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Abstract. We consider the statistical properties of photon detection with
imperfect detectors that exhibit dark counts and less than unit efficiency, in the
context of tomographic reconstruction. In this context, the detectors are used to
implement certain positive operator-valued measures (POVMs) that would allow
us to reconstruct the quantum state or quantum process under consideration.
Here we look at the intermediate step of inferring outcome probabilities from
measured outcome frequencies, and show how this inference can be performed
in a statistically sound way in the presence of detector imperfections. Merging
outcome probabilities for different sets of POVMs into a consistent quantum
state picture has been treated elsewhere (Audenaert and Scheel 2009 New J.
Phys. 11 023028). Single-photon pulsed measurements as well as continuous
wave measurements are covered.
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1. Introduction

Estimating quantum states and processes plays an increasingly important role in quantum
engineering as it allows for an unambiguous verification of the generation and manipulation
procedures applied to a quantum system. Among the plethora of reconstruction methods, only
few are capable of specifying error bars associated with the reconstruction process itself. We
have recently developed a Kalman filtering approach to quantum tomographic reconstruction [1]
based on Bayesian analysis employing a linear Gaussian noise model.

In [1], we have dealt with quantum state and process reconstruction from tomographic data
obtained by perfect measurements. In optical tomography, for example, this corresponds to the
assumption that detectors are perfect and detector counts represent photon counts faithfully.
In reality, however, optical detectors are not perfect and exhibit dark counts and losses (less
than unit efficiency). In addition, mode mismatch in the detector connection may lead to further
losses.

In the context of tomographic reconstruction these imperfections have important
consequences. The detectors form part of an implementation of a POVM {5(1), 5(2), . . . ,5(K )

},
with which one endeavours to estimate, say, a quantum state ρ. The measurements consist of
frequencies g = (g1, g2, . . . , gK ) for each outcome i = 1, 2, . . . , K . Each of these frequencies
corresponds to a probability pi = Tr ρ5(i). To estimate ρ, one essentially first estimates the
probabilities p = (p1, p2, . . . , pK) from the frequencies g. In the context of Bayesian inference,
the estimation procedure yields a probability distribution for p given the measured g. Indeed,
only in the limit of an infinite number N of measurements do the relative frequencies g/N tend
to the probabilities p. For finite N , p cannot be known with perfect certainty, and, hence, must
be described as a random variable with a certain distribution. Bayesian inference tells us what
this distribution should be.
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In [1], we have shown how knowledge of this distribution can ultimately lead to a
reconstruction of the state in terms of a probability distribution over state space; one thus obtains
a confidence region, rather than a single point in state space, as in maximum-likelihood (ML)
methods. The basic tool for this reconstruction is the Kalman filter equation. It requires as input
the first and second moments of the distribution of p inferred from g, for the various POVMs
used in the tomography.

Detector imperfections are important in this respect because they have an impact on the
inferred distribution of p. The measurement mean z taken in by the Kalman filter has to reflect
losses and dark counts. Equally important is that imperfections lead to additional measurement
fluctuations which have to be accounted for in the measurement covariance matrix 2.

For a realistic detector with efficiency η, its detection probabilities pn can be related to the
detection probabilities p′

n of an ideal detector via the formula

pn =

∑
i=n

(
n
i

)
(1 − η)iηn p′

i , (1)

which is called the Bernoulli transformation [2]. In principle, the probabilities p′

i can be
recovered from pn via an inverse Bernoulli transformation. However, there are several problems
associated with this approach. Firstly, the inverse Bernoulli transformation is numerically an
ill-posed inverse problem. Even minute errors on the pn may cause the errors on p′

i to blow up.
Secondly, this approach does not take into account that what is obtained from the measurements
are frequencies, and not probabilities. Thirdly, this method does not yield error bars on the
obtained p′

i .
A better approach is to use an ML method to reconstruct the p′

i from the frequencies
gn (see, e.g. [3, 4] for an application of ML to photon state reconstruction). In addition, this
approach can be supplemented with a method for obtaining error bars based on the so-called
Fisher information matrix [5]–[7]. Nevertheless, this method still has several drawbacks: firstly,
the algorithm used to calculate the ML solution (the expectation maximization method) is
an iterative method and many iterations may be needed (in [5], for example, several tens of
thousands of iterations are sometimes needed). Secondly, the ML method produces the mode of
the likelihood function; as we have already argued in [1], the mode is not the best representative
of the likelihood function, especially when it is heavily skewed4. A quantity that is more
representative, from the Bayesian perspective, is the mean of the likelihood function [8], and
together with the variance, this is the quantity we will be using in this paper.

In this paper, we present a new, statistically sound method for incorporating detector
imperfections in the reconstruction scheme, based on Bayesian inference. The method produces
the mean and variance of the likelihood function over the probability simplex. Apart from
detection inefficiency, we also treat dark counts. The main design goals for the method are
practicality and speed, without sacrificing statistical accuracy too much. In particular, we want to
avoid lengthy numerical calculations at all costs, excluding any kind of iterative or Monte Carlo
method. To this purpose we aim at finding exact formulae for the required quantities, and when
that is impossible, we introduce several approximation methods to reduce the computational

4 For example, consider the case where a probability p has to be inferred. The likelihood function is a function of
this p ∈ [0, 1]; if the likelihood function is so skewed that the maximum likelihood appears at the value p = 0, this
seems to imply that p is indeed zero, bringing with it the false confidence that the corresponding event absolutely
never happens—this is the notorious zero-eigenvalue problem considered, e.g. in [22]; see also [1].
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Figure 1. Model of an imperfect detector.

complexity of finding the quantities numerically. Another new feature of our work is that we
also treat the detector efficiencies and dark count rates as random variables, and are therefore
able to capture imprecision in the values of these detector parameters.

This paper is organized as follows. We present a mathematical model for an imperfect
detector in section 2. In section 3, we treat the first case of optical detectors used in a setup
where the optical beam consists of timed single-photon pulses. The continuous wave (CW)
setup is treated in section 5. We also study, in section 4, how one can incorporate imprecisions
in the parameters that describe the detector imperfections, dark count rate and efficiency. We
conclude with a brief overview of the main results obtained, in section 6. Appendix A is devoted
to a numerical method for calculating certain integrals that are needed for the calculation of the
moments of the distribution of p. In appendix B, we gather the necessary definitions for a
number of special functions and special distributions that are used extensively in the paper.

2. Modelling the photon detection process

In this section, we present a physical model for an imperfect photon detector and review how
the statistical properties of such a detector comes about, for further reference. We assume
throughout that the detector operates in Geiger mode, so that photon detection consists of single-
detection events, as opposed to linear mode where an opto-electrical current is produced.

In the theory of quantum detection, an imperfect detector exhibiting dark counts is modeled
by a compound detector, consisting of a perfect detector set in one of the outgoing arms of a
beamsplitter. This beamsplitter mixes incoming light fields with a background radiation field
(see figure 1). The efficiency η of the actual detector is modeled by the transmission coefficient
|T |

2 of the beamsplitter. The background radiation field is assumed to be coupled to a thermal
bath, and is best described as a multi-mode field.

Under the additional and well-justified assumption that the number of modes in the back-
ground field is much larger than the number of photons, coupling between background modes
and incoming modes can be ignored (see, e.g. [9] and [10], p 681). Under this assumption, the
background photon distribution is approximately Poissonian. We will assume that the mean
value of the number of dark counts per measurement interval is known, a value denoted by α.
Thus, the number of dark counts per measurement interval is a random variable R ∼ P(α).

