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Abstract. We consider a one-dimensional (1D) quantum many-body system
and investigate how the interplay between interaction and on-site disorder
affects spatial localization and quantum correlations. The hopping amplitude
is kept constant. To measure localization, we use the number of principal
components (NPC), which quantifies the spreading of the system eigenstates
over vectors of a given basis set. Quantum correlations are determined by a
global entanglement measure Q, which quantifies the degree of entanglement
of multipartite pure states. Our studies apply analogously to a 1D system of
interacting spinless fermions, hard-core bosons, or yet to an XXZ Heisenberg
spin-1/2 chain. Disorder is characterized by both uncorrelated and long-range
correlated random on-site energies. Dilute and half-filled chains are analyzed.
In half-filled clean chains, delocalization is maximum when the particles do
not interact, whereas multi-partite entanglement is largest when they do. In the
presence of uncorrelated disorder, NPC and Q show a nontrivial behavior with
interaction, peaking in the chaotic region. The inclusion of correlated disorder
may further extend two-particle states, but the effect decreases with the number
of particles and the strength of their interactions. In half-filled chains with large
interaction, correlated disorder may even enhance localization.
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1. Introduction

Disorder may significantly affect the properties of physical systems. Spatial localization
of one-particle states (Anderson localization), for example, is due to uncorrelated random
disorder [1]–[4], whereas short-range [5]–[7] and long-range correlated [8, 9] disorder have
been associated with the appearance of delocalized states. Interestingly, however, a recent
experiment [10] shows that long-range correlated disorder may in fact either suppress or
enhance localization. This scenario becomes yet more complex when two or more particles
are considered and the effects of interactions are taken into account. A clear picture of
the interplay between interaction and disorder is essential to advance our understanding of
the thermodynamic and kinetic properties, as well as the dynamical behavior, of real quantum
many-body systems.

Interest in how interactions influence localization and transport properties of mesoscopic
systems was boosted with the realization that persistent currents could only be explained if the
role of the electron–electron interaction was addressed [11]. In general, interaction between
particles in disordered systems may lead to delocalization [12]–[21]. The competition between
interaction and disorder in many-body systems relates also to other interesting phenomena,
such as the rich variety of quantum phase transitions of ultracold atomic Bose gases in optical
lattices [22], the transition from integrability to chaos [23]–[25] in spin systems, and the
enhancement of entanglement [26]–[29] and the ‘melting’ of quantum computers [30] in the
context of quantum information.

In the present work, we investigate how disorder combined with interactions affect spatial
localization and quantum correlations of a one-dimensional (1D) quantum system. In addition to
uncorrelated disorder, we also analyze long-range correlated disorder. Correlated disorder may
appear in real systems [31] and may also be engineered. The latter includes the introduction
of scatterers [10] or speckles [32] in a 1D waveguide or yet the individual tuning of on-site
energies via local fields [33]–[35]. In contrast to the extensively studied Hubbard model, where
interaction occurs between particles in the same site, we consider interaction between particles
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in neighboring sites. Both dilute and half-filled chains are analyzed. We study the level of
delocalization, determined by the number of principal components (NPC), and the amount of
multi-partite entanglement, quantified by a global entanglement measure Q, of all eigenvectors
of the system. Our numerical results show that: (i) in a non-interacting system, NPC and Q
decrease with uncorrelated on-site disorder and increase with correlated on-site disorder; (ii) in
a clean system, interaction restricts delocalized states to narrow energy bands and the average
spatial delocalization decays, while the behavior of quantum correlations is non-monotonic;
(iii) in a disordered system, the behavior of NPC and Q with interaction depends highly on the
number of particles, being nontrivial in a half-filled chain, where quantum chaos may develop;
and (iv) on average, states of two interacting particles appear to be delocalized in the considered
finite systems with uncorrelated disorder, whereas one-particle states localize.

The paper is organized as follows. Section 2 describes the model, the relation determining
on-site disorder, and the quantities computed. The half-filled chain is studied in section 3,
disordered systems with non-interacting, weakly interacting and strongly interacting particles
are compared. Section 4 considers the dilute limit and compares the results for one- and
two-particle states. Discussions and concluding remarks are presented in section 5.

2. System model and measures of delocalization and quantum correlations

2.1. System model

The analysis developed here applies to different 1D quantum many-body systems, including
XXZ Heisenberg spin-1/2 models and chains of interacting spinless fermions or hard-core
bosons.

The Heisenberg spin-1/2 chain describes quasi-1D magnetic compounds [36] and
Josephson-junction-arrays [37, 38]. It has also been broadly used as a model for proposals of
quantum computers, including those based on semiconductor quantum dot arrays [39], solid
state NMR spin systems [40] and electrons floating on helium [33, 34]. We investigate a
chain with open boundary conditions and nearest-neighbor interactions, as determined by the
Hamiltonian

H = H0i + HXY = H0 + Hint + HXY,

H0 =

L∑
n=1

�n Sz
n,

Hint =

L−1∑
n=1

J1Sz
n Sz

n+1,

HXY =

L−1∑
n=1

J
(
Sx

n Sx
n+1 + Sy

n Sy
n+1

)
.

