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Abstract. We introduce a modified Regge calculus for general relativity on
a triangulated four-dimensional Riemannian manifold where the fundamental
variables are areas and a certain class of angles. These variables satisfy
constraints which are local in the triangulation. We expect the formulation to
have applications to classical discrete gravity and non-perturbative approaches
to quantum gravity.

Contents

1. Introduction 1
2. De natura pentachori 3
3. Area–angle Regge calculus 4
4. Conclusions 6
Acknowledgments 7
Appendix A. Relations between dihedral angles 7
Appendix B. Lengths from area–angles 9
References 11

1. Introduction

Discrete approaches have proved useful in many areas of physics. Regge calculus [1] is
a discrete formulation of general relativity (GR) where space-time is approximated by a
triangulated manifold, and the fundamental variables used to describe the metric are the
lengths of the edges of the triangulation. This approach has been applied with some success
to classical gravity [2, 3], and used as a starting point for a lattice quantization of GR [2],
[4]–[6]. Like other non-perturbative approaches to quantum gravity, quantum Regge calculus
suffers from the problem of defining a unique gauge-invariant measure in the path integral.
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The background-independent spinfoam approach [7] suggests an original route based on the
well-defined quantum measure of BF theory. The latter is a topological theory where area
variables appear naturally, and whose action can be reduced to GR by means of the so-called
simplicity constraints, as discovered by Plebanski [8]. This and other motivations have led
Rovelli [9] to suggest that 4D quantum gravity should be related to a modification of Regge
calculus where the fundamental variables are the areas of triangles rather than the edge lengths.
Some effort was put into this line of research by Makela and Williams among others [2],
[10]–[12], but the problem has been open for more than 10 years. The main difficulty lies in
the fact that a generic triangulation has many more triangles than edges, thus area variables
should be constrained. An explicit expression of these constraints is obscured by their non-local
nature in the triangulation.

In this paper, we introduce a description of discrete gravity that overcomes this difficulty.
The key idea is to enlarge the set of variables from areas only, to areas and angles. In this way
the constraints become local, are easy to write explicitly, and further they are related to the
simplicity constraints of Plebanski’s formulation of GR1.

We approximate the space-time manifold by a simplicial triangulation, where each
4-simplex2 is flat and the curvature is described by deficit angles associated with the triangles.
Regge calculus uses the fact that on each 4-simplex σ the ten components of the (constant)
metric tensor gµν(σ ) can be straightforwardly expressed in terms of the ten edge lengths `e.
A further advantage of using the edge lengths as variables is that they endow each tetrahedron
with six quantities which are sufficient to completely characterize the tetrahedron’s geometry.
Therefore the gluing of 4-simplices, obtained by identifying a shared tetrahedron, is trivial and
causes no complications.

On a single 4-simplex, there are also ten triangles, suggesting that areas can be equivalently
taken as the metric variables. There are two difficulties with this idea. First, it is less
straightforward to express gµν(σ ) in terms of areas. For instance the change of variables from
edge lengths to areas on a 4-simplex is singular for orthogonal configurations [11], which is
where right angles among the edges are present. Even the equal area configuration has a two-
fold ambiguity where the same set of areas corresponds to two different sets of edge lengths.
This is a more significant difficulty than it might seem at first glance, as such configurations
are relevant in the case of a regular lattice, the simplest flat solution to Regge calculus. The
second issue is even more serious. Ten areas might be enough to describe the 4-geometry of
the simplex, but how about its boundary 3-geometry? Consider any of the five tetrahedra in
the 4-simplex; its geometry is not uniquely defined by the areas of its four triangles (two more
quantities are needed, corresponding for instance to (non-opposite) dihedral angles). So we need
the geometry of the full 4-simplex to determine the individual geometry of any of its boundary
tetrahedra. As a consequence, two adjacent 4-simplices in a triangulation will typically induce
different geometries on the common tetrahedron, leading to discontinuities in the metric [12],
or to non-local constraints involving the two 4-simplices [10].

A solution to the problem can be achieved by adding enough variables to the areas so that
the geometry of each of the five tetrahedra can be independently and completely determined.
A natural choice is to add the tetrahedral dihedral angles. Of course, this pleonastic set of

1 Similar ideas have been investigated by Reisenberger [13] and Rovelli [14]. Some ideas were then developed
into the classical action used in [15].
2 The 4-simplex, also known as pentachoron in the mathematical literature, is the convex hull of five points.
A 4-simplex contains five tetrahedra, ten triangles and ten edges.
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Figure 1. The geometric meaning of equation (2): the 2D angle αi j,kl belonging
to the shaded triangle can be expressed in terms of 3D angles associated with the
thick edges of the tetrahedron k, or equivalently of the tetrahedron l.

variables needs to be constrained in order to successfully reproduce the dynamics of GR. We
now turn to the study of these constraints.

