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Abstract. We combine optimal control theory with the multi-configuration
time-dependent Hartree–Fock method to control the dynamics of interacting
particles. We use the resulting scheme to optimize state-to-state transitions in
a one-dimensional (1D) model of helium and to entangle the external degrees-
of-freedom of two rubidium atoms in a 1D optical lattice. Comparisons with
optimization results based on the exact solution of the Schrödinger equation
show that the scheme can be used to optimize even involved processes in systems
consisting of interacting particles in a reliable and efficient way.

1 Author to whom any correspondence should be addressed.

New Journal of Physics 11 (2009) 105038
1367-2630/09/105038+16$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:michael.mundt@weizmann.ac.il
http://www.njp.org/


2

Contents

1. Introduction 2
2. Combining MCTDHF and OCT 3

2.1. The MCTDHF method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2. MCTDHF and OCT for state-to-state transitions . . . . . . . . . . . . . . . . . 4

3. Results and discussion 6
3.1. Results for a model of helium . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2. Results for rubidium atoms in an optical lattice . . . . . . . . . . . . . . . . . 9

4. Summary and conclusion 13
Acknowledgments 14
Appendix. Upper bound for J1 in process 2 with vanishing particle–particle

interaction 15
References 15

1. Introduction

Controlling the dynamics of quantum systems lies at the heart of many of the most exciting
scientific developments today. Quantum computation and information processing [1], the
design of molecular switches for electronic circuits [2] and the use of attosecond pulses
to study the dynamics of electrons on their natural timescale [3] are just a few examples
where quantum control is a prerequisite for success. Fundamental tests of quantum mechanics
that require precise control of state preparation, e.g. [4], and the control of chemical
reactions [5]–[7] are further examples of the importance of quantum control. All of these
examples have one central question in common: how to achieve a certain objective given
some external parameters that can be controlled, e.g. a laser’s frequency, amplitude and
polarization?

In order to answer this question, several techniques have been developed over the years.
Examples are stimulated Raman adiabatic passage schemes [8], learning algorithms [9],
coherent control via interfering pathways [6] and schemes based on optimal control theory
(OCT) [10, 11]. Because of the generality of the formulation of OCT, it is arguably
the most universal approach and, neglecting technical considerations, the resulting control
is by construction the optimal one. In addition, the huge success of OCT in ‘classical’
engineering [12] makes OCT a promising tool for advanced quantum engineering.

Despite this promise, applying OCT to quantum systems entails the practical issue that
it requires solving the time-dependent Schrödinger equation. Although this can be done in
a straightforward way for one particle, solving the time-dependent Schrödinger equation for
two interacting particles in three dimensions (3D) is already a severe challenge; especially
in situations involving ionization processes as, e.g. in strong laser fields. For more particles,
the exact solution is in general unfeasible because of the large size of the underlying Hilbert
space. Thus, one has to resort to approximations. In the context of OCT, these approximations
should be as unbiased as possible because it is not known a priori what the optimal control
and what the optimal dynamics of the system look like. For fermions, an approximation that
satisfies this desired feature perfectly is the multi-configuration time-dependent Hartree–Fock
(MCTDHF) method [13]–[15]. This ab initio approach has been used successfully to describe
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the correlated dynamics of fermions [16]–[19] and thus, the approach is a natural candidate
for the optimization of processes involving several interacting fermions. If the particles
are distinguishable one can use the multi-configuration time-dependent Hartree (MCTDH)
method [20, 21] and for bosons the multi-configuration time-dependent Hartree for bosons
(MCTDHB) is a natural candidate [22].

The purpose of the present paper is to investigate the combination of the MCTDHF method
with OCT. In section 2, we present the MCTDHF method and discuss two different approaches
how it can be combined with OCT. In section 3, we investigate one of the two approaches in
more detail by comparing the optimization results to the results obtained from the exact solution
of the Schrödinger equation. The processes that we optimize in this section are a state-to-state
transition in a model of helium and the entanglement of two rubidium atoms in a 1D optical
lattice. Finally, section 4 gives a summary and conclusion.