(1)

Here, h̄ is set to 1, L is the number of sites, and ESn = Eσn/2 is the spin operator at site n, σ x,y,z
n

being the Pauli operators. The parameter �n = ω +ωn, where ωn = dεn, corresponds to the
Zeeman splitting of spin n, as determined by a static magnetic field in the z-direction. In a clean
system, all sites have the same energy splitting (d = 0), whereas disorder is characterized by
the presence of on-site defects (d 6= 0). The relation specifying εn is discussed in section 2.2—
correlated and uncorrelated random disorder are considered. J is the exchange coupling strength
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and 1 is the anisotropy associated with the Ising interaction Sz
n Sz

n+1. We set J,1 > 0. The
total spin operator in the z-direction, Sz

=
∑L

n=1 Sz
n, is conserved; therefore the matrix H is

composed of independent blocks. Each block belongs to a single Sz subspace characterized
by a fixed number M of total spins pointing up; the dimension N of each sector is given by
N =

( L
M

)
= L!/[(L − M)!M!].

The model of equation (1) may be mapped into a spinless fermion system via a
Jordan–Wigner transformation [41], so that HXY becomes Hhop and

H = H0i + Hhop = H0 + Hint + Hhop,

H0 =

L∑
n=1

�na†
nan,

Hint =

L−1∑
n=1

J1a†
na†

n+1an+1an,

Hhop =

L−1∑
n=1

J

2
(a†

nan+1 + a†
n+1an).

(2)

Here, a†
n and an are creation and annihilation operators, respectively. The presence of a fermion

on site n corresponds to an excited spin, the on-site fermion energies are the Zeeman energies, J
is the fermion hopping integral, and J1 gives the fermion interaction strength. The conservation
of Sz translates here into conservation of the total number of particles. Disordered systems
of interacting fermions simplified by neglecting the spin degrees of freedom has been vastly
considered as a first approximation in studies of the metal–insulator transition [15, 42].

The fermionic model above may also be mapped onto a system of hard-core bosons. The
Hamiltonian has the same form of equation (2), where the fermionic creation and annihilation
operators are substituted by bosonic ones [43]. A system of hard-core bosons in 1D optical
lattices constitutes a versatile tool in studies of various complex quantum-physical phenomena,
and has been receiving enormous attention, specially after experimental realizations [44].

Here, a particle or an excitation will generically refer to an excited spin, a spinless fermion,
or a hard-core boson, depending on the specific system one addresses. We assume L even and
study both a half-filled (M = L/2) and a dilute (M = 2) chain.

2.2. On-site disorder

There are widely different physical, biological and economical processes modeled as stochastic
time series. These series may be generated, for example, by imposing a power-law power
spectrum S( f )∝ f −α [45, 46]. The value of α determines the type of noise: α = 0, 1 and 2
correspond, respectively, to white noise (flat frequency spectrum), 1/ f noise and Brownian
noise. We borrow from these studies the specific sequence of long-range correlated on-site
energies considered in this work,

εn =

L/2∑
k=1

√
k−α

∣∣∣∣2π

L

∣∣∣∣1−α

cos
(

2πnk

L
+φk

) , (3)

where φk are random numbers uniformly distributed in the range [0, 2π ]. The sequence is
constructed so that, by Fourier transforming the two-point correlation function 〈εnεm〉, one
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obtains the power-law spectral density S(k)∝ k−α. When α = 0, εn’s in ωn = dεn are random
numbers with a Gaussian distribution, leading to the scenario of uncorrelated disorder: 〈ωn〉 = 0
and 〈ωnωm〉 = d2δn,m . Correlated on-site energies appear for α > 0. The energy sequence is

normalized: 〈εn〉 = 0 and the unbiased dispersion
√∑L−1

n=1 (εn − 〈εn〉)2/(L − 1)= 1.
Long-range correlations are widespread in biological physics and have been extensively

analyzed in this context [47]. In the field of condensed-matter physics, most works dealing with
short-range [5]–[7] and long-range [8, 9] correlated disorder in the context of mobility edges
have been limited to the case of a single particle. Moura and Lyra [8], for instance, considered
sequence (3) and showed that when α > 2 the one-particle wavefunctions remain delocalized
even in the thermodynamic limit. Here, two or more excitations are taken into account and
we investigate how the disorder parameters d and α and the interaction amplitude 1 affect
delocalization and multipartite entanglement in the finite systems described above.

