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Abstract. In this paper, we investigate the evolutionary dynamics in directed
and/or weighted networks. We study the fixation probability of a mutant in
finite populations in stochastic voter-type dynamics for several update rules.
The fixation probability is defined as the probability of a newly introduced
mutant in a wild-type population taking over the entire population. In contrast
to the case of undirected and unweighted networks, the fixation probability of a
mutant in directed networks is characterized not only by the degree of the node
that the mutant initially invades but also by the global structure of networks.
Consequently, the gross connectivity of networks such as small-world property
or modularity has a major impact on the fixation probability.
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1. Introduction

Evolutionary dynamics describe the competition among different types of individuals in
ecological and social systems. Traits, either genetic or cultural, are transmitted to others through
inheritance or imitation. The fitness of an individual determines her/his ability to pass on her/his
traits to the next generation. An individual with a larger fitness value is more likely to replace
one with a smaller fitness value. Such a dynamical process can be modeled using the well-
known voter model and its variants [1]–[5]. According to these models, individuals adopt the
trait (hereafter we call it ‘type’) of others. Selection and random drift are two major driving
forces in evolutionary dynamics. Selection results from the different fitness levels of different
types. Random drift results from the finite size of populations.

In the voter-type dynamics, one’s type is replaced with the type of another individual.
Therefore, no new types are introduced into the population unless an explicit mutation (or
innovation) is considered. Once a single type dominates the entire population, this unanimity
state remains the same forever. In other words, the unanimity states are the absorbing states
of these dynamics. Consequently, in the case of finite populations, the stochasticity of voter-
type models leads to the fixation or extinction of a newly introduced type after some time. The
probability that a single mutant introduced in a population of wild-type individuals eventually
takes over the entire population is called the fixation probability [3]–[8]. Fixation probability
quantifies the likelihood of propagation of a single mutant in the population. When different
types of individuals have the same fitness value, the resulting evolutionary dynamics are called
neutral evolutionary dynamics. In this case, it is well known that the fixation probability of a
single mutant on the complete graph is the reciprocal of the population size [8].

In reality, individuals do not necessarily interact with everyone in the population. They
have relationships with some individuals, but not with others. This fact leads to the idea of
complex contact networks of individuals. Neutral evolutionary dynamics such as voter-type
models in complex networks have been extensively studied (e.g. [9]–[12]). It has been shown
that the fixation probability of a single mutant in undirected and unweighted networks depends
on the degree of the initially invaded node as well as update rules [3]–[5]. Edges in many real
networks, however, have directionality. Examples of real networks include social networks in
which a directed edge is drawn from the actor to the recipient of grooming behavior of rhesus
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Figure 1. Fixation of type A or type B after the introduction of a type A mutant.

monkeys [14]. Other examples include e-mail social networks [13, 15], and ecological networks,
in which the heterogeneity of parameters such as habitat size [16] and geographical biases
such as wind direction [17] and reverine streams [18] are exemplary sources of directionality.
Moreover, the edges in real networks are generally weighted [19]. This concept has been nicely
introduced in a seminal paper on evolutionary dynamics on graphs [3].

In this study, we investigate the dependence of the fixation probability of a single neutral
mutant in general directed (or weighted) networks on its initial location and on update rules.
We study three major update rules that were introduced in [4, 5]. Our results are remarkably
different from those obtained in the case of undirected networks in which the fixation probability
of a mutant is determined by the degree of the node where the mutant is initially placed. In the
case of directed networks, the fixation probability crucially depends on the global structure of
networks. The difference between directed and undirected networks is striking, especially in the
case of modular, spatial or degree-correlated networks.

2. Model

Consider a population of N individuals comprising two types of individuals—type A and
type B. Let the fitness of type A and type B individuals be r and 1, respectively. In this
study, we mainly focus on the case r = 1, which corresponds to neutral competition between
A and B. The structure of the population is described by a directed graph G = {V, E}, where
V = {v1, . . . , vN } is a set of nodes, and E is a set of edges, i.e. vi sends a directed edge to v j

if and only if (vi , v j) ∈ E . Each node is occupied by an individual of either type. The fitness of
the individual at node vi is denoted by fi ∈ {r, 1}. Each directed edge (vi , v j) ∈ E is endowed
with its weight wi j , which represents the likelihood with which the type of individual at vi is
transferred to v j in an update step. We set wi j = 0 when (i, j) /∈ E .