2. Combining MCTDHF and OCT

2.1. The MCTDHF method

In general, the dynamics of any N -particle system is governed by the time-dependent
Schrödinger equation

i∂tψ(x1, . . . , xN , t)= Hψ(x1, . . . , xN , t) (1)

where xk labels both the spin and position of the kth particle (we are using atomic units if not
stated otherwise). The Hamiltonian H is given in the following by the usual form

H =

N∑
k=1

h(pk, xk, t)+
1

2

N∑
k,l=1
k 6=l

Vpp(xk, xl). (2)

In this equation Vpp is the particle–particle interaction and the one-particle Hamiltonian
h(pk, xk, t) is given by

h(pk, xk, t)=
p2

k

2m
+ Vext(xk,α(t)). (3)

Here, α(t)= α1(t), . . . , αM(t) are the time-dependent parameters that can be used to control
the dynamics.

The basic idea of the MCTDHF method is to approximate the state ψ(x1, . . . , xN , t) by the
ansatz

ψMF(x1, . . . , xN , t)=

NS∑
k1=1

· · ·

NS∑
kN =1

ck1 ... kN (t)
N∏

l=1

ϕkl (xl, t), (4)

where both the coefficients ck1... k N (t) and the single-particle spin orbitals ϕk(t) are allowed to be
time dependent. Due to the Pauli principle, the coefficients ck1... k N (t) are antisymmetric under
particle exchange. As explained in more detail below, the number of spin orbitals NS controls
the accuracy. The crucial idea now is that the time dependence of the coefficients and the spin
orbitals is not determined by the Schrödinger equation, but by the Dirac–Frenkel variational
principle which allows the spin orbitals to adapt to the solution [21]. As explained in detail
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in [21], the resulting equations-of-motion for the coefficients and spin orbitals can be cast in
several different, but essentially equivalent, forms. The set we are using is

idtcK (t)=

∑
L

〈8K (t)|Vpp|8L(t)〉cL(t), (5)

i∂tϕk(x, t)= h(p, x, t)ϕk(x, t)+ (1 − P)
NS∑

l=1

(
ρ−1

〈Vpp〉
)

kl
(x, t)ϕl(x, t), (6)

where K = {k1, . . . , kN }, |8K 〉 =
∏N

l=1 |ϕkl (t)〉, and P =
∑NS

k=1 |ϕk〉〈ϕk| have been used. ρ−1 is
the inverse density matrix and 〈Vpp〉 is the ‘mean-field’ matrix with elements depending on x
and t . The detailed definition of ρ−1 and 〈Vpp〉 can be found in, e.g. [15]. Important for the
following is that ρ−1 depends on the coefficients and 〈Vpp〉 depends on the coefficients and spin
orbitals, i.e. ρ−1

= ρ−1[{cK }] and 〈Vpp〉 = 〈Vpp〉[{cK }, {ϕk}].
Several properties of (5) and (6) are worth noting. First, the projector (1 − P) guarantees

that the spin orbitals, which are initially orthogonal, remain orthogonal. Second, (6) is, in
contrast to the Schrödinger equation, a nonlinear equation because of the dependence of 〈Vpp〉 on
the spin orbitals. This is the price one has to pay for the self-adaption of the spin orbitals. Thirdly,
for NS → ∞ the spin orbitals become a complete basis and P becomes the identity. Thus, the
nonlinearity vanishes and the exact time-dependent Schrödinger equation is recovered. Since in
practice a finite, time-independent basis of size Ng is required to represent the spatial part of
the orbitals ϕk(x, t), the ‘exact’ Schrödinger equation (in the finite, time-independent basis) is
recovered in the case No = Ng, where No is the number of spatial orbitals (No = NS/2). Finally,
for NS = N , one obtains the time-dependent Hartree–Fock approximation.

In our implementation the spatial orbitals ϕk are represented on a 1D real-space grid with
Ng grid points and equidistant spacing dx . We evaluate the derivatives via Fast-Fourier trans-
formation and use a fifth-order Runge–Kutta scheme [23] to integrate the coupled equations (5)
and (6). The ‘exact’ Schrödinger equation is solved on a 2D real-space grid with Ng × Ng grid
points using the split-operator technique [24]. The grid spacing dx is the same as in the MCT-
DHF case.