2.3. Delocalization

To quantify the extent of delocalization of an eigenvector |ψ j〉 =
∑N

k=1 ck
j |ϕ

k
〉 of Hamiltonian

(1,2) written in the basis |ϕk
〉, we consider the NPC [48], defined as

NPC j ≡
1∑N

k=1 |ck
j |

4
. (4)

This quantity is also commonly referred to as the inverse participation ratio.
A large NPC j is associated with a delocalized state where many basis vectors give a

significant contribution to the superposition |ψ j〉; whereas a small NPC j is related to a localized
state. Clearly, the components of the eigenvectors depend entirely on the choice of basis in
which to express them. Our approach here is to take a physically motivated basis in order
to study Anderson localization in disordered systems with interacting particles. Anderson
localization refers to the exponential spatial localization of wavefunctions. This justifies our
choice to consider the site basis, which corresponds to a basis consisting of the eigenstates of
H0. In this basis, the interaction Hint contributes to the diagonal elements of the Hamiltonian,
whereas Hhop constitutes the off-diagonal elements, the latter being responsible for transfer of
excitations along the chain.

Because of its basis dependence, NPC is not an intrinsic indicator of quantum chaos. To
characterize the onset of chaos, we consider the level spacing distribution (see section 2.4).
In studies of atomic and nuclear physics, the basis dependence of quantities to measure the
complexity of wavefunctions has long been pointed out [49]. It has been argued that the mean-
field basis is the preferred representation [49]–[51], separating global properties from local
fluctuations and correlations of the wavefunctions. Therefore, in section 3.1.2, we also briefly
compare the results for NPC in the site basis with those for two other representations: free
particles (FP)-basis and interacting particles (IP)-basis. The first consists of the eigenstates of
Hhop—the integrable Hamiltonian describing a clean system of free particles—and the second
consists of the eigenstates of Hhop + Hint—the Hamiltonian for a clean chain with interacting
particles. Hhop + Hint is also an integrable model and is solved with the Bethe ansatz method [52].

Maximum delocalization, NPC ∼ N/3, where N is the matrix dimension [11, 28, 53],
is obtained with states from a chaotic system described by random matrices of a Gaussian
orthogonal ensemble (GOE). The Hamiltonian studied here may also lead to chaos, but it is
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a banded random matrix, having only two-body interactions. In this case, the large values of
NPC may be reached only in the middle of the spectrum, the borders showing less delocalized
states, as typical of two-body random ensembles (TBRE) [54, 55]. In TBREs, the local density
of states (LDOS) as a function of energy is Gaussian and peaked at the center of the spectrum.

2.4. Quantum chaos

In quantum systems, integrable and non-integrable regimes may be identified by analyzing
the distribution of spacings s between neighboring energy levels [11, 56]. Quantum levels
of integrable systems tend to cluster and are not prohibited from crossing, in this case the
typical distribution is Poissonian PP(s)= exp(−s). In contrast, chaotic systems show levels
that are correlated and crossings are strongly resisted, here the level statistics is given by
the Wigner–Dyson distribution. The exact form of the distribution depends on the symmetry
properties of the Hamiltonian. In the case of systems with time reversal invariance2, it is given
by PWD(s)= πs/2 exp(−πs2/4).

For the purpose of illustration, instead of showing the level spacing distributions for the
whole range of parameters analyzed here, we compute P(s) and associate with it a number
given by the quantity η, which is defined as

η ≡

∫ s0

0 [P(s)− PWD(s)]ds∫ s0

0 [PP(s)− PWD(s)]ds
, (5)

where s0 ≈ 0.4729 is the first intersection point of PP and PWD. This quantity, introduced
in [57], simplifies the visualization of the transition from integrability to chaos. For an integrable
system: η→ 1, whereas for a chaotic system: η→ 0. In [58], η = 0.3 was taken as an arbitrary
value below which the system may be considered chaotic. To derive meaningful level spacing
distributions, besides unfolding the spectrum [11, 56], all trivial symmetries of the system need
to be identified. The distributions are computed separately in each symmetry sector.

In addition to the conservation of Sz, the model described by equation (1) in the absence
of disorder may also exhibit the following symmetries [28]: invariance under lattice reflection,
which leads to parity conservation, and, when the system is isotropic, conservation of total
spin S2

= (
∑L

n=1
ESn)

2, that is, [H , S2] = 0 (S2 symmetry). Note that only reflection symmetry
exists in a chain with open boundary conditions, whereas reflection and translational symmetries
would occur in a ring.

2.5. Quantum correlations

To quantify global quantum correlations, we consider the so-called global entanglement, as
proposed by Meyer and Wallach [59]. This is a multi-partite entanglement measure employed
for lattices of two-level systems (qubits). For a pure state |ψ j〉 of a chain with L qubits, it is
defined as

Q j = 2 −
2

L

L∑
n=1

Tr(ρ2
n), (6)

2 The Heisenberg model with a magnetic field does not commute with the conventional time-reversal operator;
however, the distribution associated with its chaotic regime is still given by PWD(s)= πs/2 exp(−πs2/4), as
discussed in [28, 56].
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where ρn stands for the density matrix of the chain after tracing over all qubits except n. Q j is
therefore linearly related to the average purity of each two-level system, that is, it is an average
over the entanglements of each qubit with the rest of the system [59]–[61]. Maximum global
entanglement corresponds to Q = 1.