Consider the introduction of a single mutant of type A at node vi in a population of N − 1
residents of type B. Then, type A either eventually fixates, i.e. takes over the entire population,
or becomes extinct (i.e. fixation of B), as schematically shown in figure 1. We are concerned
with the fixation probability of type A, which is denoted by Fi . When needed, we refer to any
one of the three update rules introduced below by the superscript of Fi , such as FLD

i and F IP
i .

Throughout the paper, we assume that G is strongly connected. A network is strongly connected
if there is at least one directed path between any ordered pair of nodes. If G is not strongly
connected, we can find two nodes vi and v j such that there is no direct path from vi to v j . In this
case, the fixation probability Fi is always zero because the individual at v j is never replaced by
the mutant initially located at vi [3]. Therefore, it is sufficient to investigate fixation probabilities
in the most upstream strongly connected component of G. Therefore, we assume without loss
of generality that G is strongly connected.
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Figure 2. Schematics of three update rules.

3. Results

In this section, we analytically obtain a system of linear equations that gives the fixation
probabilities of mutants at individual nodes for the three update rules (link dynamics (LD),
invasion process (IP) and voter model (VM)) [4, 5]. An update event in the three rules is
schematically shown in figure 2. Then, we compare the analytical results with numerical results
obtained for various directed networks.

3.1. Link dynamics (LD)

Firstly, we consider the LD [4, 5]. In this case, one directed edge is selected for reproduction in
each time step; the edge (vi , v j) ∈ E is chosen with probability fiwi j/

∑
k,l fkwkl for the type

of individual at vi to replace the type of individual at v j . Individuals with larger fitness values
and larger outgoing edge weights are more likely to reproduce than those with smaller fitness
values and outgoing edge weights. Thus, the selection process acts on birth events. Alternatively,
the selection process can be assumed to act on death events, and the edge (vi , v j) is chosen
with probability (wi j/ f j)/(

∑
k,l wkl/ fl) for the type at vi to replace that at v j . This implies that

individuals with smaller fitness values and larger incoming edge weights are more likely to die
than those with larger fitness values and smaller incoming edge weights. In fact, the fixation
probability FLD

i (16 i 6 N ) is the same under these two interpretations.
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We consider the case r = 1 (hence, fi = 1, 16 i 6 N ) analytically. Suppose that a single
mutant of type A invades vi . The fixation probability is given by FLD

i . By considering the
next update event, we can recalculate FLD

i as follows. With probability wi j/
∑

k,l wkl , the
edge (vi , v j) ∈ E is selected for reproduction. Then, type A individuals occupy vi and v j .
We denote by FLD

{i, j} the fixation probability when type A individuals are initially located at
vi and v j but nowhere else. With probability w j i/

∑
k,l wkl , the edge (v j , vi) ∈ E is selected.

Then, type A becomes extinct, and type A will not fixate. With the remaining probability∑
k 6=i,l 6=i wkl/

∑
k,l wkl , the configuration of type A and type B individuals does not change.

Therefore, we obtain

FLD
i =

∑
j

wi j∑
k,l wkl

FLD
{i, j} +

∑
j w j i∑

k,l wkl
× 0 +

∑
k 6=i,l 6=i wkl∑

k,l wkl
FLD

i . (1)

To prove FLD
{i, j} = FLD

i + FLD
j , consider for now N neutral types labeled 1, 2, . . ., N that are

initially placed at v1, v2, . . ., vN , respectively. On a finite graph G, one of the N types fixates
eventually. The probability that type i or j fixates is given in two ways: FLD

{i, j} and FLD
i + FLD

j .
This ends the proof. Using FLD

{i, j} = FLD
i + FLD

j , we rewrite equation (1) as∑
j

wi j FLD
j = FLD

i

∑
j

w j i . (2)

This is a system of linear equations giving FLD
i . We note that FLD

i can be interpreted as the
reproductive value of the individual at node vi [20, 21].