2.2. MCTDHF and OCT for state-to-state transitions

Given a set of control parameters α(t), our aim is to steer a quantum system from a fixed initial
state |ψ I

〉 to a target state |ψT
〉 at fixed final time T . Mathematically, this can be achieved by

maximizing the functional

J [ψ,α] = 〈ψ(T )|ψT
〉〈ψT

|ψ(T )〉︸ ︷︷ ︸
=:J1

−

M∑
k=1

∫ T

0
λk(t)α

2
k (t)dt, (7)

where the second term can be used to implement constraints on the values of the controls at
different times via the penalties λ1(t), . . . , λM(t) [25]. For instance, a possible constraint can
be a smooth switch-on and switch-off of the controls. In the case that the state |ψ(t)〉 obeys the
Schrödinger equation, the control equations derived from OCT are [10, 11]

idt |ψ(t)〉 = H |ψ(t)〉, |ψ(0)〉 = |ψ I
〉, (8)
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idt |χ(t)〉 = H |χ(t)〉, |χ(T )〉 = |ψT
〉〈ψT

|ψ(T )〉, (9)

αk(t)=
1

λk(t)
Im

(
〈χ(t)|

∂Vext

∂αk(t)
|ψ(t)〉

)
, (10)

where |χ(t)〉 is the ‘conjugate’ state to |ψ(t)〉. In order to maximize J , these equations must
be solved self-consistently. For this purpose, several monotonically convergent algorithms have
been developed over the years [26]–[28]. The one we are using for solving (8)–(10) is the Krotov
iteration method [26, 29].

Since the MCTDHF state |ψMF(t)〉 satisfies the nonlinear equations (5) and (6), the control
equations (8)–(10) in general cannot be used in the context of the MCTDHF approach. Instead
it is necessary to derive control equations based on (4)–(6). The resulting equations, however,
are very much involved [30]. This can be best understood from calculating the time-derivative
of (4). One obtains

dt |ψ
MF(t)〉 =

∑
K

(dtcK (t))|8K (t)〉 + cK (t)(dt |8K (t)〉), (11)

where the time derivatives are given by (5) and (6). If the spin orbitals do not constitute a
complete basis, the right-hand side of (11) cannot be expressed explicitly and solely in terms of
the state |ψMF(t)〉. Thus, the functional derivative of the rhs of (11) with respect to |ψMF(t)〉,
which is required for the equation-of-motion of the ‘conjugate’ state |χ(t)〉 [31], cannot be
evaluated in a straightforward way. This problem can be avoided by introducing ‘conjugate’
variables for the coefficients cK and the spin orbitals ϕk . For these ‘conjugate’ variables,
the required derivatives can be evaluated directly from (5) and (6). However, as mentioned
above, the resulting control equations are extremely involved because of the strong nonlinear
dependence of the second term in (6) on the coefficients and spin orbitals.

The above problems can be avoided by an alternative approach that has been used earlier by
Wang et al in the context of the MCTDH method for nuclei [32]. This approach is based on the
observation that if one has a method to accurately solve the Schrödinger equation one can revert
to the linear optimization equations (8)–(10) because the conjugate equation (9) has the same
structure as the original Schrödinger equation and therefore can itself be accurately solved. In
other words, in this approach the MCTDH/HF method is regarded as an efficient tool for solving
the Schrödinger equation and the equation-of-motion for |χ(t)〉. The conceptual difference
between this approach and the one discussed in the previous paragraph is schematically shown
in figure 1. It is clear that the second approach is justified rigorously only in the case that the
MCTDHF solution is close enough to the exact solution, i.e. NS must be chosen large enough so
that the MCTDHF state is close to the exact state. In the limit NS = N , i.e. the time-dependent
Hartree–Fock limit, the second approach will almost certainly fail because the nonlinearities in
the Hartree–Fock propagation are not properly taken into account.