New Journal of Physics 11 (2009) 113052 (http://www.njp.org/)

http://www.njp.org/


5

Given this physical model, the detection statistics can be derived as follows. The
conditional probability that the detector produces m counts given that n photons are present
in the incoming field and r photons in the background field is given by ([2]; see also [11, 12]
about how to interpret this conditional probability in a non-counterfactual way)

fM |N ,R(m|n, r) = fM |N ,R(m − r |n, 0)

=

(
n

m − r

)
ηm−r(1 − η)n−m+r , (2)

where the binomial coefficient is taken to be 0 whenever r > m or m − r > n. Since under
the given assumption the background photon distribution is approximately Poissonian, we set
R ∼ P(α) and obtain

fM |N (m|n) = e−α

m∑
r=0

1

r !

(
n

m − r

)
αrηm−r(1 − η)n−m+r . (3)

For a given photon number distribution of the incoming light field, fN (n), the distribution
of the photon counts is

fM(m) =

∞∑
n=0

fM |N (m|n) fN (n). (4)

One verifies easily that if the incoming light field is Poissonian, N ∼ P(ν), with fN (n) =

exp(−ν)νn/n!, the distribution of M is Poissonian also, M ∼ P(α + ην), as expected.
If the incoming light field is in a Fock state, with either n = 0 or 1, the formulae reduce to

fM |N (m, 0) = e−α αm

m!
(5)

for n = 0 (no input photon), and

fM |N (m, 1) = e−α

[
(1 − η)

αm

m!
+ η

αm−1

(m − 1)!

]
(6)

for n = 1 (single input photon). With short light pulses, one usually only wants to discriminate
between m = 0 and m 6= 0 (let alone that further discrimination is at all possible). Hence one is
only interested in

fM |N (0, 0) = e−α, (7)

(no click, no input photon), and

fM |N (0, 1) = e−α(1 − η), (8)

(no click, 1 input photon), and their complementary values. Usually, α is rather small, and one
can set e−α

≈ 1 − α.
Note that e−α is the probability of having no dark counts ( fR(r = 0) = e−α). In the special

case that the detectors are operating in non-discriminating mode, that is, they only detect
the presence of one or more photons, but do not actually count the number of photons, the
actual distribution of the dark counts R is not needed. Indeed, the conditional probability
of no detection fM |N (m = 0, n) is equal to fM |N (0, n) = fR(0)(1 − η)n, while the conditional
probability of detection is

∑
∞

m=1 fM |N (m, n) = 1 − fM |N (0, n). Hence, only the probability of
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Figure 2. Model of a two-outcome POVM where only one detector is used.

absence of dark counts, fR(0), is needed, and this would work even for non-Poissonian photon
background.

3. Single photon pulses

In this section, we treat the case of a single-mode single-photon gun, where each light pulse
consists of a single photon. The statistics of the detection events are governed by the binomial
or multinomial distribution. We treat three different setups. Firstly, a two-outcome POVM
where only one detector is used; the second detector, for the second outcome, is left out
on the assumption that the total number of detection events should be equal to the number
of pulses anyway. For perfect detectors, this assumption is correct, while in the presence of
detector imperfections this is only an approximation. We will study how this affects the detection
statistics. Next, we treat a two-outcome POVM with both detectors in use and compare it with
the previous case. Finally, a K-outcome POVM is considered, generalizing the K = 2 case.

3.1. Single detector

We first consider the most simple case of a two-outcome POVM where only one detector is
used. The tomographic apparatus, apart from the detectors, is hereby treated as a black box
with two output terminals, one for each POVM element, and we assume that in each of the N
runs, for a fixed setting of the POVM, a single photon appears at one of the output terminals.
Losses in the tomographic apparatus itself are disregarded, because that is inessential for the
derivation of the detector model. The tomography black box can thus be modeled by a two-
dimensional probability distribution p = (p, 1 − p), where p represents the probability that the
photon appears at terminal 1 (see figure 2).

Terminal 1 is then connected to a detector with dark count rate α and efficiency η, while
terminal 2 is left open; this corresponds to the cheapest implementation of a two-outcome
detector. The record of an N-run experiment consists of the number of times g the detector
has clicked.

3.1.1. Statistical model. We first derive the statistical properties of the random variable G,
whose observations are the recorded photon count g. Its distribution is conditional on P and
depends on the parameters α and η. The standard procedure is to first derive the conditional

New Journal of Physics 11 (2009) 113052 (http://www.njp.org/)

http://www.njp.org/


7

probabilities of a detector clicking or not clicking conditional on a photon coming in or not.
These are given by (cf section 2):

Pr(1|0) = Pr(click|no photon) = α,

Pr(0|0) = Pr(no click|no photon) = 1 − α,

Pr(0|1) = Pr(no click|photon) = β,

Pr(1|1) = Pr(click|photon) = 1 − β.

(9)

Here, we have introduced the attenuation factor β as

β := (1 − α)(1 − η). (10)

Using these conditional probabilities we can calculate the probability q that the detector
clicks:

q := Pr(click)

= Pr(click|no photon)Pr(no photon)

+ Pr(click|photon)Pr(photon)

= α(1 − p) + (1 − β)p

= α + (1 − α − β)p

= α + γ p,

where in the last line we defined γ as the slope of the q versus p curve, γ := 1 − α − β =

(1 − α)η.
From this probability, one directly obtains the probability that in N runs g clicks are

counted given the probability p of an incoming photon. Obviously, g should be an integer
between 0 and N . The conditional probability distribution of the count G, conditional on P , is
just the binomial distribution Bin(N ; q) with probability distribution function (PDF)

fG|P(g|p) =

(
N
g

)
qg(1 − q)N−g. (11)

3.1.2. Statistical inference. From the general formula (11) describing the statistical behaviour
of an imperfect detector we can derive the likelihood function L P|G that is needed for the
Bayesian inference procedure. It is immediately clear from equation (11) that the likelihood
function of α + (1 − α − β)P will be proportional to the PDF of a beta-distribution with
parameters a = g + 1 and b = N − g + 1. To that we can add some prior information: P is
restricted to the interval [0, 1]. This implies that the beta-distribution of α + γP will have to
be truncated to the interval [α, 1 − β].

The moments of this truncated beta-distribution are given by (with E[X ] denoting the
expectation value of a random variable X )

m1 := E[α + γP]

=
B(α, 1 − β, g + 2, N − g + 1)

B(α, 1 − β, g + 1, N − g + 1)
, (12)
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Figure 3. Plot of µ(P|G = g) (equation (18)) as a function of g/N for N = 10,
100 and 1000, and values of α = 0.1 and β = 0.2.

m2 := E[(α + γP)2]

=
B(α, 1 − β, g + 3, N − g + 1)

B(α, 1 − β, g + 1, N − g + 1)
. (13)

Here, B(x0, x1, a, b) is the generalized incomplete beta function. In actual numerical
computations, it is better to use the regularized incomplete beta function Ix0,x1(a, b). Exploiting
the relation B(a + 1, b)/B(a, b) = a/(a + b), we then obtain

m1 =
Iα,1−β(g + 2, N − g + 1)

Iα,1−β(g + 1, N − g + 1)
m1,0, (14)

m2 =
Iα,1−β(g + 3, N − g + 1)

Iα,1−β(g + 1, N − g + 1)
m2,0, (15)

m1,0 =
g + 1

N + 2
, (16)

m2,0 =
(g + 1)(g + 2)

(N + 2)(N + 3)
, (17)

where the first factor in equations (14) and (15) is a correction term that goes to 1 when α and
β tend to 0, that is, for ideal detectors. From these expressions, the central moments of P can
then be calculated as

µ(P|G = g) =
m1 − α

1 − α − β
, (18)

σ 2(P|G = g) =
m2 − m2

1

(1 − α − β)2
. (19)

Figure 3 shows a plot of µ (equation (18)) as a function of g/N for a few values of N . As
could be expected, for sufficiently large N , the curve for µ approaches a piecewise linear curve
with µ = 0 for 06 g/N 6 α, and µ = 1 for 1 − β 6 g/N 6 1.
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Figure 4. Plot of µ(P|G = g) (equation (18)) (black, central curve) and
σ(P|G = g) (equation (19)) (depicted as the grey curves µ ± σ ) as a function
of g/N for N = 100 and values of α = 0.1 and β = 0.2.