2. De natura pentachori

Let us study how to characterize the geometry of a 4-simplex and its five boundary tetrahedra,
using areas and 3D dihedral angles. We use a notation which might seem counterintuitive at
first, but that pays off well in terms of efficiency and extends to any dimension. We denote by
V the 4-volume of the simplex σ (or the n-volume in general), by V (i) the 3-volume of the
tetrahedron σ(i) obtained by removing the vertex i from the 4-simplex, by V (i j) the area of
the triangle σ(i j) obtained by removing the vertices i and j , and so on. For the dihedral angles,
we use the following notation: θi j is the 4D dihedral angle between the tetrahedra σ(i) and
σ( j), hinged at the triangle σ(i j); φi j,k is the 3D dihedral angle between the two triangles σ(ik)

and σ( jk), hinged at σ(i jk) within the tetrahedron σ(k); finally, αi j,kl is the 2D dihedral angle
between the edges σ(i jk) and σ(i jl) belonging to the triangle σ(kl). All dihedral angles are
internal; thus, for instance, an equilateral 4-simplex has cos θ = 1/4.

These various types of dihedral angles satisfy a number of relations in a closed 4-simplex,
which we present together with their proofs in appendix A. An important role in our construction
is played by the following expression of the 2D αs in terms of the 3D φs:

cos αi j,kl =
cos φi j,k + cos φil,k cos φ jl,k

sin φil,k sin φ jl,k
. (1)

In this formula the 2D angle, belonging to the triangle kl, is described in terms of three 3D
angles all belonging to the same tetrahedron k. In a closed 4-simplex, a triangle is shared by two
tetrahedra; thus there are two possible choices. Consistency of the two choices, i.e. αi j,kl = αi j,lk

(see figure 1), gives

Ckl,i j(φ) ≡
cos φi j,k + cos φil,k cos φ jl,k

sin φil,k sin φ jl,k
−

cos φi j,l + cos φik,l cos φ jk,l

sin φik,l sin φ jk,l
= 0. (2)

Thus a consistent gluing of the tetrahedra in a 4-simplex gives relations among the φs.
There are three relations per triangle, hence 30 in total, of which only 20 are independent. To
see this, we linearized equation (2) around generic non-degenerate configurations, including
the potentially harmful orthogonal one, and used an algebraic manipulator to study the rank.
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The good behaviour of the orthogonal configuration can also be anticipated by the absence
of cosines in the denominator of (1). Of course, our construction would fail for degenerate
configurations where one or more angles equal 0 or π .

These relations are important to characterize the geometry of a 4-simplex. Consider a
generic 4-simplex. Its ten 4D angles θi j define the Gram matrix G i j(θ) ≡ cos θi j (with the
convention cos θi i ≡ −1). If the simplex is closed and flat, these ten angles cannot be all
independent, but have to satisfy the condition of vanishing of the Gram determinant, det G = 0
(e.g [16, 17])3. The nine independent quantities parametrize the space of shapes of the 4-simplex
(a scale factor being the tenth and last metric variable).

We then expect that to characterize the geometry in terms of the thirty 3D angles φi j,k , there
must exist 21 relations among them. These can be found as follows. First, we consider the Gram
matrices Gk

i j(φ) associated with the five tetrahedra; imposing the vanishing of their determinant
guarantees that the tetrahedra are closed. These are five independent conditions. Next, we use
the 2D angle consistency relations (2) to ensure a consistent gluing of the tetrahedra into a
4-simplex. The complete set

det Gk(φ) = 0, Ckl,i j(φ) = 0 (3)

can be shown, again by linearization, to have rank 21. Notice that the first constraint is local
on each tetrahedron, unlike the second that involves two adjacent tetrahedra. Hence we found
a necessary and sufficient set of relations among the φ angles to be the 3D dihedral angles of a
4-simplex. Other sets are possible (see appendix B); the advantage of this one is the transparency
of its geometric meaning.

3. Area–angle Regge calculus

With the understanding of the geometry of a 4-simplex gained above, we now come to the main
point of this paper: describing the dynamics of GR on a discrete manifold, using areas and 3D
angles as variables. For simplicity, we consider here the case of a Riemannian manifold with
no boundaries. The extension to Lorentzian signature and to boundary terms will be discussed
elsewhere.