Given the conservation of Sz in H (1) (of the number of particles in H (2)), this expression
may be further simplified.

For spins,

Q j = 1 −
1

L

L∑
n=1

|〈ψ j |σ
z
n |ψ j〉|

2. (7)

For spinless fermions,

Q j = 1 −
1

L

L∑
n=1

|〈ψ j |2a†
nan − 1|ψ j〉|

2. (8)

A more general entanglement measure, the so-called generalized entanglement (GE), was
proposed in [62]. GE is based on the relationship of the state with a distinguished set of
observables, rather than a distinguished subsystem decomposition. It coincides with 1 − Q j

when the observable set corresponds to the expectation values of the local magnetizations,
|〈ψ j |σ

β
n |ψ j〉 where β = x, y, z. Global entanglement is also closely related to the more broadly

used von Neumann entropy [28]. All of the above are measures of multipartite entanglement,
which differ significantly from measures, such as concurrence [63], which aim at capturing
pairwise correlations.

The meaning of global entanglement is probably better understood with examples.
Consider, for instance, a bipartite system consisting of two qubits. Each qubit may be in state |0〉

or |1〉. States such as |00〉, |01〉 or even [|00〉 + |01〉 + |10〉 + |11〉]/2 are not entangled, Q = 0.
The latter, in particular, is maximally delocalized, but not entangled, since it may be written
as a product state [|0〉 + |1〉]/

√
2 ⊗ [|0〉 + |1〉]/

√
2. In contrast, a state such as a1|01〉 + a2|10〉,

where |a1|
2, |a2|

2
6= 0, cannot be written as a product of states of the qubits; the qubits are

then non-locally correlated and the state is entangled, Q 6= 0. Maximum entanglement, Q = 1,
occurs when |a1|

2
= |a2|

2
= 1/2, which corresponds to the so-called EPR or Bell state. In this

case, Tr(ρ2
n)= 1/2, that is, the reduced state of each qubit is maximally mixed. But global

entanglement goes beyond bipartite entanglement and quantifies the amount of multipartite
entanglement. The GHZ state, [|00 . . . 00〉 + |11 . . . 11〉]/

√
2, or state [|00〉 + |11〉]/

√
2 ⊗ [|00〉 +

|11〉]/
√

2 are examples of states with maximum global correlation [60].

3. Half-filled chain

We consider a half-filled 1D system with L = 12 and M = 6. This choice corresponds to the
largest subspace of the Hamiltonian, the sector where chaos sets in first.

3.1. Uncorrelated random disorder

3.1.1. Site-basis. We start by investigating how uncorrelated disorder affects the spatial
localization of systems with interacting particles. In the main panel of figure 1, we plot the
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Figure 1. Interplay between interaction and uncorrelated random disorder. Main
panel: NPC in the site-basis versus d/J ; average over 924 states and 20
realizations. Panels (A) and (B): Level of chaoticity versus d/J (unfolding as
described in [25]3); average over 20 realizations. Panels (al,r), (bl,r) and (cl,r):
1= 2; left: normalized histogram for the diagonal matrix elements H0i (Nt is
the number of states); right: NPC versus eigenvalues; 20 realizations. All panels:
L = 12, M = L/2, Gaussian random numbers: α = 0.

average NPC in the site-basis versus the amplitude d/J of uncorrelated Gaussian disorder for
different values of the interaction strength. The maximum spatial delocalization occurs in a
clean system in the absence of interaction. At d/J = 0, the level of delocalization decreases
with1, and for1= 0, NPC also decreases with d/J . On the other hand, when both interaction
and disorder are present, the behavior is not monotonic and NPC reaches a peak for d/J < 1,
eventually decreasing again as the disorder becomes larger than the hopping integral.

At d/J = 0, the wavefunctions of the chain with interacting particles are delocalized in the
site-basis, although the system is integrable. The addition of disorder in cases where 0< J1. J
further increases NPC by breaking symmetries and allowing for couplings between more basis
states. This is completely antagonistic to the behavior of chains with non-interacting particles
or with very strong interactions (J1� J ), where disorder only localizes wavefunctions. By
comparing the curves of NPC with η in figures 1(A) and (B), one sees that the delocalization
peak is directly related to the onset of quantum chaos. There, the minimum value of η for 1 =
0.5, 1 and 1.5 occurs at d ∼ J/4. However, it is important to emphasize that the bump in NPC
should not be taken alone as an indication of chaos. In fact, a similar but less dramatic behavior
is observed for the NPC of a 2D system, which is chaotic already at d/J = 0 [28].