From a practical point of view the second approach is very attractive because one can
avoid solving the highly involved control equations of the first approach arising from the
‘conjugate’ variables for cK and ϕk . In addition, the second approach allows one to take
advantage of the vast knowledge that has been gathered over the years about solving (8)–(10).
However, a disadvantage of this approach is that the MCTDHF state must be a sufficiently
accurate approximation to the exact state, i.e. the approach may require a large number of
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Figure 1. Schematic of the two different approaches for combining OCT and the
MCTDHF method. The approach on the left-hand side is the one described first
in the text, whereas the other approach is described second. In the present paper,
we are using the approach on the right-hand side.

spin orbitals NS. One can argue that in this case an optimization using fewer spin orbitals in
combination with nonlinear OCT would be unphysical anyway; however, this argument does
not take into account situations in which the objective can be well described by the MCTDHF
method even if the MCTDHF wavefunction is not highly accurate, e.g. if one is interested
in creating a specific one-particle density distribution instead of a fully correlated N -particle
wavefunction.

In the following, we are interested in optimizing state-to-state transitions using the second
approach. In particular, we are interested in the performance of the approach, i.e. how many
spatial orbitals No are required for a successful optimization (monotonic increasing objective)
and how the resulting controls compare to the controls obtained from an optimization based on
the exact Schrödinger equation.

3. Results and discussion

We have chosen two different systems for testing the optimization approach presented above.
In both cases, the system consists of two interacting particles in one spatial dimension. Since
for such systems the interacting Schrödinger equation can still be solved exactly, these systems
allow us to assess the quality and performance of the optimization based upon the MCTDHF
method.

3.1. Results for a model of helium

We first consider a 1D model of helium described by the single-particle Hamiltonian

h(pk, xk, t)=
1

2
p2

k −
2√

x2
k + 1

+ ε(t)xk (12)

and the soft-Coulomb interaction [33]

Vpp(x1, x2)=
1√

(x1 − x2)2 + 1
. (13)
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Figure 2. J1 = 〈ψ(T )|ψT
〉〈ψT

|ψ(T )〉 as a function of iteration steps for different
No. No = ∞ labels the ‘exact’ solution. The inset shows the iteration for No = 2
and No = ∞, which is equal to No = 4 and No = 6 on this scale. The main graph
shows the upper part of the inset in more detail. Clearly, the iteration procedure
fails for No = 2, but works well for No = 4 and is practically exact for No = 6.

The second and the third term in (12) are, respectively, the soft-Coulomb interaction with the
nucleus and the laser field in the dipole approximation. The electric field ε(t) is our control,
and the objective is, similar to [34], to steer the system from the ground state to the first excited
singlet state at T = 300 a.u. Since the Hamiltonian is spin-independent and the ground state is
a singlet, the spatial wavefunction is always symmetric during the process.

As mentioned earlier, we use a real-space grid as a primitive basis to represent the orbitals.
The grid spacing is dx = 0.2 a.u. and the grid size is ±200 a.u. The large box size guarantees
that ionization channels are properly taken into account. For the penalty, we use

λ(t)= λ0 exp
(
(t − T/2)2/(2σ 2)

)
, (14)

with λ0 = 1 and 2σ 2
= (0.232T )2 to ensure a smooth switch-on and switch-off of the pulse. To

guarantee that the target state can be completely represented by the MCTDHF state with No

spatial orbitals, we use the ground state and excited state from an imaginary time propagation
with No spatial orbitals for the optimization at level No.

Figure 2 shows the value of J1 = 〈ψ(T )|ψT
〉〈ψT

|ψ(T )〉 during the iteration process for
different numbers No of spatial orbitals in the MCTDHF ansatz. No = ∞ labels the optimization
based on the ‘exact’ Schrödinger equation on the grid, i.e. more rigorously No = Ng. The initial
state and the target state in this case are the same as the ones for the No = 4 optimization.
Clearly, J1 increases monotonically in the cases No > 4, but shows no regular behaviour for
No = 2. The same holds true for the total functional J (not shown), which is rigorously the
only one guaranteed to increase monotonically (in the case the state obeys the Schrödinger
equation). Thus, as predicted above, the optimization scheme breaks down for too small No. For
No = 4, the optimization already works very well and for No = 6 the results are almost exact.
The remaining small differences are mainly due to the small differences in the initial and final
states at the different levels No = 4 and No = 6. For the same initial state and target state, we
find that the No = 6 and No = ∞ curves lie on top of each other.
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Figure 4. The power spectrum of the No = 4 pulse. Arrows indicate the transition
frequency and odd multiples of it. The spectrum is dominated by a peak at the
transition frequency, which indicates a resonant process from the ground state
to the first excited state. However, the other peaks show that this is not the only
process taking place.

