogonal. Our calculation below therefore
involves also their dual vectors ui which equal

u1
=

√
ν4 + λ4

4
√

2(λν)2

2(λ2
− ν2)

ν2 + λ2

0

 , u2,3
=

√
5

16

ν2 + λ2

(λν)2

∓2(ν2 + λ2)

∓(λ2
− ν2)

2νλ

 (34)

with u j
· ui = δi j . This means the dual vector u j is orthogonal to the two vectors ui with i 6= j

and its overlap with u j is unity.
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In the following, we write the vector v = (m, Y3, Y4)
T in equation (27) as a superposition

of the eigenvectors of M . Denoting the respective coefficients by ci , i.e.

v =

3∑
i=1

ci ui , (35)

using the fact that M ui = λi ui , and taking the time dependence of the eigenvectors of M into
account, we can then show that

v̇ =

3∑
i=1

ċi ui + ci u̇i =

3∑
i=1

ciλi ui. (36)

Multiplying this equation with the u j finally yields

ċ j = λ j c j −

3∑
i=1

ci u j
· u̇i . (37)

This shows that the coefficients ci evolve according to

ċ1 =

[
λ4

− ν4

λ4 + ν4
c1 −

√
2

5

√
ν4 + λ4

ν2 + λ2
(c2 − c3)

]
d

dt
ln
(

λ

ν

)
,

ċ2 =

[
λ2

− ν2

λ2 + ν2
c2 −

√
5

8

ν2 + λ2

√
ν4 + λ4

c1

]
d

dt
ln
(

λ

ν

)
+ 2λ c2,

ċ3 =

[
λ2

− ν2

λ2 + ν2
c3 +

√
5

8

ν2 + λ2

√
ν4 + λ4

c1

]
d

dt
ln
(

λ

ν

)
− 2λ c3.

(38)

These differential equations take the effect of the rapidly changing parameters λ (which depends
on ν and 3) and ν into account and can be used to analyse the dynamics of v (i.e. m, Y3 and
Y4) for times t of the order of 1/λ. Unfortunately, their analytical solution is in general not
straightforward.

To illustrate that rapidly changing system parameters generally do not suppress the above
described heating process, we now consider the following scenario as an example. Let us assume
that λ and ν change such that their ratio η,

η ≡ λ/ν, (39)

remains about the same. Using equations (6), (10) and (24), we see that η equals

η =

 2h̄

Mω0

(
k̂ · ∇�(R)

ν

)2

− 1

1/2

. (40)

This means the ratio η is constant when the gradient of the electric field ∇�(R) in the direction
k̂ of the quantized motion of the atom experiences the same time dependence as the phonon
frequency ν. Now the differential equations (38) can be solved analytically. Given the same
initial conditions as in section 4.1, i.e. m(0) = m0 and Y3(0) = Y4(0) = 0, this yields

m(t) = m0 + m0

(
1 + η2

)2

2η2
sinh2

[∫ t

0
dτ λ(τ)

]
. (41)
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In the case of time-independent system parameters, this equation simplifies to equation (30).
More importantly, the time derivative ṁ of equation (41) is always positive, independent of how
λ and ν change in time.

It is even possible to show that rapid changes of the system parameters can significantly
enhance the quantum optical heating process which we analyse in this paper. To do so
we now consider sudden variations of η and ask how they affect the time evolution of ṁ.
More concretely, we assume that the time dependence of η can be described by an equation
of the form

η(t) = η0 eκ(t−t0) (42)

for times t > t0. When combining equations (24), (27) and (35), we find that

ṁ = −
λ

√
5

(c2 + c3). (43)

Let us now have a closer look at the differential equations for c2 and c3. For sufficiently rapid
parameter changes, i.e. for |κ| � λ, we can safely assume that η changes on a much shorter
timescale than 1/λ. This allows us to neglect the terms 2λc2 and −2λc3 in equation (38).
Moreover, we assume that either λ � ν or ν � λ. Then equation (38) can be used to obtain

d

dt
(c2 + c3) = ±

d

dt
[ln η(t)] (c2 + c3), (44)

where the plus sign applies when λ � ν and the minus sign when ν � λ. This equation can
be solved analytically for η’s as in equation (42). Doing so and substituting its solution into
equation (43) we obtain