Figure 4 singles out the case N = 100 and depicts the values of the first and second central
moments, µ and σ .

3.1.3. Discussion. A common way to deal with dark counts and non-unit detector efficiency
is to subtract the dark count rate α from the relative count frequencies g/N , replacing negative
numbers by 0 if necessary, and then divide by 1 − α − β, replacing numbers higher than 1 by 1,
if necessary. In other words, one would use formula (18) with g/N in place of m1, and truncate
the outcome to the interval [0, 1].

We argue that there are two distinct problems with this approach. Firstly, as we have already
argued in [1], for given g, the inferred distribution of P is a beta (Dirichlet) distribution, not a
binomial (multinomial) distribution. Considering the extremal case g/N 6 α, the above method
would assign 0 to the probability P , which amounts to claiming that the outcome can never
happen (except for dark counts). Of course, never having seen an event does not imply that the
event is impossible. Indeed, the correct approach, using the beta distribution, assigns nonzero
mean and variance to P . Secondly, as can be seen from figures 3 and 4, the actual behaviour
of the statistically correct inferences for P vary smoothly with g and the truncation mentioned
above is only correct in the N → ∞ limit.

3.2. A two-outcome experiment with two detectors

In this section, we consider the situation where a single photon can take one of two paths (with
probability p and 1 − p, respectively), and subsequently impinges on one of two detectors, each
set along one path (figure 5).

3.2.1. Statistical model. Let detector i be characterized by a dark rate αi and an attenuation
factor βi . Concerning the presence of the photon at the detectors, there are two exclusive events:
event 10, where the photon is at detector 1 and not at detector 2, or event 01, where the photon
is at detector two instead. Concerning the detectors clicking, there are four events: 00, 10, 01
and 11, corresponding to no detector clicking, only detector 1 clicks, only detector 2 clicks, or
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Figure 5. Model of a two-outcome POVM where two detectors are used.

both detectors are clicking. We stress again that we are considering single-photon experiments,
hence the latter case of both detectors clicking would typically correspond to one detector
detecting the photon just mentioned while the other detector is producing a dark count. With
perfect detectors such an event would not occur.

The corresponding conditional probabilities are easily calculated. Let Pr(i j |kl) denote this
conditional probability, where i = 1 iff detector 1 clicks, j = 1 iff detector 2 clicks, k = 1 iff
a photon is at detector 1, and l = 1 iff a photon is at detector 2; hence, k + l = 1. Because the
two detectors are independent, we have Pr(i j |kl) = Pr(i |k) Pr( j |l), where Pr(·|·) is the single-
detector conditional probability (9) of the previous section.

Combined with the probability of the photon events 10 and 01 being Pr(k = 1) = p and
Pr(l = 1) = 1 − p, this gives the probabilities of the click events:

q00 = pβ1(1 − α2) + (1 − p)(1 − α1)β2, (20)

q01 = pβ1α2 + (1 − p)(1 − α1)(1 − β2), (21)

q10 = p(1 − β1)(1 − α2) + (1 − p)α1β2, (22)

q11 = p(1 − β1)α2 + (1 − p)α1(1 − β2). (23)

The probabilities of the corresponding event frequencies g00, g01, g10 and g11, counting over N
runs, is given by the multinomial distribution

fG|P =

(
N

g00, g01, g10, g11

)
qg00

00 qg01
01 qg10

10 qg11
11 . (24)

Note that if one does not distinguish between single click events and two-click events, one is
capturing the sums g01 + g11 and g10 + g11, in which the two-click events are counted twice. This
causes mathematical difficulties in the statistical inference process that are best avoided.

One may actually discard the multiple-click events altogether, and only record the single-
click events g1 := g10 and g2 := g01. This means that one makes no distinction between g00

and g11. The corresponding distribution is again multinomial, but now given by

fG1,G2|P =

(
N

g1, g2, g0

)
qg1

10qg2
01(q00 + q11)

g0 . (25)

with g0 = N − g1 − g2.
In the special case that both detectors are identical, i.e. when they have the same dark

count rates and attenuation factors, α1 = α2 = α, and β1 = β2 = β, we find that the third factor
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q00 + q11 reduces to the constant β(1 − α) + α(1 − β), independent of p. Then, considered as a
function of p, fG1,G2|P is proportional to the binomial PDF (

g1+g2

g1
)qg1

10 qg2
01 , with

q10 = (1 − p)αβ + p(1 − α)(1 − β), (26)

q01 = pαβ + (1 − p)(1 − α)(1 − β). (27)

Defining

a1 := αβ, (28)

a2 := (1 − α)(1 − β), (29)

we have q10 = a1 + (a2 − a1)p and q01 = a2 − (a2 − a1)p. Furthermore, by defining

a :=
a1

a1 + a2
, (30)

we find that q10 = (a1 + a2)[a + (1 − 2a)p] and q01 = (a1 + a2)[a + (1 − 2a)(1 − p)].
Thus, the PDF fG1,G2|P is proportional to the truncated binomial PDF:

fG1,G2|P ∝

(
g1 + g2

g1

)
[a + (1 − 2a)p]g1[a + (1 − 2a)(1 − p)]g2 . (31)

This PDF is essentially identical to the PDF (11) obtained in the previous section, apart from the
fact that the dark count rate α and the attenuation factor β only enter in the PDF via the single
constant a. This constant assumes the role of an effective dark count rate and is given by

a =
a1

a1 + a2
=

αβ

(1 − α)(1 − β) + αβ
. (32)

One sees that a is of the order of αβ, which is a smaller number than α and β. More precisely,
we have αβ 6 a 6 2αβ.

3.2.2. Statistical inference. In general, the statistical inference formulae become quite
complicated, because in the expression for fG1,G2|P more than 2 factors appear that have a
dependence on p. The subsequent integrals over p can no longer be expressed as (incomplete)
beta functions. In this section, we treat the easiest case of all detectors being equal, and use
the PDF (31), which only has two factors. As this PDF is essentially identical to the PDF (11)
obtained in the previous section, the same results therefore hold for the statistical inference.

We can therefore use formulae (14)–(19), provided we perform the substitutions g → g1,
N → g1 + g2, α → a and β → a. This gives

m1(a) =
Ia,1−a(g1 + 2, g2 + 1)

Ia,1−a(g1 + 1, g2 + 1)
m1,0, (33)

m2(a) =
Ia,1−a(g1 + 3, g2 + 1)

Ia,1−a(g1 + 1, g2 + 1)
m2,0, (34)

m1,0 =
g1 + 1

g1 + g2 + 2
, (35)

m2,0 =
(g1 + 1)(g1 + 2)

(g1 + g2 + 2)(g1 + g2 + 3)
(36)
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Table 1. Average values for σ for various settings of p, comparing the one-
detector and two-detector cases.

p σ (one-detector) σ (two-detectors)

0 0.033 0.044
0.5 0.070 0.088
1 0.04 0.044

Table 2. Average values for σ in the one-detector and two-detector protocols
under the additional constraint that g1 + g2 should equal the number of runs for
the one-detector case.

p σ (one-detector) σ (two-detectors)

0 0.033 0.017
0.5 0.070 0.052
1 0.04 0.017

and

µ(P|G = (g1, g2)) =
m1 − a

1 − 2a
, (37)

σ 2(P|G = (g1, g2)) =
m2 − m2

1

(1 − 2a)2
. (38)

The main difference between equations (33)–(38) and equations (14)–(19) for the single-
detector case is the replacement of α and 1 − β as limits of the incomplete beta functions by a
and 1 − a, where a is the effective dark count rate given by equation (32).