The optimized pulses for No = 4 and No = ∞ are plotted in figure 3. Both pulses are
very similar even down to small details. In fact, their performance is almost identical if they
are both used in combination with the ‘exact’ Schrödinger equation: for the ‘exact’ pulse one
obtains J1 = 0.946 and for the MCTDHF pulse J1 = 0.947. For comparison, the exact number
for the MCTDHF pulse in combination with the MCTDHF propagation is J1 = 0.944, i.e. the
MCTDHF pulse works better in combination with the ‘exact’ Schrödinger equation than with
the MCTDHF propagation.

In order to clarify the mechanism of the state-to-state transition, we plot the power
spectrum of the No = 4 pulse in figure 4. The arrows in the figure indicate the transition

New Journal of Physics 11 (2009) 105038 (http://www.njp.org/)

http://www.njp.org/


9

frequency and its odd multiples. The large peak at the transition frequency indicates that the
main mechanism of the transition is a resonant process from the ground state directly to the first
excited state. Other processes are also present, as one can see, e.g. from the energetically higher-
lying peaks in the spectrum, but their contribution is small. This observation is also supported
by the fact that a resonant π -pulse with a sin2-envelope and the same maximal amplitude as the
optimal pulse already leads to an overlap of J1 = 0.918.

The previous findings suggest that the optimization in the present case corresponds to a
large extent to an optimization in a two-level system. Consequently, the MCTDHF optimization
procedure works well in this context if two conditions are satisfied: first, the two involved states
must be represented well by the MCTDHF method and, second, their dynamics, as well as
the dynamics of their superpositions, must be described accurately. Since for No = 2 the states
are very similar to the states for No = 4 (their energy differs by <0.1 eV and the overlap is
>0.997), we conclude that the failure of the optimization procedure for No = 2 is caused by the
wrong dynamics of the intermediate superposition states. This conclusion is also backed by the
observation that a resonant π -pulse does not induce any significant transition from the ground
state to the first excited state for No = 2. One obtains a value of only J1 = 0.064. Thus, in the
present situation, the failure of the MCTDHF method for No = 2 ultimately originates from the
violation of the superposition principle which is caused by the nonlinearity of the MCTDHF
method. A related observation was reported in [35] and has been called ‘time-dependent state
averaging’ by the authors. For larger No, the influence of the nonlinearity is reduced, and the
superposition principle is, at least in the relevant subspace, restored.

3.2. Results for rubidium atoms in an optical lattice

The optimization and the dynamics in the previous subsection can be well understood in terms of
a two-level system coupled to a laser field. To investigate the performance of the optimization
method in a more challenging setting, we investigate the control of the external degrees-of-
freedom of two 87Rb atoms in an optical lattice2. The external potential is given by [36, 37]

Vext(xk, V0(t), β(t), θ(t))= −V0(t)

{
cos2

(
β(t)

2

)
(1 + cos2 (kLxk −π/2))

+ sin2

(
β(t)

2

)
[1 + cos (kLxk − θ(t)−π/2)]2

}
(15)

and the atom–atom interaction is a 1D contact interaction, i.e.