ṁ(t) =
λ(t)

λ(t0)
ṁ(t0) e±κ(t−t0). (45)

From this equation we see that the derivative ṁ remains always positive as long as ṁ(t0) is
positive. For κ > 0 and λ � ν, for example, the increase of the mean phonon number m slows
down when the variation of the system parameters occurs. However, it is also possible that the
rate ṁ increases exponentially in time. This applies, for example, when κ > 0 and λ � ν.

The above analytical result is in good agreement with the numerical solutions of the rate
equations (38) shown in figure 5. In this figure, we consider four different examples of the
scenario where η undergoes a rapid variation within a small time interval (t0, t0 + 1t). In analogy
to equation (42) we assume

η(t) =
[
eκ(t−t0) − 1

]
η0θt0,t0+ 1

2 1t(t) +
[
e−κ(t−t0−1t)

− 1
]
η0θt0+ 1

2 1t,t0+1t(t), (46)

for times t between t0 and t0 + 1t . Here θt1,t2(t) = 1 if t1 6 t < t2 and θt1,t2(t) = 0 for any other
t . As expected, figures 5(b) and (c) show an enhanced growth of the mean phonon number m
compared to the case of constant system parameters which is shown in figure 5(a). In figures 5(d)
and (e), the growth of the phonon number m slows down. Most importantly, the calculations in
this section confirm that rapidly changing system parameters can yield much larger temperature
changes inside the bubble than the ones already predicted in the previous section for time-
independent parameters.
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Figure 5. Time evolution of the mean phonon number m in units of the initial
phonon number m0 for different sudden variations of λ and the phonon frequency
ν obtained from a numerical solution of the differential equations (38). In
(a) we have λ = 90 MHz, ν = 1 MHz and both remain constant in time. In
(b)–(d), however, λ and ν change suddenly in time as shown with λ(t) = 90 ν(t).
Here η(t) is as in equation (38) with (b) κ = 0.9 GHz and 1t = 1 ns, (c) κ =

5 GHz and 1t = 0.15 ns, (d) κ = −0.5 GHz and 1t = 1 ns and (e) κ = −3 GHz
and 1t = 0.1 ns.

5. Background emission in the optical regime

For simplicity, we now consider again time-independent system parameters. In this case,
X3 = −1 to a very good approximation (cf equation (22)) and the atom remains predominantly
in its ground state. However, more detailed calculations, going up to second order in 1/ω0,
show that a small amount of population builds up in the excited state |1〉 throughout the heating
process. We denote this population in the following by P1 and notice that

P1 = (X3 + 1)/2. (47)
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To calculate P1 for times t of the order of 1/λ, we have a closer look at the differential equation
for X3 in equation (16). Solving it via an adiabatic evolution based on the assumption of a
sufficiently large spontaneous decay rate 0, i.e.

0 � ν, �,3, (48)

and combining the result with equation (47) we find

P1 =
�X2 + 3Z2

0
. (49)

To calculate X2 and Z2 up to second order in 1/ω0, we now consider the second derivatives of the
fast evolving variables X1, X2 and the Z coherences and notice that they evolve much faster than
all other second derivatives. In fact, they are of the order of ω2

0. This allows us to adiabatically
eliminate Ẋ 1, Ẋ 2 and the Ż ’s from the time evolution of the system. Using equations (17) and
(22), this yields X2 = 0 and Z2 = −4ν3Y4/ω

2
0 up to second order in 1/ω0. Combining these

expressions with equations (27) and (49), one can then show that

P1 =
2ν

0ω0
ṁ (50)

to a very good approximation. The signature even of a small but non-negligible population in
the excited states of the atoms is the spontaneous emission of light in the optical regime at a
measurable photon rate I . The reason for this is that I is the sum of the contributions of all the
atoms involved in the proposed heating process. If we denote the relevant atom number by N ,
then I = N0 P1 which results together with equation (50) in

I =
2Nν

ω0
ṁ. (51)

This means the intensity of the emitted light I via the 0–1 transition of the noble gas atom is
proportional to the phonon frequency ν and to the heating rate ṁ, but does not depend on the
mean phonon number m.