3 At d/J = 0, the correct evaluation of η would need to take into account the symmetries of parity and, when
1= 1, the total spin; moreover, when J1> J , a specific energy band, determined by the number of pairs of
excitations and border excitations, would also need to be selected.
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To better understand the further delocalization of wavefunctions in interacting 1D systems
when disorder is considered, we select the case where 1= 2 and compare, for three values of
d/J , the histograms of the diagonal elements H0i in panels al, bl and cl and the plots of the level
of delocalization of the eigenvectors of Hamiltonian (1, 2) versus their corresponding energies
E in panels (ar), (br) and (cr).

When d/J = 0, the energies of the basis vectors form narrow bands of resonant states (al),
the energies being determined by the number of pairs of neighboring excitations and by the
number of excitations placed at the edges of the chain (border effects). These energies range
from −J1(L − 1)/4 to J1(L − 3)/4 and the bands are separated by J1. As the hopping term
is turned on, only basis vectors belonging to the same symmetry sector can couple to form
the wavefunctions. In addition, if J1> J , the effects of J on states belonging to different
bands are negligible and the bands, although now of finite width, remain separated. In this case,
only states placed in the same band and showing the same symmetries can mix, so the level of
delocalization is reduced to the number of states in the band. Moreover, the number of states in a
band decreases with the size of the clusters, that is, the number of neighboring excitations [14].
The overall effect in clean systems is therefore the monotonic decrease of average NPC with
interaction. The right panel (ar) shows the values of NPC. For this integrable system, no clear
relationship between NPC and E is seen, as expected due to the absence of level repulsion. It is
interesting to contrast this behavior with the 2D clean system, which is chaotic and outlines the
shape typical of chaotic TBRE [55] already at d/J = 0 (data not shown).

By slightly increasing d/J , the bands broaden. If J1> J , they remain uncoupled (bl):
the number of resonant intra-band states then decreases and so does NPC (br). This explains
the valley that precedes the peak in the NPC curves shown in the main panel. Larger disorder
is then needed to overlap the bands (cl) and increase delocalization (cr). Note that the average
NPC for d/J = 0 and 0.3 is approximately the same, although the NPC dependence on energy is
significantly different (cf ar and cr). The integrable clean chain shows no relationship between
NPC and E (ar), but as complexity increases and η decreases, a relationship similar to those
appearing in TBREs becomes evident (cr): delocalized states are in the middle of the spectrum
and only localized states appear in the edges.

The case of 1= 2 is at the borderline, where band overlapping is significant and where
level spacing distributions close to a Wigner–Dyson distribution may still be obtained. For larger
interactions, such as 1= 5, the bands are very separated at d/J = 0 and do not merge together
by increasing d/J ; instead, larger disorder simply prevents resonances leading to the monotonic
decay of NPC (see the main panel).

Figure 2 shows the behavior of global entanglement versus uncorrelated disorder for
various values of the anisotropy4. A clean isotropic chain has Q = 1, since the Hamiltonian is
invariant under a global rotation of 180◦ around the x-axis [28]. For d/J → 0, contrary to NPC,
the largest values of Q are found in the presence of weak interaction, 0<16 1. This suggests
that interactions are key ingredients for the generation of non-local correlations in a half-filled
chain. Therefore, we identify two main factors contributing to multipartite entanglement: the
hopping term, which spreads the wavefunction (a state with on-site localization obviously shows
no global entanglement), and the interaction term, which further enhances the correlations
between the particles. High levels of entanglement require more than simply delocalization.

4 The behavior of different local purities versus uncorrelated disorder for an isotropic system was considered
in [28].
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Average global entanglement versus d/J . Average over 924 states and 20
realizations; L = 12, M = L/2; α = 0.

As we have discussed in section 2.5, it is possible to have very delocalized states with low
entanglement.

Also in contrast with NPC, when 16 1, global entanglement decreases monotonically
with disorder. This is a result of the breaking of symmetries. It is possible, although this requires
further investigation, that besides S2 symmetry (and consequent rotational symmetry), reflection
also has positive effects on quantum correlations. To illustrate this idea, compare the values of
NPC and Q in the table below. We have a system with L = 12, 1= 0.5, and two equal defects
at the borders, ω1 = ωL = 0.05 J , which guarantees that the S2 symmetry is broken, but not
parity. Suppose that we may include an additional defect on site n with energy 0.5 J (if n = L ,
then ωL becomes 0.55 J ). This is a simple way of breaking parity.

NPC Q

No additional defect 217 0.989
Additional defect at n = L 176 0.953
Additional defect at n = (L/2)+ 1 256 0.987

The chain with equal or unequal border defects is integrable [64], whereas a defect in the
middle leads to chaos [25]. Independently of the position of the additional defect, it simply
decreases Q. NPC, on the other hand, decreases only in the integrable regime, but increases in
the chaotic region. It has been argued in [28] that Q seems to be more closely related to NPC
than to the integrable–chaos transition. Here, we go one step further and claim that, even though
delocalization is necessary for the existence of quantum correlations, the two quantities do not
always go hand in hand5. The onset of chaos has a positive effect on spatial delocalization,
whereas for global entanglement the breaking of symmetries associated with chaos is more
detrimental than possible gains associated with further delocalization.