Vpp(x1, x2)= gδ(x1 − x2). (16)

In (15) kL = 2π/λL is the wavevector of the laser with wavelength λL = 810 nm. α(t)=

{V0(t), β(t), θ(t)} are the controls and g/h ≈ 400 kHz is the effective interaction strength.
By changing the control parameters, one can switch the optical lattice from a double-well
configuration with periodicity λL/2 to a single-well configuration with periodicity λL (see
figure 5 and [37] for a more detailed description of the influence of V0(t), β(t) and θ(t)).
Initially, the lattice is in the double-well configuration and the system is in the state

ψ I(x1, x2)=
1

√
2
(φL

0 (x1) φ
R
0 (x2)+φR

0 (x1)φ
L
0 (x2)), (17)

2 Although 87Rb is a boson, the MCTDHF method can be applied because we are not treating the spin degrees-
of-freedom explicitly. For more than two atoms, this would not be possible because the MCTDHF method is not
capable of providing a spatially symmetric wavefunction in this case.
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V0/h = 87.5 kHz, β = 0.5π, θ = −0.474π ). In addition, the spatial orbitals φL/R

0
and φM

0/1 are indicated. The y-scale is the same in both graphs.

where φL/R
0 are states localized in the left/right well (see figure 5). To update the control, we use

αk(t)= α̃k(t)+
1

λ(t)
Im

(
〈χ(t)|

∂Vext

∂αk(t)
|ψ(t)〉

)
(18)

in combination with (14) for λ(t). For α̃k(t), we choose the value of the control in the previous
iteration. In contrast to (10), this update procedure does not penalize the magnitude of the
controls, but only the change from one iteration to the next [38].

3.2.1. Process 1: merging two wells. The objective is to merge the two wells in such a way
that the atoms end up in two orthogonal spatial single-particle orbitals in the resulting well at
T = 0.15 ms. In more detail, we choose the target state

ψT(x1, x2)=
1

√
2
(φM

0 (x1) φ
M
1 (x2)+φM

1 (x1)φ
M
0 (x2)), (19)

where φM
0/1 are spatial single-particle orbitals very similar to the vibrational ground state and the

first excited state in the well defined by V0/h = 87.5 kHz, β/π = 0.5 and θ/π = −0.474 (see
figure 5). For the initial guess, we use the control sequence

V0/h = (122.5 − 35t2/T 2) kHz, β(t)=
π

2T
t, θ(t)= −0.474π, (20)

which is very close to the one used in [37], where practically the same process has been
optimized based on the Schrödinger equation. This optimization provides a good performance
test for the MCTDHF approach since, due to the short time of 0.15 ms, non-adiabatic processes
are important for achieving a large value of J1 and, consequently, several eigenstates of the
instantaneous Hamiltonian are occupied during the process [37].

Figure 6 shows the value of the functional J1 during the optimization. No = ∞ again labels
the optimization based on the Schrödinger equation. As in the case of the 1D model of helium,
the optimization already works very well for No = 4. The difference between the two curves
never exceeds 0.01 and decreases to 0.0002 towards the end of the optimization. Using the
optimized MCTDHF control sequence in combination with the ‘exact’ Schrödinger equation,
one obtains J1 = 0.9782 (instead of J1 = 0.9784 with the MCTDHF propagation). Thus, the
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Figure 6. The value of the functional J1 during the optimization for two different
No. The target state is given by (19). The inset shows the complete optimization,
whereas the main graph shows the last four iteration steps in more detail. As in
the previous case, the optimization works very well for No = 4. The maximal
difference from the exact result is 0.01 in the first iteration step.

quality of the control sequence is practically the same for No = 4 and No = ∞. As shown
in figure 7, the optimized controls in the two cases are also very similar, as in the previous
subsection.

3.2.2. Process 2: creating entanglement. The objective in the final optimization is to entangle
the motion of the two atoms in the double-well configuration. For this purpose, we choose the
entangled state

ψT(x1, x2)=
1
2(φ

L
0 (x1)φ

R
1 (x2)+φL

1 (x1) φ
R
0 (x2)+φR

1 (x1)φ
L
0 (x2)+φR

0 (x1)φ
L
1 (x2)) (21)

as our target state at final time T = 0.30 ms. The states φL/R
1 are given by

φ
L/R
1 = C(x − xL/R

0 )φ
L/R
0 , (22)

where xL/R
0 are the centres of the left/right well and C is a normalization factor. The initial state