Figure 6 shows a very good agreement of this analytical result with the photon emission rate
I obtained from a numerical solution of the rate equations (16) and (17). Moreover, the figure
shows that I increases rapidly during the collapse phase of the bubble. We see an approximately
exponential growth of I as a function of time. Unfortunately, the actual emission of a photon
might transfer an atom into a state |0′

〉 which differs from the state |0〉 of figure 2, for example,
by the spin quantum number. Eventually, this results in a complete depletion of the electronic
states |0〉 and |1〉. Then the coherences in equation (12) become zero, thereby ending the heating
process and the emission of light from the corresponding noble gas transition.

Notice that the light emission described in this subsection is not a description of the strong
light flash at the end of the bubble collapse phase. This light flash and its spectrum are dominated
by thermal radiation which can be attributed to very high temperatures inside the bubble. Here
we are interested in a mechanism which might contribute substantially to the creation of these
very high temperatures. The photons which we describe in this section accompany the proposed
quantum optical mechanism as background radiation. Their detection would constitute a first
indirect proof of our model. The background photons should be present prior to the light flash
during the bubble collapse phase. They are expected to occur on a nanosecond timescale, are
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Figure 6. Intensity of the emitted light per atom, I/N , as a function of time
for an initial phonon number of m0 = 107, ν = 10 MHz and ν = 100 MHz, and
ω0, 0, 3 and � as in figure 3. Good agreement is found between the numerical
solution of the full rate equations (16) and (17) and the analytical expression in
equation (51).

highly non-thermal, and should result in sharp emission lines at a frequency which is typical for
the noble gas atoms inside the bubble.

For the experimental parameters in figure 6 one can easily estimate that a single atom inside
the bubble emits between 10−4 and 10−3 photons per nanosecond. This means a single atom
emits on average between 10−4 and 10−3 photons prior to the picosecond light flash, which ends
the bubble collapse phase. The intensity of the emitted background photons depends strongly
on the total number of atoms N involved in the heating mechanism. Although we expect this
contribution to remain small compared to the 105–107 photons emitted in the optical regime
during the picosecond light flash [55, 60], it should be feasible to detect them.

6. Possible optical enhancement of the energy concentration

One way to enhance the energy concentration in sonoluminescence experiments is to create an
auxiliary highly inhomogeneous electric field inside the bubble thereby increasing the coupling
between the quantized motion and the electronic states of the atoms. However, the atoms
experience a very strong trapping potential, especially during the collapse phase in single-
bubble sonoluminescence experiments, as one can see, for example, from the robustness of
the spherical symmetry of the bubble during each cycle [29, 32]. An analogy between ion
trap and sonoluminescence experiments therefore suggests another, potentially more efficient
approach: namely the application of a blue-detuned laser field which should excite the 0–1
transition of the noble gas atoms (or of another atomic species with sharp optical transition
lines which have already been observed experimentally [17]) inside the bubble.
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cence experiments via laser heating. Shown are the relevant transitions in a single
atom–phonon system, when the atom is in its ground state |0〉, possesses exactly
m phonons and a laser field excites the blue sideband resonantly.

In ion trap experiments, an ion experiences a strong trapping potential such that its motion
becomes quantized [49, 50]. Moreover, a laser field is applied and creates a coupling between
the quantized motion and the electronic states of the ion. In the case of a red-detuned laser,
transitions where the ion becomes excited and loses a phonon are far more likely than transitions
where the atom becomes excited and gains a phonon. Followed by the return of the ion to
its ground state via the spontaneous emission of a photon, the overall effect is a permanent
reduction of the mean phonon number in the ion motion, i.e. cooling.