Equation (2) can be derived more rigorously via the dual process [1, 2, 7, 22]. Intuitively
speaking, the dual process of a stochastic process is another stochastic process in which the
time of the original process is reversed. The direction of edges in the dual process is opposite
to that in the original process. By considering the dual process, we can understand the tree of
family lines in the original process, which is called genealogy. When we go backward in time,
two individuals sometimes ‘collide’ in the dual process. Such an event is called coalescence.
In terms of the original process, coalescence corresponds to two individuals sharing a common
ancestor. After two individuals coalesce in the dual process, they behave as a single individual,
representing a single family line. As far as the fixation probability is concerned, LD with r = 1 is
equivalent to the continuous-time stochastic process in which each edge (vi , v j) ∈ E is selected
for reproduction at the Poisson rate wi j . Then, the dual process of LD is the continuous-time
coalescing random walk on the network with all edges reversed, with a random walker initially
located on every node [1, 2]. A coalescing random walk is defined as follows. Consider a walker
at vi moving to v j at the Poisson rate w j i . If there is another walker at v j , the two walkers
coalesce into one at v j and thereafter behave as a single random walker. On a finite graph G,
the N walkers eventually coalesce into one, which is consistent with the fact that the ancestors
of all individuals are the same in the end. Then, FLD

i is the stationary density of the single
random walker at vi , which is given by equation (2). As G is strongly connected, the random
walk on G with all edges reversed defines an irreducible Markov chain. Because FLD

i is the
stationary density of this irreducible Markov chain, equation (2) with constraints

∑N
i=1 FLD

i = 1
and FLD

i > 0 always has a unique strictly positive solution.
The calculation of FLD

i from equation (2) by using a standard method such as the Gaussian
elimination requires O(N 3) computation time. However, because relevant large networks are
usually sparse, carrying out the Jacobi iteration may take much less time. The convergence of
this iteration to FLD is guaranteed by the Perron–Frobenius theorem [23].
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In undirected graphs, wi j = w j i holds. Therefore, FLD
i = 1/N solves equation (2), giving a

result previously reported in [4, 5]. In the case of weighted or directed networks, the complexity
of equation (2) implies that FLD

i is not always determined by the local characteristics of node vi

but is affected by the global structure of the networks.
Next, we argue that the mean-field (MF) approximation is not useful in most cases.

Consider unweighted, but possibly directed, networks such that wi j = 1 if (vi , v j) ∈ E and
wi j = 0 otherwise. Let k in

i (kout
i ) be the indegree (outdegree) of vi , and we set

F̄LD
=

1

N

N∑
i=1

FLD
i . (3)

The relation
∑

j w j i = k in
i combined with the MF approximation

∑
i wi j FLD

j ≈
∑

i wi j F̄LD
=

kout
i F̄LD, yields

FLD
i ∝

kout
i

k in
i

. (4)

Equation (4) indicates that a large kout
i aids in the dissemination of the type at vi and a small k in

i
inhibits the replacement of the type at vi by the type at other nodes.

However, the MF approximation deviates from the correct FLD
i in many cases. As an

example, consider the largest strongly connected component of a directed and unweighted
e-mail social network [13] with N = 9079 nodes and 〈k〉 = 〈k in

〉 = 〈kout
〉 = 2.62, where 〈·〉

denotes the average over the nodes. In this case, FLD
i (indicated by the circles in figure 3(c))

does not agree with the normalized kout
i /k in

i (indicated by the line). This is mainly because the
indegree and outdegree of the same node in this network are positively correlated and because
this network presumably has a nontrivial global structure. Actually, the Pearson correlation
coefficient (PCC) for the N pairs (k in

i , kout
i ), 16 i 6 N , defined by

1
N

∑N
i=1

(
k in

i kout
i − 〈k〉

2
)√

1
N

∑N
i=1

(
k in

i − 〈k〉
)2

√
1
N

∑N
i=1

(
kout

i − 〈k〉
)2

(5)

is equal to 0.40. Networks in which degrees of adjacent nodes are correlated also show
considerable discrepancies between the MF approximation and the numerical results. On the
other hand, in the case of undirected networks, our result FLD

i = 1/N holds true in the presence
of degree correlation of any kind, which is consistent with previously obtained numerical
results [5].