3.2.3. Discussion. We can compare the performance of the two setups, one detector or two
detectors, by comparing the average value of σ of the reconstructed distribution of p, for a given
value of the actual p. In the one-detector case, G is distributed according to equation (11). For
given actual p, one calculates the average of σ as given by equation (19) over this distribution.
In the two-detector case, G1, G2 are distributed according to equation (31), and one similarly
calculates the average of σ as given by equation (38). Taking, as in figure 3, α = 0.1, β = 0.2
and N = 100, we find, for various settings of the actual p, the values collected in table 1. From
this table, it emerges that the one-detector case performs slightly better on average. At first
sight, this seems rather counterintuitive. Surely, the variance in the two-detector case should be
smaller as more information is taken into account. The reason for this discrepancy is that for
the two-detector case we only used single click events, in order to keep the inference procedure
simple. That is, the sum g1 + g2 is always less than N . With the given parameter settings, the
average value of g1 + g2 is 50 (for any p), which is one half of N .

To allow for a relevant comparison between the one-detector and two-detector setups, one
should have more measurement runs in the two-detector case, stopping when g1 + g2 is equal
to the number of runs for the one-detector case. If one does that, the two-detector setup indeed
performs better, as it should (see table 2).
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Figure 6. Plot of µ(P|G = (g, N − g)) as a function of g/N for N = 10, 100
and 1000, and values of α = 0.1 and β = 0.2.
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Figure 7. Plot of µ(P|G = (g, N − g)) and σ(P|G = (g, N − g)) (depicted as
the grey curves µ ± σ ) as a function of g/N for N = 100 and values of α = 0.1
and β = 0.2.

In figures 6 and 7, we show what happens to figures 3 and 4 for the two-detector
setup (under the constraint g1 + g2 = 100). The plateaux around µ = 0 and 1 are indeed much
shorter. In addition, the error bars (quantified by σ ) are smaller by a factor of roughly 1/

√
2

(corresponding to an on average increase of N by a factor of 2).

3.2.4. Unequal detectors. In the more realistic case that detector parameters are not equal, we
need to calculate integrals of the form

J (g;a, b) =

∫ 1

0
dp

∏
i

(ai + bi p)gi ,

with more than two factors. Indeed, the mean of P can be calculated from

J1 = E[a1 + b1 P] =
J (g + e1

;a, b)

J (g;a, b)
,
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and its variance from

J2 = E[(a1 + b1 P)2] =
J (g + 2e1

;a, b)

J (g;a, b)
,

where ei denotes the unit vector along the i th dimension, ei
= (0, . . . , 1, . . . , 0). Hence,

µP = (J1 − a1)/b1,

σ 2
P = (J2 − a2

1 − 2a1b1µP)/b2
1 − µ2

P .

The actual integrations can be performed numerically using standard quadrature methods.
To enhance numerical robustness for higher values of N =

∑
i gi , for which the integrand

is sharply peaked, it is advisable to reduce the integration interval and only integrate over that
subinterval of [0, 1] where the integrand is higher than, say, 10−6 times its maximal value. This
refinement allows the quadrature algorithm to better place its quadrature points.

3.3. A K -outcome POVM with K detectors

Here, we generalize the results of section 3.2 to the case where there are K detectors, each one
corresponding to one of the outcomes. No detector is missing. The tomographic apparatus is
now treated as a black box with K output terminals, one for each POVM element. To keep the
calculations for the statistical inference transparent, we restrict ourselves to the case of identical
detectors throughout.

3.3.1. Statistical model. Again we assume that in each of the N runs, for a fixed setting of the
POVM, a single photon appears at one of the output terminals. The tomography black box is
now modeled by a K -dimensional probability distribution p = (pk)

K
k=1, where pk represents the

probability that the photon appears at terminal k.
Each terminal is then connected to a detector with dark count rate α, efficiency η, and

attenuation factor β. The record of an N -run experiment consists of the frequencies gk ,
k = 1, . . . , K , the number of times the kth detector has clicked and none of the others has.
As discussed before, we leave out events where more than one detector clicked, in order not to
increase the mathematical complexity.

We now derive the statistical properties of the vector G = (Gk)
K
k=1, whose observations are

the recorded photon counts G. Its distribution is conditional on the probability vector p and
depends on the parameters α and β.

Let qk denote the probability of the event Ek that detector k clicks and no other. We
again first calculate the conditional probabilities of Ek , conditional on the photon appearing at
terminal j . For j = k, this conditional probability is (1 − α)K−1(1 − β); for j 6= k it is
αβ(1 − α)K−2.

The probability of event Ek is then given by

qk = (1 − α)K−2[(1 − α)(1 − β)pk + αβ(1 − pk)]

=
a1 + (a2 − a1)pk

(K − 1)a1 + a2

= a + (1 − K a)pk, (39)

where a1 and a2 are defined as before, and the effective dark count rate a is defined as

a :=
a1

(K − 1)a1 + a2
. (40)
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For the N -run experiment, the probability of the vector of frequencies g = (g1, g2, . . . , gK )

is therefore proportional to the truncated multinomial distribution

fG|P (g|p) ∝

 ∑
k

gk

g1, . . . , gK

 K∏
i=1

[a + (1 − K a)pi ]
gi . (41)

3.3.2. Statistical inference. From the general formula (41) describing the statistical behaviour
of a bank of imperfect detectors we immediately derive that the likelihood function L P |G is
given by

LP |G =
1

N

K∏
i=1

[a + (1 − K a)pi ]
gi , (42)

where N is the normalization integral, given by the integral of [a + (1 − K a)p1]g1 . . . [a + (1 −

K a)pK ]gK over the probability simplex pk > 0,
∑

k pk = 1 . This integral is quite hard to
calculate, and so are the integrals that are required to calculate the moments of L P |G. Denoting

rk := a + (1 − K a)pk, (43)

we obtain that the random vector R = (R1, . . . , RK ) is distributed according to a truncated
Dirichlet distribution, where Rk is subject to the condition Rk > a.

No analytic expression is known for the integrals involved; among the numerical methods
to calculate them are numerical integration, the Gibbs sampling method (a Monte Carlo
method) [13], and saddle-point approximations [14]. Since for neither method commonly
available software seems to exist, we give some more details about the latter method in
appendix A, where we calculate the normalization integral of the truncated Dirichlet distribution

J (α; a) := P(R> a) =

∫
ri>a∑
i ri =1

dr fR(r),

forR∼ Dir(α) , where as usual α = g + 1. The first and second-order moments about the origin
of R can be expressed in terms of this integral as

E[Ri ] =
J (α + ei

; a)

J (α; a)

αi

α0
, (44)

E[R2
i ] =

J (α + 2ei
; a)

J (α; a)

αi(αi + 1)

α0(α0 + 1)
, (45)

E[Ri R j ] =
J (α + ei + ej

; a)

J (α; a)

αiα j

α0(α0 + 1)
. (46)

The moments of P then follow easily from equation (43).
Note, however, that this calculation requires K + 1 + K (K + 1)/2 separate integrations,

which can be computationally very expensive for larger values of K . For relatively small values
of a, say a < 0.1, the following provides a moderately good approximation:

J (α; a) ≈

K∏
i=1

I1−a(α0 − αi , αi) (47)

New Journal of Physics 11 (2009) 113052 (http://www.njp.org/)

http://www.njp.org/


16

with I1−a(α0 − αi , αi) the regularized incomplete beta function [see equation (B.11)]. Numerical
experiments indicate that this approximation is good enough for the calculation of the second-
order moments of R for values of a as large as 0.1. This has been checked for K = 3; with
a = 0.1, the approximated second-order moment differs less than 5% from its actual value.
Similarly, the first-order moments are accurate to within 0.1σ for a 6 0.05.