is the same as in the previous optimization, i.e. equation (17). For the initial control sequence,
we use (20) to switch from the double-well configuration to the single-well configuration
and back. Although creating a vibrationally excited entangled state as in (21) is usually not
desired in quantum information processing [39], we have chosen the state (21) since optimizing
the resulting transition is a challenge for the MCTDHF approach for at least two reasons.
First, as in process 1, the Hamiltonian changes considerably during the process and, second,
the particle–particle interaction Vpp plays a crucial role in the optimization because it is
required for entanglement production. The second feature especially provides a stringent test
for the performance of the MCTDHF optimization since it is the contribution from Vpp to the
time-derivative of |ψMF(t)〉 that is approximated in the MCTDHF method, and not the
contribution from the single-particle Hamiltonian. As one can see from (5) and (6), the
MCTDHF equations are exact for systems without a particle–particle interaction.
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Figure 7. The optimized control sequences for the optimization based on the
MCTDHF approach (left) and on the Schrödinger equation (right). The dotted
curves are the initial controls. Differences in the control sequences are hardly
visible. The largest difference between the controls is 1.7% of the control value
from the Schrödinger equation.

The value of the functional J1 during the optimization is plotted in figure 8. In order to
avoid any differences in the results due to the extremely small initial value of J1 (∼10−6), we
use the control sequence from the third iteration of the No = 4 optimization (J1∼10−2) for the
initial control sequence in the No = ∞ optimization. For comparison, we also plot the results of
an optimization with vanishing particle–particle interaction. In this case, the controls can change
only the spatial shape of the orbitals in (17), but the number of configurations cannot increase
during the process. As a consequence, the largest possible value of J1 is 0.5 (see the appendix),
which is reproduced well by the optimization. For the cases with a particle–particle interaction,
the value of J1 = 0.75 after 55 iterations is still small in comparison with the values of J1 = 0.94
for helium and J1 = 0.98 for process 1. Intuitively, it is not surprising that the optimization
in the present case is more involved since the particle–particle interaction is essential for the
transition, but can only be controlled in an indirect way. A direct control over the two-particle
interaction, e.g. via Feshbach resonances, would certainly help to improve the optimization by
allowing more flexibility. By how much it would speed up the optimization process is difficult to
judge because little is known in general about the influence of different controls on the iterative
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Figure 8. The value of J1 as a function of iteration number for two different
No (solid and dotted lines) and for vanishing interaction Vpp (dashed line). For
Vpp ≡ 0 the largest possible overlap with the entangled target state (21) is 0.5,
which is clearly reflected in the optimization. For non-vanishing Vpp and No = 4
the monotonic increase is violated in some iteration steps. However, the violation
is small and one finds a clear trend of overall increase of J1.

optimization algorithm; a detailed study is beyond the scope of the present paper. From a
control-theory perspective a control-dependent interaction would be desirable because it would
remove the ‘drift Hamiltonian’ and thus, in principle, allow one to perform the entanglement
operation arbitrarily fast (assuming that the system is controllable) [40].

In addition to the slower convergence of the iteration process, one observes a violation
of the monotonic increase in some iteration steps for No = 4. However, the total difference
from the optimization with No = ∞ never exceeds 3% and the maximal decrease from the
previous iteration is 1%. These small violations are within the expected accuracy of the
MCTDHF solution for No = 4; moreover, after the short periods of decrease the No = 4 results
return to track the convergence curve of the exact solution. The No = 4 results continue
to rise smoothly and monotonically for at least 25 iterations beyond those shown in the
figure, reaching J1 = 0.80. Thus, we can conclude that for all processes investigated in this
paper, the optimization based on the MCTDHF method produces useful results already for
No = 4.

4. Summary and conclusion

We have combined the MCTDHF method with OCT to optimize state-to-state transitions in
quantum systems containing interacting particles. As we have explained in section 2, there
are two different approaches to how the combination can be achieved. One approach is based
directly on the MCTDHF equations-of-motion and uses nonlinear OCT. The other approach is
based on the fact that any method that allows one to solve the Schrödinger equation sufficiently
accurately can be used also to solve the corresponding linear OCT problem. In order to
investigate the performance of the second approach in different settings, we have used the
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approach in section 3 to optimize state-to-state transitions in a 1D model of helium and in a
system containing two rubidium atoms in a 1D optical lattice. For comparison, we have also
optimized the same processes by solving the control equations exactly, which is still feasible for
the systems discussed in this paper.