Large interactions (1> 1) are unfavorable to both NPC and Q, since the spectrum
becomes gapped. However, for anisotropies not too large, 1& 1, as d/J increases and

5 Local purities other than Q seem better related to NPC [28].
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integrable interacting clean chain. Average over 924 states and 20 realizations;
L = 12, M = L/2; α = 0.

the energy bands overlap, the Q curves quickly surpass the ones for smaller interactions.
This reinforces once again the fundamental role of interactions in the creation of quantum
correlations.

3.1.2. FP- and IP-basis. The results for NPC are entirely dependent on the basis chosen for the
analysis. While the site basis is physically motivated by studies of spatial localization, further
insight may be gained by considering alternative bases. To separate the regular motion dictated
by integrable Hamiltonians from chaoticity, we show in figure 3 the behavior of delocalization
versus disorder for NPC computed in the FP- and IP-basis.

The clean 1D system considered here, with or without interactions, is integrable, chaos
emerges only when disorder is added to it. In the FP-basis, a possible correlation between
chaos and the complexity of the wavefunctions is reflected in the rate of delocalization, which
increases abruptly in the chaotic region of 0< d/J < 0.5, 0<1< 1, and is less dramatic for
1= 0 and 1> 2. But overall, NPC simply increases with 1. In contrast, in the IP-basis the
behavior of NPC with 1 for 0< d/J < 0.5 is non-monotonic. Here, as in the site-basis case,
delocalization is maximum where η is minimum, the largest value appearing again for1= 0.5.
It is only at large values of disorder that the behavior of NPC with1 becomes trivial. Therefore,
the effects of the interplay between interaction and disorder and the consequent onset of chaos
are well singled out by the nontrivial behavior of NPC in both site- and IP-basis.

3.2. Long-range correlated random disorder

We now focus on a disordered chain with d/J = 0.25—the chaotic region of interacting
systems—and proceed with a comparison between uncorrelated and correlated random
disorder.

The left panel of figure 4 shows the average NPC versus α. The potential for spreading
the wavefunctions associated with α > 0 has a non-monotonic behavior with the anisotropy.
This may be explained as follows. Correlated disorder indicates more order; in a sense, it brings
the system closer to a clean chain; but how the system approaches its clean limit is highly
dependent on the interaction amplitude and the value of NPC we start with when α = 0. Long-
range correlated disorder can always increase delocalization when 1= 0, since a system with
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free particles is maximally delocalized in the absence of disorder (the main panel of figure 1).
The growth in NPC is obviously not sufficient to reach the values of a clean system, and not
even those obtained for chaotic systems with1< 1, but, as shown in figure 4, it approaches the
level of delocalization of a chaotic chain with1∼ 1. For interacting systems, on the other hand,
correlated disorder may decrease NPC. The maximum value of NPC when α = 0 depends on
the amplitude of the uncorrelated disorder, d/J . When d/J = 0.25 and α = 0, it is seen from
the main panel of figure 1 that the NPC curves with1< 1 have already passed their maximum,
whereas those with 1& 1, such as 1= 2, are right at their peak. Therefore, for 1< 1, by
increasing α we can further delocalize the system, whereas for 1& 1, correlated disorder has
the opposite effect of decreasing NPC. For large values of 1, such as 1= 5, since NPC simply
decays with uncorrelated disorder (the main panel of figure 1), correlated disorder will always
increase delocalization.

Insight into the nontrivial behavior of NPC with α may be gained by studying, in
figure 5, how correlated disorder affects the histograms for the diagonal elements H0i and their
consequences on the relation between NPC and the eigenvalues. We select four values of the
interaction amplitude, 1 = 0, 0.5, 1.3 and 2.0.

For uncorrelated disorder, as 1 increases, the distribution of H0i simply broadens
(figures 5(a1), (b1), (c1) and (d1)); however, NPC does not decrease monotonically. As seen
in the main panel of figure 1, for d/J = 0.25, 1 = 0 and 1.3 lead approximately to the same
value of NPC; delocalization is maximum at1∼ 0.5 and is very low for1= 2. This nontrivial
behavior is associated with the transition to chaos from 1= 0 to 1= 0.5: the featureless curve
of NPC versus E (a3), which shows intermediate values of delocalization for all energies, is
substituted by a curve that peaks in the middle of the spectrum (b3). As expected from chaotic
TBREs, for1= 0.5, NPC approaches the GOE value of N/3 in the middle of the spectrum and
has smaller values only at the edges. This results in an overall increase of 〈NPC〉. It is only from
1= 0.5 to 1= 1.3 and 2.0 that the broadening of the distributions of diagonal energies leads
to the decrease of NPC (c3, d3).