The worst case figures appear for extremal values of G, i.e. all gi = 0 bar one. Although
the relative error for these extremal values increases with N , in practice however, these extremal
values will hardly ever occur, exactly because of the presence of dark counts, as indicated by a.
Therefore, given a and N , we first find the minimal value of the gi that can sensibly occur and
then calculate the relative error for that point. Since G is distributed as a truncated multinomial
one should take gi > Na − 2

√
Na(1 − a) . The relative error for points within these boundaries

is then less than 0.1σ , independently of N .
We have compared the speed of three methods to calculate/approximate the moments

of P . The calculations have been done in Matlab, with the routines for the incomplete beta and
incomplete gamma function replaced by proprietary C implementations (available from [15]).
Method 1 is the saddle-point method combined with one numerical integration (see appendix A),
method 2 is the saddle-point method combined with analytical integration of a Taylor series
approximation (see appendix A), and method 3 uses approximation (47). For K = 3, a = 0.1
and α = [10, 10, 50] , method 1 took 142 ms, method 2 10 ms, and method 3 1.7 ms, on an
Intel Core2 duo T7250 CPU running at 2 GHz. Method 1 is the most accurate, and method 3
the least.

4. Dealing with parameter imprecision

In the previous section, we have assumed that the two main parameters α and β (dark count rate
and attenuation factor) are known exactly. In realistic situations, however, α and β are also of a
statistical nature, for a variety of possible reasons, including instability of the parameter (drift),
imprecision of the measurement of the parameter, or plain infeasibility of direct measurement.
The second best thing to an accurate value for a parameter is then a statistical description in
terms of a PDF or, at the very least, in terms of its mean and central moments (variance, and
maybe even the skewness).

In this section we show how this statistical uncertainty about the parameters can be
included in the inference process. For simplicity of the exposition, we will assume that only
one parameter exhibits imprecision. The general case follows easily.

Suppose, as usual, that we want to obtain an estimate of the random variable P and of
its variance from measurements of G, using the likelihood function L P|G,Y (p|g, y), where y
is a parameter that is described by a random variable Y , with given mean µ, variance σ 2 and
possibly higher order moments.

We will assume that the PDF of Y is close to normal, namely continuous, single mode,
small skewness and kurtosis close to the normal value of 3. Almost all of the probability mass of
Y is then contained in the interval [µ − 3σ, µ + 3σ ]. PDFs of this kind can be well approximated
by a so-called Edgeworth expansion [16, 17]. A second-order Edgeworth PDF is just the normal
PDF with the given mean and variance:

fY,2(y) =
1

√
2πσ

exp[−(y − µ)2/2σ 2].
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A third-order Edgeworth PDF adds another term, which contains the skewness γ . For a
standardized random variable (zero-mean and unit variance) this PDF reads

fY,3(y) = φ(y) −
γ

6
φ′′′(y) = [1 − γ (3 − y2)y/6]φ(y),

where φ is the standardized normal PDF φ(y) = exp(−y2/2)/
√

2π .
Recall that if Y were known perfectly, we would need to calculate only the following:

E[P] =

∫ 1

0
dppL P|G(p|g, y)∫ 1

0
dpL P|G(p|g, y)

,

E[P2] =

∫ 1

0
dpp2L P|G(p|g, y)∫ 1

0
dpL P|G(p|g, y)

,

i.e. three integrals in total. Since, however, Y enters as a nuisance parameter, we must also
integrate out Y , taking into account the PDF of Y . Hence we need three double integrals, which
we would like to avoid for efficiency reasons.

The method we will employ to simplify these calculations is to first perform the integration
over p (analytically or numerically, depending on what is possible), then approximate each such
integral by a polynomial of low degree (3 or 4) in y, (this is the idea behind the Newton–Cotes
integration formulae) and finally perform the integration over Y analytically, with a low-order
Edgeworth PDF substituted for the PDF of Y .

To obtain a polynomial approximation we will use Lagrange interpolation. Let yi be m
equidistant points within the interval [µ − 3σ, µ + 3σ ] (with m equal to 3 or 4), say yi = iδ,
with i = −1, 0, 1 or i = −3/2, −1/2, 1/2, 3/2. Then any function h(y) can be approximated
by a polynomial ĥ(y) given by Lagrange’s interpolation formula

ĥ(y) =

∑
k

h(yk)
∏
i,i 6=k

y − yi

yk − yi
.

The integration over Y can now be done analytically, provided we choose a low-order
Edgeworth PDF for Y . For m = 3 (degree-3 interpolation) and choosing a normal PDF for Y
yields ∫

dy fY (y) ĥ(y) =
σ 2

2δ2
h(y−1) +

(
1 −

σ 2

δ2

)
h(y0) +

σ 2

2δ2
h(y1).

Hence, if we set δ = σ , this formula simplifies to∫
dy fY (y) ĥ(y) = [h(µ − σ) + h(µ + σ)]/2. (48)

Hence, only two evaluations of h are needed, i.e. two integrations over p. As this has to be done
for the numerator and denominator of E[P] and of E[P2], this gives a total of six integrations.
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For example, the formula for µP becomes

E[P] =

∫ 1

0
dppL(p|g, µ− σ) +

∫ 1

0
dppL(p|g, µ + σ)∫ 1

0
dpL(p|g, µ− σ) +

∫ 1

0
dpL(p|g, µ + σ)

.

For m = 4 we can include the skewness γ of Y – it cancels out for m = 3 – by choosing
a third-order Edgeworth PDF for Y . When we put δ = 2σ , so that the whole ±3σ interval is
covered, we obtain in a similar way as before∫

dy fY (y) ĥ(y) = −
γ

48
h(µ − 3σ) +

(
1

2
+

γ

16

)
h(µ − σ) +

(
1

2
−

γ

16

)
h(µ + σ) +

γ

48
h(µ + 3σ).

(49)

This now involves four evaluations of h, hence four integrals over p.
As a final remark, note that one can place bounds on the values of a parameter from the

measurement statistics. To illustrate this, consider a run of N two-outcome pulsed experiments,
with unknown dark count rate, where the number g of outcomes ‘1’ is very low compared to N .
Intuition has it that the dark count rate must be small accordingly. The likelihood function for
P is (see section 3.2)

L P =

(
N
g

)
[a + (1 − 2a)p]g[a + (1 − 2a)(1 − p)]N−g,

with effective dark count rate a. Since g is small, this places an upper bound on the value of a.
In effect, a has to be described by a random variable, and L P contains that random variable. By
integrating out P from L P , we obtain a distribution for a. The exact result is that the PDF of a
is proportional to

f (a) ∝

∫ 1

0
dp [a + (1 − 2a)p]g[a + (1 − 2a)(1 − p)]N−g

=
1

1 − 2a

∫ 1−a

a
dx x g(1 − x)N−g

=
B(a, 1 − a, g + 1, N − g + 1)

1 − 2a
.

Rather than using the exact result here, one notes that the integrand of the second integral is
proportional to the PDF of a beta distribution and therefore f (a) is essentially the cumulative
distribution function (CDF) of the complementary beta distribution, a function decreasing
with a. The PDF has mean value µ = (g + 1)/(N + 2) and variance σ 2

= (g + 1)(N + 1 − g)/

(N + 2)2(N + 3). Thus, f (a) will be significant only for values of a below µ + 3σ . For small g
and large N , we therefore obtain the promised upper bound on a:

a 6 (g + 1 + 3
√

g + 1)/N . (50)
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5. Poissonian case

In section 3, we have treated a class of tomography experiments based on single-photon
optical pulses, where the statistics of the recorded photon counts is governed by the
binomial/multinomial distribution. In this section, we treat CW experiments. Here, the input
laser beam is turned on for a fixed time T . The detectors are still operating in Geiger mode,
and the intensity of the laser beam is such that individual photons can still be discerned. Photon
counts are recorded during that same time interval T . The statistics are now governed by the
Poisson distribution.