Next, we examine the fixation probability in an asymmetric small-world network
constructed from a ring of N = 5000 nodes. This network is a directed version of the
Watts–Strogatz small-world network [24]. Each node of this network tentatively sends directed
edges to five nearest nodes along both sides. Then, 2500 out of 10N = 50 000 directed edges
are rewired so that their two ends are randomly and independently selected from the N nodes,
excluding self-loops and pre-existing edges. The correlation between the in- and out-degrees
of the same node is negligible, with the PCC for the pairs (k in

i , kout
i ), defined by equation (5),

being equal to −0.021. The degrees of adjacent nodes vi and v j conditioned by the existence of
the edge (vi , v j ) [25, 26] are also uncorrelated by the definition of the model. Nevertheless, the
MF approximation is not effective in predicting the actual FLD

i , as shown in figure 3(d). This
discrepancy persists even for large N , because the directed small-world network does not render
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Figure 3. FLD
i (i.e. the fixation probability under LD) for a single mutant

initially at node vi in (a) an asymmetric random network with N = 5000,
(b) an asymmetric scale-free network with N = 5000, (c) the largest strongly
connected component of an e-mail social network with N = 9079 and (d) an
asymmetric small-world network with N = 5000. The normalized kout

i /k in
i is

equal to (kout
i /k in

i )/
∑N

j=1(k
out
j /k in

j ). The lines represent the MF ansatz FLD
i =

(kout
i /k in

i )/
∑N

j=1(k
out
j /k in

j ).

FLD
i of adjacent nodes independent of each other. In contrast, FLD

i in undirected small-world
networks is completely determined by the MF ansatz indicated by the line in figure 3(d).

In contrast to these networks, figure 3(a) shows that the MF relation FLD
i ∝ kout

i /k in
i

roughly holds for a directed random graph with N = 5000. We generate a directed random
graph by connecting each ordered pair of nodes (v j , v j) with probability 2〈k〉/(N − 1), so that
〈k in

〉 = 〈kout
〉 = 〈k〉. In this network, degree correlation and macroscopic network structure are

both absent, which enables the application of the MF approximation. Even in this network,
however, the MF approximation is not exact because, as equation (2) predicts, FLD

i of nearby
nodes are positively correlated. Following [26], we measure the correlation, or the assortativity,
of FLD

i by the PCC for the pairs (FLD
i , FLD

j ) for (vi , v j) ∈ E defined by

1
N

∑
(i, j)∈E

(
FLD

i FLD
j −

(
F̄LD

)2
)

1
N

∑N
(i, j)∈E

(
FLD

i − F̄LD
)2 , (6)

where F̄LD is defined by equation (3). The value of the PCC turns out to be slightly but
significantly positive (mean ± standard deviation based on 100 network realizations is equal
to 0.0834 ± 0.0057). The discrepancy is also significant for a large N , unless the mean degree
〈k〉 is large.
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The results obtained for random networks extend to the case of scale-free networks without
degree correlation. We generate a directed scale-free network by setting the degree distribution
to be p(k) ∝ k−3 for k > 〈k〉/2 and p(k) = 0 for k < 〈k〉/2, thereby generating k in

i and kout
i

(16 i 6 N ) independently according to p(k), and randomly connecting the nodes using the
Molloy–Reed algorithm [27]. Figure 3(b) indicates that the MF approximation roughly explains
the numerically obtained fixation probability.

It is noted that the PCC for the pairs (FLD
i , FLD

j ) for (vi , v j) ∈ E is small for the asymmetric
scale-free network (= 0.0395 ± 0.0056), large for the asymmetric small-world network
(= 0.7888 ± 0.0165) and small for the e-mail social network (= 0.0420).

3.2. Invasion process (IP)

Next, consider the IP [4, 5]. In the IP, selection acts on birth. In each time step, vi is first
selected for reproduction with probability fi/

∑
k fk , where fi ∈ {r, 1} is the fitness of the type

at node vi . Then, with probability wi j/
∑

l wil , the type at vi replaces that at v j . Consequently,
the probability that the edge (vi , v j) ∈ E is used for reproduction in an update step is equal to
fiwi j/(

∑
k fk

∑
l wil). On the complete graph, IP is the same as the standard Moran process [6].