The inclusion of random disorder with long-range correlation (α = 10) has little effect on
the delocalization of a half-filled system with interacting particles, but it significantly affects the
model with non-interacting particles. When 1= 0, correlated disorder increases the number of
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Figure 5. Uncorrelated versus long-range correlated random disorder. First
and second rows: normalized histograms for the diagonal matrix elements H0i

with uncorrelated and correlated disorder, respectively. Third row: NPC versus
eigenvalues; black curve: α = 0; red curve: α = 10. Columns from left to right:
1= 0, 0.5, 1.3 and 2. All panels: L = 12, M = L/2, 40 realizations.

resonances in the middle of the histogram (compare a1 and a2), leading to an interesting shaped
distribution. This is reflected in the larger values of NPC in panel (a3). When 1= 0.5 and 1.3,
the shape of the distribution changes slightly (cf b1, b2 and c1, c2), having little effect on the
curves for NPC versus E (b3, c3). However, when 1= 2 the energy band overlapping obtained
by adding uncorrelated disorder (see al, bl and cl of figure 1 and d1 here) is partially removed
by adding order via α (d2). This explains the decay of 〈NPC〉 verified in figure 4. The effects of
correlated disorder are, however, limited and all curves for NPC and Q saturate for α > 4 (see
figure 4).

There are then two possibilities to increase delocalization in a chain of free particles with
uncorrelated disorder: by including weak interaction, so that chaos may set in, or by pushing
the system toward the clean limit by adding correlated on-site energies. The two alternatives
constitute, however, opposite procedures, so when put together their effects do not add up.

In general, the behavior of multipartite entanglement and delocalization with correlated
disorder are comparable. Similarly to NPC, the effects of α on Q also depend on the value of
Q we start with when α = 0, a piece of information extracted from figure 2. In the presence
of correlated on-site energies, the right panel of figure 4 shows that: (i) global entanglement
increases with α when 1= 0, (ii) Q is not much affected by correlated disorder when 1∼ 1,
and (iii) Q decreases with α when 1& 1. Note, however, the prominent role of interaction in
establishing quantum correlations. In particular, compare the behavior of the curves for 1= 0

New Journal of Physics 11 (2009) 043026 (http://www.njp.org/)

http://www.njp.org/


14

0 1 2 3 4
∆

20

40

60

80

100

120

〈N
PC

〉

0 1 2 3 4
20

40

60

80

100

120

0 1 2 3 4
∆

0.22

0.24

0.26

0.28

0.3

〈Q
〉

0 1 2 3 4
0.22

0.24

0.26

0.28

0.3

0 2 4 6 8
α

50

60

70

80

90

〈N
PC

〉

0 2 4 6 8
50

60

70

80

90

0 2 4 6 8
α

0 2 4 6 8
0.27

0.28

0.29

0.3

〈Q
〉

d/J=0

d/J=0.1

d/J=0.25

d/J=0

d/J=0.1

d/J=0.25

d/J=0.5

∆=0

∆=1
∆=0.25

∆=1.35

d/J=0.5

∆=2

Figure 6. Top panels: interplay between interaction and uncorrelated
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and 20 realizations.

and 1.3. When α = 0, NPC1=0 ∼ NPC1=1.3, while Q1=1.3 ∼ 1.06 Q1=0. When α = 8, NPC1=0

increases significantly and becomes approximately 20% larger than NPC1=1.3, while the growth
of Q1=0 is more limited and it remains smaller than the global entanglement for 1= 1.3,
Q1=1.3 ∼ 1.03 Q1=0.

4. Dilute limit

The dilute limit implies M � L . Here, we focus on the smallest value of M where the interaction
plays a role, the two particle case, M = 2, and study the competition between interaction and
both uncorrelated and correlated disorder.

From the top panels of figure 6, one sees that for a fixed value of the interaction amplitude,
NPC and Q decay monotonically with disorder. This justifies our choice here to consider 1 in
the abscissa, instead of d/J , as in figures 1 and 2. For d/J 6= 0, such as d/J = 0.25 and 0.5,
a value of 1 6= 0 may still exist where NPC and Q become maximum, but the effects of the
interaction are now much less prominent than in the half-filled chain. In the dilute limit, the
HXY term dominates over the Ising interaction and becomes the main determining factor for
the level of delocalization and global entanglement. As a result, the behaviors of NPC and Q
are more comparable than at half-filling (cf figure 6 and figures 1 and 2).
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The bottom panels show how NPC and Q behave with correlated disorder for various
values of 1, keeping fixed d/J = 0.25. Contrary to the half-filled case, for all cases considered
here, NPC and Q increase with α. This is a reflection of the trivial behavior of NPC and Q
with uncorrelated disorder. Moreover, the effects of α are now more pronounced than in the
half-filled chain, especially for the chain with 1= 0. NPC1=0 now surpasses all curves shown
and even Q1=0 manages to outperform Q1=1.35. In comparison to the M = L/2 case, correlated
disorder can now bring NPC and Q closer to the values of a clean chain. These results simply
reflect the minor role of the interaction in a dilute system. The increase of NPC1=0 from α = 0
to α > 4 is more than 50% for L = 24, M = 2. As expected, this behavior is yet amplified in
larger systems, as shown in the left bottom panel of figure 7.