Note that the Poisson distribution is the limiting case of the binomial distribution for the
number of runs N going to infinity, while the total duration T and the photon rate (average
number of photons expected during T ) are kept constant. Therefore, in principle, there should
be no essential difference between the statistics of this kind of experiment and those of the
single-photon experiments. However, in CW experiments, the intensity of the laser beam enters
as a parameter, requiring determination. While this determination is possible by performing
independent measurements, a less time-consuming approach is to use the actual measurements
one is interested in. This approach will be described in this section.

We will assume again that the dark count rate α is known exactly. The detector attenuation
factor β will not show up explicitly as it is assumed to be absorbed into the (unknown) laser
beam intensity.

5.1. Statistical model

We consider a CW experiment consisting of K runs of equal time duration T , and constant but
unknown laser intensity. In each run a different two-outcome POVM {5(i), 1 − 5(i)

} is applied,
but only the counts gi corresponding to 5(i) are recorded, as was the case in section 3.1. We
assume that

∑
i 5(i)

= b1 . The general case, in which
∑

i 5(i) is not a multiple of 1 , has been
treated (without dark counts) in [1]. The purpose of this section is only to show how dark counts
can be added to the statistical model. Non-unit detector efficiency has already been incorporated
in the treatment of [1] implicitly, by absorbing η in the beam intensity A.

As stated in section 2, for Poissonian input and background fields, the counts are Poissonian
too, with mean value µ = α + ην, where α is the dark count rate and ν the input photon rate. For
beam intensity A, and POVM element 5(i), we have ν = Api , thus µi = α + ηApi . Henceforth,
we absorb η into A, thus µi = α + Api . In addition, since

∑
i 5(i)

= b1 , we have
∑

i pi = b .
As the counts gi are independent, and each is Poissonian with mean µi , the PDF of the

sequence of counts G = (G1, G2, . . . , G K ) is given by

fG(g) =

K∏
i=1

e−µi
µ

gi
i

gi !
∝ e−Ab

K∏
i=1

(α + Api)
gi ,

where factors have been left out that are independent of pi and A. In order to formally turn
the quantities α + Api into a probability distribution, we divide by their sum

∑K
i=1(α + Api) =

Kα + Ab, and define
α + Api

Kα + Ab
= y + (1 − K y)pi/b, (51)

y := α/x, (52)
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x := Kα + Ab. (53)

Then the PDF of G is proportional to

fG(g) ∝
e−x x N

0(N + 1, Kα)

K∏
i=1

(y + (1 − K y)pi/b)gi , (54)

with N :=
∑

i gi . The factor 1/0(N + 1, Kα) has been included to normalize the factor e−x x N

over the interval x > Kα. The first factor is, indeed, the PDF of a truncated gamma distribution.
The second factor is essentially the PDF for the single-photon case, with y assuming the

role of the effective dark count rate. The main difference is that y is now a random variable.
Indeed, as the variable A is an unknown, so are x and y. In Bayesian terminology, A is a
nuisance parameter, and the standard Bayesian treatment is to integrate it out. That is, fG(g) is
multiplied by a suitable prior for A, and is then integrated over A ∈ [0, ∞]. The problem with
this approach is that the integral cannot be carried out analytically.

In what follows, we approximate the integral, based on the assumption that the number of
total counts N =

∑
i gi should be much larger than the expected total number of dark counts

Kα, i.e. that the signal-to-noise ratio of the experimental data is large enough. This assumption
is very reasonable given that one actually wants to obtain useful information from the data.

The main benefit of this assumption is that the truncation of x can be disregarded. Indeed,
as has been noted in appendix B, the normalization factor 0(N + 1, Kα) is well approximated
by 0(N + 1) when N > 1 + Kα + 3

√
Kα , and similar statements hold regarding the moments

of the distribution. Thus the PDF of G is proportional to

fG(g) ∝
e−x x N

N !

K∏
i=1

[y + (1 − K y)pi/b]gi , (55)

where we now allow the random variable X to assume all values down to 0. The upshot
is that to very good approximation, X has a gamma distribution with mean (and variance)
N + 1. The integral of fG(g) over x is thus a convolution of L(g) :=

∏K
i=1[y + (1 − K y)pi/b]gi ,

which depends on x via y = α/x , with the gamma PDF of X . Note also the resemblance of
equation (55) to the corresponding equation (41) for the K -detector single photon case, which
is not all too surprising.

A short calculation using the properties of X reveals that the variable Y = α/X has mean
value µY = α/N and variance σ 2

Y = α2/N 2(N − 1). As the PDF of Y shows small but noticeable
deviations from a normal distribution, we also need the skewness of Y , which turns out to be
γY = 4

√
N − 1/(N − 2) . Recall that the skewness is defined as the third central moment of Y

divided by the third power of σY ; for this distribution the skewness is roughly equal to two times
Pearson’s mode skewness, and can therefore be interpreted as how much the mean differs from
the mode, expressed in halves of a standard deviation. For this distribution the mode of Y is
α/(N + 2).

5.2. Statistical inference

We can now invoke the methods of sections 3.3 and 4 to perform the statistical inversion of
L(g) with Y as an imprecise parameter with the moments just mentioned, which depend on the
dark count rate α (assumed to be known here) and on N =

∑
i gi . As regards the additional

factor 1/b in equation (55), this can be taken into account by multiplying the obtained mean
of P , E[Pi ], by b and the second-order moments about the origin, E[Pi Pj ], by b2.
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Finally, we can also treat the case where the POVM elements do not add up to a multiple
of the identity, i.e. when the assumption

∑
i 5(i)

= b1 is not satisfied. This could occur because
of inaccuracies in the implementations of the POVM elements, or simply because of the choice
of elements—before [1] it was not known that failure to meet the condition

∑
i 5(i)

= b1 had
a severely negative impact on the ease with which statistical inferences could be made. The
consequence is that the probabilities pi do not add up to a constant. Their sum p0 :=

∑K
i=1 pi is

now a random variable, too, and has to be treated as an additional nuisance parameter. This case
has been treated, for the case without dark counts, in [1], section 3.2.5, under the assumption
that the deviation of

∑
i 5(i) from a scalar matrix is small. For larger deviations no accurate

methods are known to us other than Monte Carlo methods.
The formulae obtained in [1] carry over easily to the case with dark counts, because b

simply enters as a factor in the formulae for the moments of P . Let M and m be the largest and
smallest eigenvalue of

∑
i 5(i). The multiplication factors for E[Pi ] and E[Pi Pj ] (the moments

about the origin) are now, instead of b and b2, Mφ1 and Mφ2, respectively, with

φ1 =
K

K + 1

1 − (m/M)K +1

1 − (m/M)K
, (56)

φ2 =
K

K + 2

1 − (m/M)K +2

1 − (m/M)K
. (57)

6. Conclusion

In this paper, we have studied the statistical properties of photon detection using imperfect
detectors, exhibiting dark counts and less than unit detection efficiency, in the context
of implementations of general K -element POVMs. We have derived a Bayesian inference
procedure for obtaining distributions over outcome probabilities from detection frequencies in
a variety of setups. We also obtained formulae and/or algorithms for efficiently calculating
the first and second-order moments of these distributions, effectively obtaining estimates and
corresponding error bars for the outcome probabilities.