For an arbitrary r, the IP is mapped to the LD with the rescaled edge weight w′

i j = wi j/
∑

l wil .
Therefore, from equation (2), the fixation probability for r = 1 is the solution to∑

j

wi j∑
l wil

F IP
j = F IP

i

∑
j

w j i∑
l w jl

. (7)

In the case of undirected unweighted networks, F IP
i ∝ 1/ki solves equation (7), giving a

previously obtained result [4, 5, 22]. In the case of directed unweighted networks, applying
the MF approximation to equation (7) yields

F IP
i =

∑
j,(i, j)∈E F IP

j /kout
i∑

j,( j,i)∈E 1/kout
j

≈
(const)

kin
i

. (8)

The numerical results for the asymmetric random graph that is used for obtaining the results
shown in figure 3(a) are shown in figure 4(a). The relation F IP

i ∝ 1/k in
i (the line in figure 4(a))

is roughly satisfied. Similar to the case of LD, some deviation persists in the case of random
networks even with a large N . In contrast, figure 4(b) indicates that the actual F IP

i in the scale-
free network deviates considerably from equation (8), mainly because of the discreteness of
k in

i for a small integer k in
i . Similar to the case of LD, the discrepancy between equation (8)

and the exact F IP
i is also large in the case of the e-mail social network (figure 4(c)) and the

asymmetric small-world network (figure 4(d)). In addition to the degree correlation or global
structure of networks, the discreteness of 1/k in

i for a small k in
i causes further deviation, as shown

in figures 4(c) and (d).

3.3. Voter model (VM)

We examine a third update rule, the so-called VM [4, 5]. In the VM, we first eliminate the
type at one node v j with probability f −1

j /
∑

k f −1
k . Then, with probability wi j/

∑
l wl j , the type

at vi replaces that at v j . The probability that the edge (vi , v j) ∈ E is used for reproduction in
an update step is equal to f −1

j wi j/(
∑

k f −1
k

∑
l wl j). For general r , the VM is mapped to the
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Figure 4. F IP
i in (a) an asymmetric random network, (b) an asymmetric scale-

free network, (c) an e-mail social network and (d) an asymmetric small-world
network. The normalized 1/k in

i is equal to (1/k in
i )/

∑N
j=1(1/k in

j ). The lines

represent the MF ansatz F IP
i = (1/k in

i )/
∑N

j=1(1/k in
j ).

LD with the rescaled edge weight w′

i j = wi j/
∑

l wl j . Consequently, from equation (2), FVM
i for

r = 1 is given by∑
j

wi j∑
l wl j

FVM
j = FVM

i

∑
j

w j i∑
l wli

(= FVM
i ). (9)

In the case of undirected networks, FVM
i ∝ ki solves equation (9), recovering a previously

obtained result [4, 5, 22]. The MF approximation yields

FVM
i =

∑
j,(i, j)∈E FVM

j

k in
j

≈ (const) × kout
i . (10)

In the case of the random network and the uncorrelated scale-free network, the numerical results
shown in figures 5(a) and (b), respectively, support the rough validity of equation (10). However,
this naive ansatz deviates from the actual FVM

i for the e-mail social network (figure 5(c)) and
the asymmetric small-world network (figure 5(d)). This situation is similar to that observed in
the case of LD.

The fixation probability FVM
i on a graph G is equivalent to the PageRank of node vi of

the graph G ′, where G ′ is constructed by reversing all edges of G. The PageRank measures
the number of directed edges a node, such as a webpage, receives from other important nodes
as exclusively as possible [28]–[30]. If we neglect some minor technical treatments that are
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Figure 5. FVM
i in (a) an asymmetric random network, (b) an asymmetric scale-

free network, (c) an e-mail social network and (d) an asymmetric small-world
network. The normalized kout

i is equal to kout
i /

∑N
j=1 kout

j . The lines represent the

MF ansatz FVM
i = kout

i /
∑N

j=1 kout
j .

necessary for the practical implementation, the PageRank FPR
i of vi is defined by∑

j

w j i∑
l w jl

FPR
j = λFPR

i , (11)

where λ is the largest eigenvalue of the eigen equation (11). If many edges are directed to vi ,
there are many positive terms (i.e. w j i > 0) on the lhs of equation (11), and they contribute
to the PageRank of vi on the rhs. If vi receives an edge from v j whose outdegree is small or
whose PageRank is large, w j i/

∑
l w jl or FPR

j is large. Each of these factors also increases FPR
i .