The similarity of the level scheme in figure 2 and the atomic level configuration in ion
trap experiments [49, 50] suggests that a laser field applied to the noble gas atoms trapped
inside the bubble in sonoluminescence experiments either enhances or suppresses the heating
process, thereby testing our hypothesis of the presence of tightly trapped atoms during the
bubble collapse phase. A maximum enhancement of the heating process should occur when
the laser frequency equals the sum of the transition frequency ω0 and the phonon frequency ν,
as illustrated in figure 7. In this case, transitions between |0, m〉 and |1, m + 1〉 are resonantly
driven while transitions between |0, m〉 and |1, m − 1〉 are highly detuned. Additional laser fields
should be used to avoid the premature depletion of |0〉 and |1〉 due to the spontaneous emission
of photons into states outside the relevant two-level system.

Of course, sonoluminescence experiments are very different from ion trap experiments.
There are, for example, extreme differences in the temperature and in the time-dependence of
the trapping potential observed by each atom in its finite size environment. Ion trap experiments
take place in a far more controlled environment than sonoluminescence experiments, i.e. at
temperatures close to absolute zero. Nevertheless, we expect that a laser is capable of driving
the transitions in the atom–phonon systems shown in figures 2 and 7. Possible transitions that
can be used for this purpose are indicated by the emission of light prior to the light flash at
certain optical frequencies, as discussed in section 5. We expect that the sonoluminescence
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phenomenon depends not only on the intensity of an applied laser field but also shows a very
strong dependence on the laser frequency.

7. Conclusions

In this paper, we discuss a quantum optical heating mechanism which might contribute
substantially to the sudden energy concentration in sonoluminescence experiments. Our
model is based on two assumptions. Firstly, we assume a very strong confinement of
the noble gas atoms inside the bubble during the light emission phase, such that their
motion becomes quantized just before the maximum compression of the bubble in single-
bubble sonoluminescence experiments and during rapid bubble deformations in multi-bubble
sonoluminescence experiments. Secondly, our model requires the presence of a weak but highly
inhomogeneous electric field. The electric field establishes a strong coupling between the
quantized motion and the electronic states of each atom. Heating is due to the fact that processes
which create a phonon are more likely than processes which annihilate a phonon.

Our model does not contradict current models for the description of sonoluminescence
experiments, but explains certain controversial aspects of this phenomenon. We show that the
phonon energy in the bubble can easily increase by a factor of ten or more (cf figure 3(c)). The
relation m h̄ν = kBT can be used to estimate the corresponding temperature increase. In fact,
our model can easily predict temperatures well above 104 K inside the bubble. Rapid changes of
the system parameters might further enhance the proposed quantum optical heating process.
Moreover, our calculations emphasize the role of the noble gas atoms inside the bubbles.
Although predominantly in their ground state, they act like catalysers and facilitate the creation
of phonons at a very high rate.

Our model is based on a quantum optical approach which is routinely used to describe the
laser cooling of tightly trapped ions. To test our hypothesis of a strongly confined noble gas
atoms inside the bubble during the bubble collapse phase, we propose to manipulate them with
the help of an external laser field. Such a laser would create a coupling between the quantized
motion and the electronic states of the atoms similar to the coupling created by a weak but highly
inhomogeneous electric field. Depending on its laser frequency with respect to the relevant noble
gas transition (or with respect to a sharp optical transition of another atomic species [17]), it is
therefore expected to either enhance or inhibit the sonoluminescence phenomenon.

The possibility to increase the temperature inside the bubble in typical sonoluminescence
experiments with the help of appropriate laser fields would be a direct proof of our model. A first
indirect proof could be the observation of background radiation prior to the light flash which
accompanies the proposed quantum optical heating process. Its intensity should not depend on
the temperature inside the bubble but is proportional to the heating rate ṁ, the phonon frequency
ν and the number of noble gas atoms involved in the heating process. The frequency of the
emitted photons should correspond to typical noble gas transitions in the optical regime.
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