In all our test cases, the optimization based on the MCTDHF method works very well
already for No = 4 spatial orbitals. For instance, during the complete optimization the values
of the objective never differ by more than 1J1 = 0.03 from the exact values. In addition,
the resulting controls for No = 4 are also very similar to the ones obtained from the exact
Schrödinger equation. For the optimization with No = 6, we find perfect agreement between
the results, while for No = 2, the optimization procedure does not work. The case No = 2 shows
that in the present case more spatial orbitals are required than would be expected from the ‘rule
of thumb’, which states that in general as many spatial orbitals as electrons are required for an
accurate solution.

Since the optimization approach always works for a sufficiently large number of spin
orbitals NS, the crucial question is how large NS must be in general. Clearly, for large values
of NS the approach cannot be used in practice because the MCTDHF method scales as

(NS

N

)
with the number of particles and spin orbitals used. Judging in advance the required number
of spin orbitals is difficult because it depends on the system and the process that one wants to
optimize. However, it is possible to state at least two necessary conditions that must be satisfied
for a successful optimization based on the MCTDHF method. First, the initial state and the
target state must both be represented well by the MCTDHF method. Based on the numerical
evidence in [15], we thus expect that if the states are eigenstates of an N -particle system at least
N spatial orbitals are required. However, as shown by the failure of the optimization for No = 2,
this condition is not necessarily enough for a successful optimization. The second necessary
condition is that it must be possible to steer the system with the given controls from the initial
state to the target state in such a way that the exact time-derivative of the state |ψ(t)〉 can always
be approximated well by the time-derivative of the corresponding MCTDHF state. In other
words, the initial state and the final state must be ‘connected’ by a low-dimensional subspace,
which is accessible with the given controls and in which the MCTDHF dynamics approximates
the exact dynamics well. Since the iterative optimization can take the state out of this subspace
(or it already starts outside), the second condition again is not a sufficient condition for a
successful optimization. In the final analysis, for each new application one must determine anew
how large NS must be for a successful optimization. Depending on the optimization objective,
the dimensionality of the problem and the system’s Hamiltonian, we expect the approach to be
useful for systems with N = 5 to N = 10 fermions. Despite the mentioned drawback that NS

must be determined anew for different applications, the present applications clearly show how
promising the scheme is for controlling interacting few-particle systems in a non-perturbative
way.
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Appendix. Upper bound for J1 in process 2 with vanishing particle–particle interaction

In this appendix, we show that the maximal value of J1 in process 2 without a particle–particle
interaction is 0.5. We start by noting that without a particle–particle interaction the number of
configurations cannot change during the process as can be seen from (5). Thus, the state at final
time T has the general form

ψ(x1, x2, T )=
1

√
2
(ϕa(x1) ϕb(x2)+ϕb(x1) ϕa(x2)), (A.1)

where ϕa and ϕb are some spatial orbitals resulting from the time evolution. We write ϕa in the
form

ϕa(x)= aL
0φ

L
0 (x)+ aL

1φ
L
1 (x)+ aR

0 φ
R
0 (x)+ aR

1 φ
R
1 (x)+ ϕorth

a (x), (A.2)

with aL
0 = 〈φL

0 |ϕa〉, . . . , and ϕorth
a labelling the part of ϕa that is orthogonal to the four states φL/R

0/1 .

The orbital ϕb is written in the same way with coefficients bL/R
0/1 . The overlap of the state at time

T with the target state is given by

〈ψT
|ψ(T )〉 =

1
√

2

(
aL

0 bR
1 + aL

1 bR
0 + aR

1 bL
0 + aR

0 bL
1

)
. (A.3)

Since the orbitals ϕa/b are normalized, the absolute square value of the bracket on the rhs is 61
(Cauchy–Schwartz inequality). Thus, J1 = |〈ψT

|ψ(T )〉|2 can never exceed a value of 0.5.
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