A strongly connected network yields λ = 1, so that FPR
i is the stationary density of the discrete-

time simple random walk on the original graph G [23], [28]–[30]. Equation (11) with λ = 1
and with wi j replaced by w j i is identical to equation (9). In PageRank, nodes that receive many
edges tend to be important, whereas the opposite is true in the case of the VM. FPR

i is locally
approximated by using k in

i [31], which corresponds to the MF relation FVM
i ∝ kout

i . However,
FPR

i in real web graphs often deviates from the relation FPR
i ∝ k in

i [32]. This implies that FVM
i in

real networks can also deviate from the MF approximation, which is consistent with our main
claim.

3.4. Constant selection (r 6= 1)

When r 6= 1, the fitness value of type A and that of type B are different, so one type has a
unilateral advantage over the other type. We call this situation ‘constant selection’. In this case,
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Figure 6. (a) FLD
i for r = 4 plotted against FLD

i for r = 1. (b) F IP
i for r = 4

plotted against F IP
i for r = 1. (c) FVM

i for r = 4 plotted against FVM
i for r = 1.

We have used an asymmetric random network with N = 200.

the dual process of the evolutionary dynamics is the coalescing and branching random walk [2],
which is difficult to handle analytically. Therefore, we carry out Monte Carlo simulations for
r = 4 on a fixed asymmetric random graph with N = 200 and 〈k〉 = 10. We calculate FLD

i as a
fraction of runs from 2 × 106 runs in which the single mutant with fitness r initially located at
vi (i.e. fi = r and f j = 1, j 6= i) eventually occupies all nodes of the network. In figure 6(a),
the numerically obtained FLD

i for r = 4 is plotted against the exact solution of FLD
i for r = 1

(equation (2)). Roughly speaking, FLD
i for r = 4 monotonically increases with the exactly

obtained FLD
i for r = 1. We obtain similar results in the case of the IP (figure 6(b)) and VM

(figure 6(c)). Therefore, the node from which a mutant is more likely to propagate throughout the
population under the neutral dynamics (r = 1) also serves as a better invading node for mutants
under constant selection (r ∈ 1). Thus, our results derived in the case of neutral selection is
useful in predicting the order of the magnitude of fixation probabilities under constant selection.

3.5. Modular networks

Real networks are often more complex than degree-uncorrelated random, scale-free or small-
world networks. In particular, many networks are modular, i.e. they consist of several densely
connected subgraphs termed modules, and each subgraph is connected to each other by a
relatively few edges [33]. This is also the case for directed [34, 35] and weighted [36] networks.
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Figure 7. (a) An example of a modular network, with w11, w12, w21 and w22

indicating edge weights when this network is coarse grained as a two-node
network. (b) FLD

i , (c) F IP
i and (d) FVM

i in an asymmetric modular network
with N = 5000. The solid lines represent the MF ansatz (see the captions of
figures 3–5 for details). The dashed lines represent the ansatz derived from the
combination of the local degree and the module membership of the node (see
equation (12) for the expression in the case of LD).

To intuitively understand the importance of the global structure of networks such as
community structure in evolutionary dynamics, we generate a modular network [35], as
schematically shown in figure 7(a), and study the fixation probability under neutrality, i.e. r = 1.
We generate two modules M1 = {v1, . . . , vN/2} and M2 = {vN/2+1, . . . , vN } as two directed
random graphs with N/2 = 2500 nodes and the mean degree 〈k〉M = 10. Then, we randomly
connect M1 and M2 by directed edges so that a node in M1 (M2) has w1→2〈k〉M (w2→1〈k〉M)
outgoing edges to the nodes in M2 (M1) on average. By setting w1→2 = 0.04 and w2→1 = 0.01,
we obtain a network with N = 5000 and 〈k〉 = 10.25. Note that the degree correlation is absent
in this network. For the realized network, FLD

i for r = 1 is shown in figure 7(b). Rather than
the MF ansatz ∝ kout

i /k in
i (solid line), the module membership is the main determinant of

FLD
i . The upper and lower sets of points in figure 7(b) correspond to the nodes in M1 and