The right panels of figure 7 compare delocalization with system size in the case of M = 1
and M = 2 for different values of α. When M = 1, the dimension of the Hamiltonian is N = L .
For α = 0, as seen in the top right panel, apart from small system sizes where border effects
are important, there is little difference between the NPC values for different L’s. This result
is in agreement with the fact that Anderson localization occurs in 1D systems with a single
particle, that is, uncorrelated random on-site energies lead to a finite localization length of the
wavefunctions. On the other hand, for large values of α, the increase rate of NPC becomes
linear. Large correlations between on-site energies bring the behavior of NPC closer to that of
a clean system, where NPC ∝ L . This is consistent with [8], where it was shown that, in the
thermodynamic limit, one-particle states become delocalized for α > 2.

When M = 2, the dimension of the Hamiltonian is quadratic on the system size, N =

L(L − 1)/2. In this case, as shown in the right bottom panel, NPC grows quadratically with
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L even when α = 0. This suggests that, on average and for the finite systems studied here,
there is no sign of Anderson localization for states with two interacting particles, even when
the disorder is uncorrelated. There are, however, a few isolated states with small NPC (data
not shown), which accounts for situations where the particles are sufficiently apart, so that the
interaction is negligible and the particles are individually localized. Further studies are now
required to conclude if, on average, localized states will be the dominating scenario for larger
chains, or if interaction will in fact prevent localization even in the thermodynamic limit.

5. Discussion and conclusion

We studied how delocalization and global entanglement in a quantum many-body 1D system
are affected by the interplay between on-site (uncorrelated and long-range correlated) random
disorder and nearest-neighbor interaction. The analysis applies equally to a chain with spins-1/2,
spinless fermions or hard-core bosons. Half-filled and dilute chains were considered.

In a half-filled chain, the largest value of spatial delocalization (NPC) appears in a clean
chain (d/J = 0) with non-interacting particles (1= 0). Here, the only constraints on the
spreading of the wavefunctions are the symmetries of the system and the boundary conditions.
The addition of uncorrelated disorder to a non-interacting system or the inclusion of interaction
to a clean chain suppresses resonances and decreases NPC. On the other hand, when both
1 and d/J are present, the behavior of NPC becomes nontrivial. A clean chain with inter-
acting particles constitutes an integrable model with eigenvectors delocalized in the site-basis.
As uncorrelated disorder is added, symmetries are broken. In the case of weak interaction,
0<16 1, this leads to the onset of chaos and the further increase of NPC in the site-basis.

The behavior of global entanglement (Q) is influenced by delocalization, but does not
follow it exactly. In particular, for d/J → 0, the largest values appear in the presence of
weak interaction. Also different, in weakly interacting systems, is its steady decay with
uncorrelated disorder and the consequent breaking of symmetries. Besides delocalization, the
key contributing factors for global entanglement are then interactions and symmetries.

We have also briefly commented on the results for NPC in bases other than the site-
basis. The latter is considered in studies of spatial localization, which was our main goal in
the present work. However, it is also useful to separate regular motion from chaoticity by
analyzing delocalization in a basis where the model is integrable. In the basis consisting of
eigenstates of a clean system with interaction (IP-basis), a non-monotonic behavior of NPC with
1 was also verified for disordered systems with d/J < 1. This nontrivial behavior of NPC with
interaction in both the IP- and the site-basis appears to be the main indication of the complexity
enhancement of wavefunctions in the chaotic region.

The presence of correlated disorder (α 6= 0) has different consequences depending on the
value of 1. By correlating on-site energies, the level of order increases. A disordered system
with non-interacting particles then gets closer to the limit of a clean chain and NPC increases.
In the presence of interaction, the effect is opposite, since here it is disorder that enhances
delocalization by breaking symmetries and overlapping energy bands. The behaviors of NPC
and Q with α reflect the nontrivial behavior of these quantities with d/J when α = 0.

The study of a dilute system allows for the consideration of larger chains. In the presence
of uncorrelated disorder, contrary to the one-particle case, on average, our results show no sign
of Anderson localization in the finite systems considered. Long-range correlation delocalizes
both one- and two-particle states.
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In a future work, we intend to search for conclusive evidence for the absence (or not) of
localization of two-interacting particles states in systems with uncorrelated disorder. We also
aim to study in detail the effects of symmetries on non-local correlations. Another question
worth investigation is how the integrable and chaotic regimes of the considered 1D systems
relate to different transport behaviors, namely diffusive or ballistic [65], and to the problem
of thermalization [51, 66]. Also interesting would be the comparison of the results with the
Hubbard model and the inclusion of long-range interactions in the systems considered.

We hope that our theoretical results will motivate experimental verifications. A useful tool
to simulate many-body effects in simplified models of condensed matter physics like the ones
described here is optical lattices. They allow for control of the parameters of the system, such
as the strength of interaction and the level of disorder [67].
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