For experiments using single-photon laser pulses we have considered K -element POVMs
constructed with K detectors (with special emphasis on the case K = 2). We found that by far
the easiest inference procedure occurred when only taking single-detection events into account
(i.e. only counting events where just one out of K detector clicked). In that case, the outcome
probabilities p are drawn from a truncated Dirichlet distribution ∝

∏K
i=1[a + (1 − K a)pi ]gi

where gi are the detection frequencies and a is an effective dark count rate, which can be
calculated from the actual dark count rate and the detection efficiency. For K = 2 the moments
of this truncated Dirichlet can be calculated extremely rapidly using incomplete beta functions.
For larger K we have devised a number of numerical algorithms for doing so, offering the user
a trade-off between accuracy and speed. For K = 2 we also considered a setup with just a single
detector, and found slightly different formulae for the distribution and its moments.

While in the above one needs to supply values for dark count rate and detector efficiency,
we have also devised a method for dealing with the case when these parameters are not
accurately known. This method is particularly useful to deal with the final setup we have
considered, namely when the experiments are done with CW laser beams. In that case, the
detection statistics is Poissonian and the inferred outcome probabilities are again drawn from a
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truncated Dirichlet, but now with the effective dark count rate being a random variate itself, due
to the inaccurately known laser beam intensity.

Finally, we also briefly considered how one can obtain an upper bound on the effective
dark count rate, from the value of the minimal frequency of an outcome in any given run (or in
a combination of runs).
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Appendix A. Integrals of truncated Dirichlet distributions

In order to calculate the moments of the truncated Dirichlet distribution, one must be able to
accurately calculate the distribution’s normalization integrals. In this appendix, we describe an
approximation method due to Butler and Sutton [14].

Let X ∼ Dir(α) be a Dirichlet distributed K -dimensional random variable, with
parameters α = (α1, . . . , αK ). This assumes that X i > 0 and

∑K
i=1 X i = 1 hold. We will use

the common notation α0 =
∑

i αi .
Let us now truncate X , by imposing the condition X i > a, where 06 a 6 1/K . The goal

is to calculate the new integration constant given by the probability Pr(X > a). We will denote
this probability integral by J :

J (α; a) =

∫
xi>a∑
i xi =1

dx 0(α0)

K∏
i=1

xαi −1
i

0(αi)
. (A.1)

Note that for K = 2, this integral is given by the regularized incomplete beta function
Ia,1−a(a1, a2).

The method proposed by Butler and Sutton consists of two basic ideas. The first idea is
to use a conditional characterization of X . Namely, one defines K new, independent random
variables Z i such that X and Z|

∑
i Z i = 1 have the same distribution. It is known that one

obtains the required Dirichlet distribution if Z i has a gamma distribution, Z i ∼ Gamma(αi , 1) .
For the purposes of the method, the value of the scale parameter θ does not matter, and we set
θ = 1. The PDF is therefore given by

fZi (z) =
zαi −1e−z

0(αi)
.

Now the required probability Pr(X > a) can be expressed, using Bayes’ rule, as

Pr(X > a) = Pr

(
Z > a|

∑
i

Z i = 1

)

= Pr

(∑
i

Z i = 1|Z > a)
∏

i

Pr(Z i > a

)
1

Pr

(∑
i

Z i = 1

) . (A.2)
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The factors Pr(Z i > a) are easily calculated in terms of the CDF of the gamma distribution,
giving

Pr(Z i > a) = Q(αi , a), (A.3)

with Q(αi , a) the regularized incomplete gamma function.
Since the Z i are independently gamma-distributed, Z i ∼ Gamma(αi , 1) , their sum is also

gamma-distributed:
∑

i Z i ∼ Gamma(α0, 1) . The factor Pr(
∑

i Z i = 1) is therefore given by
the value of the PDF of Gamma(α0, 1) in 1, which gives

1/Pr

(∑
i

Z i = 1

)
= e 0(α0). (A.4)

The first factor in equation (A.2), the truncated PDF Pr(
∑

i Z i = 1|Z > a), is the hardest
to calculate, because it is a multi-dimensional integral, and the second idea in Butler and
Sutton’s method is to convert it to an inverse Laplace integral of a univariate function, and then
approximate the latter integral using a saddle-point method, as first proposed by Daniels [18].

The method starts from the moment generating function (MGF) of the truncated random
variable T =

∑
i Z i |Z > a, defined as MT (s) = ET [est ]. Since the Z i are independent, we have

MT (s) =

∏
i

ETi [e
st ], (A.5)

where Ti := Z i |Z i > a. A simple calculation gives

ETi [e
st ] =

∫
∞

a
dt est tαi −1e−t∫

∞

a
dt tαi −1e−t

= (1 − s)−αi
Q(αi , (1 − s)a)

Q(αi , a)
, (A.6)

which is valid for <s < 1 (and we do need complex s). The denominators cancel with the factors
Pr(Z i > a) = Q(αi , a).

Since the MGF MT (−s) is the two-sided Laplace transform of the PDF, the PDF can be
recovered from the MGF by an inverse Laplace transform:

fT (t) =
1

2π i

∫ γ +i∞

γ−i∞
MT (s)e−st ds,

where, in our case, we only need to evaluate the PDF at the point t = 1. By expressing the
MGF as the exponential of the cumulant generating function (CGF) KT (s) := log MT (s), the
path of integration can be brought in a form that readily invites the saddle-point method for its
approximate evaluation:

fT (t) =
1

2π i

∫ γ +i∞

γ−i∞
eKT (s)−st ds. (A.7)

The path of integration is hereby chosen to pass through a saddle-point of the integrand, in
such a way that the integrand is negligible outside its immediate neighbourhood. Daniels shows
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that in this case the path should be a straight line parallel to the imaginary axis and passing
through the saddle-point ŝ , which is that value of s for which the derivative of KT (s) − st w.r.t.
s vanishes:

K ′

T (ŝ) = t. (A.8)

Daniels showed that, under very general conditions, ŝ is real. Hence, in equation (A.7), one
takes γ = ŝ, and the path of integration is along points s = ŝ + iy .

An explicit formula for K ′

T (s) is

K ′

T (s) =
a

u

[
α0 +

∑
i

g(αi , u)

]
, (A.9)

with u = a(1 − s) and g(α, u) = e−uuαi /0(αi , u). One shows that g(α, u) is roughly approxi-
mated by max[0, u − (α − 1)]; moreover, g(α, u)>max[0, u − (α − 1)]. An approximate value
of ŝ = 1 − û/a is thus given by the solution of

u

a
= α0 +

∑
i

max[0, u − (αi − 1)]. (A.10)

As the right-hand side is a piecewise linear function of u, the solution of this equation is easily
found. This approximate solution can then be used as a starting value for numerically solving
the exact equation

u

a
= α0 +

∑
i

g(αi , u).

Once the optimal value ŝ has been obtained, one can go about performing the integration
in equation (A.7), i.e. of

fT (1) =
1

π

∫
∞

0
<[MT (ŝ + iy)e−(ŝ+iy)] dy, (A.11)

where we have exploited the fact that the real part of the integrand is even in y. To obtain
the highest accuracy, the integration has to be done using a numerical quadrature. The upper
integration limit can be replaced by a finite value, equal to a fixed number times the approximate
width of the function graph, which is roughly 1/

√
K ′′

T (ŝ), where

K ′′

T (s) =

∑
i

αi

(1 − s)20(αi , a(1 − s))2
.