M2, respectively. The magnitude of FLD
i in the two sets differ approximately by a factor of

w1→2/w2→1 = 4. The results obtained in the case of the IP and VM are similar, as shown in
figures 7(c) and (d), respectively. There, gross connectivity among modules, not local degrees,
principally determines Fi . A modified ansatz that combines the MF approximation and the
multiplicative factor determined by the module membership of the node

FLD
i ∝

{
w1→2kout

i /k in
i , vi ∈ M1

w2→1kout
i /k in

i , vi ∈ M2

(12)
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fits the data well (the dashed lines in figure 7(b)). Similar approximations in which kout
i /k in

i in
equation (12) is replaced with 1/k in

i and kout
i (dashed lines in figures 7(b) and (c), respectively)

roughly agree with the observed F IP
i and FVM

i .
To explain this result analytically, we presume that all nodes in a module are equivalent and

have an identical fixation probability, F̂1 or F̂2. In this manner, a network with two modules is
reduced to a network with two nodes and self-loops. Equation (2) with N = 2 yields

F̂LD
1 =

w12

w12 + w21
, (13)

F̂LD
2 =

w21

w12 + w21
. (14)

Because w11 = w22 = 〈k〉M , w12 = w1→2〈k〉M and w21 = w2→1〈k〉M , we obtain

F̂LD
1

F̂LD
2

=
w1→2

w2→1
, (15)

which agrees with the numerical results. On the other hand, kout
i /k in

i is equal to (1 + w1→2)/(1 +
w2→1) and (1 + w2→1)/(1 + w1→2) for M1 and M2, respectively. Both of these values are
close to unity when w1→2, w2→1 � 1, i.e. when the network is modular. Therefore, the MF
approximation gives F̂LD

1 /F̂LD
2 ≈ 1, which is different from our simulated results.

Similar calculations in the case of the IP yield

F̂ IP
i =

C IP
i

C IP
1 + C IP

2

, (i = 1, 2), (16)

where

C IP
1 ≡

w12

w11 + w12
, (17)

C IP
2 ≡

w21

w21 + w22
. (18)

Therefore, we obtain

F̂ IP
1

F̂ IP
2

≈
w1→2

w2→1
(19)

when w1→2, w2→1 � 1. However, the naive MF ansatz (equation (8)) yields 1/k in
i = 1/(〈k〉(1 +

w2→1)) ≈ 1/〈k〉 (16 i 6 N/2) and 1/k in
i = 1/(〈k〉(1 + w1→2)) ≈ 1/〈k〉 ((N/2) + 16 i 6 N ).

Then, F̂ IP
1 /F̂ IP

2 would be approximately unity, which does not well explain the simulation results
shown in figure 7(c).

In the case of the VM, we obtain

F̂VM
i =

CVM
i

CVM
1 + CVM

2

, (20)

where

CVM
1 ≡

w12

w12 + w22
, (21)
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CVM
2 ≡

w21

w11 + w21
. (22)

When w1→2, w2→1 � 1, we obtain

F̂VM
1

F̂VM
2

≈
w1→2

w2→1
. (23)

However, the naive MF ansatz (equation (10)) yields kout
i = 〈k〉(1 + w1→2) ≈ 〈k〉 (16 i 6 N/2)

and kout
i = 〈k〉(1 + w1→2) ≈ 〈k〉 ((N/2) + 16 i 6 N ). Then, F̂VM

1 /F̂VM
2 would be approximately

unity, which again does not explain the simulation results shown in figure 7(d).
In sum, for each update rule the community structure of networks has a strong impact on

the fixation probability.

4. Conclusions

In summary, we obtained the general formulae for the fixation probability in directed and
weighted networks. For each of the three different update rules, fixation probability is a solution
to a system of linear equations. Fixation probability in undirected networks is completely
determined by the local connectivity [4, 5] under neutrality. In contrast, in the case of directed
degree-correlated, small-world, or modular networks, fixation probability is not only determined
by the degree of the node that a mutant initially invades, and it deviates from the MF
approximation to a large extent. Our results indicate that the global connectivity of networks
has a significant effect on the fixation probability.
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