If speed is at a premium, and somewhat less precision is acceptable, one can use a finite-
term Taylor expansion of KT (s) − s, and integrate each of the resulting terms analytically.
The saddle-point approximation is obtained by writing KT (s) − s as a Taylor series around
s = ŝ:

KT (s) − s = KT (ŝ) − ŝ +
∞∑
j=2

1

j!
K ( j)

T (ŝ)(iy) j ,
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Figure 8. Plot of J (α1, α2; 0.1) as calculated using the second-order saddle-point
method (blue, solid curve), and the absolute error, in units of 10−4 (red, dashed
curve), as compared to the exact result I0.1,0.9(α1, α2). The sum α0 = α1 + α2 is
held constant at a value of 50. The maximal absolute error here is 2.4571 × 10−5

and the maximal relative error is 2.5189 × 10−5.

and expanding the integrand as

eKT (s)−s
= eKT (ŝ)−ŝ e−K ′′

T y2/2 exp

 ∞∑
j=3

1

j!
K ( j)

T (iy) j


= eKT (ŝ)−ŝ e−K ′′

T y2/2

×

{
1 − i

K (3)

T

6
y3 +

K (4)

T

24
y4 + i

K (5)

T

120
y5 +

[
−

(K (3)

T )2

72
−

K (6)

T

720

]
y6 + . . .

}
.

with each of the derivatives of KT evaluated in ŝ.
Upon performing the integral

∫ +∞

−∞
dy the terms with odd powers of y vanish. After

substituting KT
′′y2/2 = v2, and using∫ +∞

−∞

e−v2
v2k dv = 0(k + 1/2),

with 0(1/2) =
√

π , 0(2 + 1/2) = 3
√

π/4 and 0(3 + 1/2) = 15
√

π/8, the even powers yield

fT (1) =
eKT (ŝ)−ŝ√

2π K ′′

T

(
1 +

1

8

K (4)

T

(K ′′

T )2
−

5

24

(K (3)

T )2

(K ′′

T )3
+ · · ·

)
, (A.12)

(note that in the corresponding formula (7) in [14] a minus sign is missing).
In figure 8, we give an example of the 2D integral J (α1, α2; a) calculated using this method

and compare it to the exact result, which for K = 2 is known to be the regularized incomplete
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beta function Ia,1−a(α1, α2). The Matlab routines used to perform these calculations are available
from [15].

Appendix B. Mathematical compendium

In this appendix, we gather a few mathematical preliminaries that are necessary to understand
the statistical models developed in sections 2–5.

B.1. Special functions

We start by collecting some important results on special functions [19].

B.1.1. Gamma function. The gamma function 0(α) is defined as the integral

0(α) =

∫
∞

0
dt tα−1e−t (B.1)

with 0(k) = (k − 1)! for integer arguments. Since for large values of its argument, the gamma
function becomes extremely large, numerical packages usually contain implementations of the
natural logarithm of the gamma function too. We will need this as well.

The gamma integral leads to two incomplete integrals, the lower incomplete gamma
function γ (α, x) and the upper incomplete gamma function 0(α, x):

γ (α, x) =

∫ x

0
dt tα−1e−t , (B.2)

0(α, x) =

∫
∞

x
dt tα−1e−t . (B.3)

Obviously, one has γ (α, x) + 0(α, x) = 0(α). By dividing these incomplete gamma functions
by the corresponding complete gamma, one obtains the regularized incomplete gamma
functions:

P(α, x) = γ (α, x)/0(α), (B.4)

Q(α, x) = 0(α, x)/0(α), (B.5)

with P + Q = 1.

B.1.2. Beta function. The beta function B(a, b), a generalization of the gamma function, is
defined as

B(a, b) =

∫ 1

0
dt ta−1(1 − t)b−1. (B.6)

It is related to the gamma function via

B(a, b) =
0(a)0(b)

0(a + b)
. (B.7)

This leads to the relation

B(a + 1, b)/B(a, b) = a/(a + b), (B.8)
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For integer arguments, one sees that B(a, b) is related to the binomial coefficient as

B(a, b) =
(a − 1)!(b − 1)!

(a + b − 1)!
=

a + b

ab
(a+b

a

) .
Since, again, the natural logarithm of the beta function is usually implemented directly, this
formula allows evaluation of the binomial coefficients for larger values of the arguments than
allowed by direct calculation.

Just as in the case of the gamma function, replacing the integration limits yields the
incomplete beta function B(x, a, b) and the generalized incomplete beta function B(x0, x1, a, b)

B(x, a, b) =

∫ x

0
dx xa−1(1 − x)b−1 (B.9)

B(x0, x1, a, b) =

∫ x1

x0

dx xa−1(1 − x)b−1. (B.10)

Dividing by the complete beta function also gives the regularized incomplete beta function and
the generalized regularized incomplete beta function

Ix(a, b) = B(x, a, b)/B(a, b), (B.11)

Ix0,x1(a, b) = B(x0, x1, a, b)/B(a, b). (B.12)

B.2. Poisson, gamma, beta and Dirichlet distributions

The PDF of a discrete random variable K that is distributed according to the Poisson
distribution, K ∼ P(λ) , is

fK (k) =
λke−λ

k!
. (B.13)

Its mean and variance are both equal to λ.
We also recall a number of basic facts about several continuous distributions [20, 21]. The

gamma distribution is directly related to the gamma function. The PDF of a random variable
X that is distributed according to the gamma distribution X ∼ Gamma(α, θ) , with α the shape
parameter and θ the scale parameter, is given by

fX(x) =
e−x/θ xα−1

θα0(α)
.

We will not need the extra freedom offered by θ , and always put θ = 1, giving

fX(x) =
e−x xα−1

0(α)
. (B.14)

For x = λ and α = k + 1, this PDF looks formally the same as the Poisson PDF. However,
in the latter, K is the random variable, rather than X . In effect, the gamma distribution and
Poisson distribution are each other’s conjugate.

The CDF of X is the regularized lower incomplete gamma function P:

Pr(X > x) = P(α, x), (B.15)
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and its moments are given by

µX = σ 2
X = α. (B.16)

For not too small values of α, the bulk of the probability mass of the gamma distribution is
roughly contained within the interval [µ − 3σ, µ + 3σ ] = [α − 3

√
α, α + 3

√
α] . This explains

why P(α, x) is very close to 0 for x 6 α − 3
√

α and very close to 1 for (roughly) x > α + 3
√

α.
A more accurate statement is that for x > α + 2.8 + 3.09

√
α , or α 6 x + 1.9 − 3.09

√
x − 0.41,

P(α, x)> 0.999.
The Dirichlet distribution is the higher-dimensional generalization of the beta distribution.

The importance of this distribution stems from the fact that it is the conjugate distribution of
the multinomial distribution: if F ∼ Mtn(N ,p) is the distribution of F conditional on P = p,
then using Bayesian inversion (starting with a uniform prior for P) P conditional on F = f
is Dirichlet distributed with parameter f . Formally, the two distributions only differ by their
normalization. The multinomial distribution is normalized by summing over all integer non-
negative f summing up to N , while the Dirichlet distribution is normalized by integrating over
the simplex of non-negative p summing to 1.

The general form of the PDF of a d-dimensional Dirichlet distribution with parameters αi

is (see, e.g. [21], chapter 49)

fP (p) = 0(α0)

d∏
i=1

pαi −1
i

0(αi)
,

where α0 is defined as

α0 :=
d∑

i=1

αi . (B.17)

The range of P is the simplex pi > 0,
∑

pi = 1.
The mean values of the Dirichlet distribution are

µi =
αi

α0
, (B.18)

and the elements of its covariance matrix are

σ 2
i j =


αi(α0 − αi)

α2
0(α0 + 1)

, i = j,

−αiα j

α2
0(α0 + 1)

, i 6= j
. (B.19)

The beta distribution is the special case of a Dirichlet distribution with d = 2. The
normalization factor is then the beta function B(α1, α2), from which the distribution got its
name.
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