Using the standard notation (t , a triangle; e = t t ′, an edge), the variables on the full
triangulation are At and φτ

e . The gluing conditions (2) refer to each pair of edges in a triangle
shared by two tetrahedra. In a triangulation there will be in general many tetrahedra around the
same triangle, and (2) has to hold for any choice of two. However, transitivity ensures that it is
enough to impose (2) to the pairs of tetrahedra belonging to the same 4-simplex. We can then
write these constraints as

Cσ
ee′(φ

τ
e ) = 0, (4)

where Cσ
ee′ is given by (2) for e = σ(kli) and e′

= σ(kl j) sharing a vertex in a 4-simplex σ , and
zero otherwise.

On a single 4-simplex we have ten areas and thirty 3D angles; thus we need 30 independent
constraints to reduce the total number of variables to ten. The situation parallels the analysis we
performed in the previous section. We can still take the triangle gluing conditions (4) involving
only φ angles, and include the areas in the closure conditions for the five tetrahedra. Denoting
nt the normal to a triangle, we have by definition |nt |

2
= A2

t and nt · nt ′ = −At At ′ cos φτ
t t ′ .

3 This condition is the origin of the well-known Schläfli identity.
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The closure condition on a tetrahedron τ reads Nτ ≡
∑

t∈τ nt = 0. By sequentially taking the
scalar product of Nτ with the four nt we obtain four constraints,

N τ
t (A, φ) = At −

∑
t ′ 6=t

At ′ cos φτ
t t ′ = 0. (5)

Considering the five tetrahedra on the whole 4-simplex (5) gives 20 constraints, to be added to
the 30 constraints (4). Again we studied the number of independent constraints by linearization,
and found that the resulting system has rank 30 for a generic configuration and also for the
orthogonal one. Consequently, only ten of the 40 variables used are truly independent. This
is consistent with the kinematical degrees of freedom of discrete GR. As shown explicitly
in appendix B, the 40 variables (At , φ

τ
e ) satisfying these 30 independent relations determine

completely the geometry of the 4-simplex and of its five tetrahedra; thus each tetrahedron has
a well-defined geometry, and gluing 4-simplices causes no problems. In other words, satisfying
constraints (4) and (5) allows us to reconstruct uniquely a set of edge lengths from the variables
(At , φ

τ
e ).

We then consider the following action for GR:

S[At , φ
τ
e , λτ

t , µ
σ
ee′] =

∑
t

Atεt(φ) +
∑

τ

∑
t∈τ

λτ
tN

τ
t (A, φ) +

∑
σ

∑
ee′∈σ

µσ
ee′Cσ

ee′(φ). (6)

The first term is just the Regge action with independent area–angle variables4, and the other
terms are the constraints (5) and (4) imposed by the Lagrange multipliers λτ

t and µσ
ee′ . As

discussed above, they effectively reduce the set of variables (At , φ
τ
e ) to the edge lengths `e;

therefore (6) is equivalent to the conventional Regge action, SR[`e] =
∑

t At(`e)εt(`e).
Notice that our approach should not be seen as a first-order formulation of Regge calculus

(see for instance [16, 18]), because we are adding 3D dihedral angles (the φs), not 4D dihedral
angles (the θs): only the latter encode the extrinsic curvature of a 3D slice and are thus conjugate
to the areas.

The reader might wonder at this point whether (6) is a discretization of a continuum
action for GR, like Regge’s is a discretization of the Einstein–Hilbert action

∫ √
gR. We argue

that this is the case, the continuum avatar of (6) being Plebanski’s action [8]. The latter is a
modified BF action, which schematically reads S =

∫
B ∧ F + µC(B) (we refer the reader to

the literature for more details [19]). The term C(B) is a set of constraints reducing topological
BF theory to GR. We are naturally led towards the interpretation of the first two terms of (6)
as a discretization of the BF theory, with the closure constraint (5) implementing the Gauss
constraint of the continuum BF action, and the third term as the simplicity constraints. Recall
that Plebanski’s constraints state that the bi-normal B to any triangle σ(i j) must be simple, i.e.
it must be the wedge product of (any) two edge vectors. In our notation, Bi j = ±ei jk ∧ ei jl with
k and l different from i and j . Then if the closure and simplicity constraints are satisfied, they
imply

Bi j · Bi j = ei jk
2ei jl

2
− (ei jk · ei jl)

2

= Vi jk
2Vi jl

2 sin α2
i jkl

= Vi j
2, (7)

4 The deficit angles εt are given by the sum over 4D angles on the 4-simplices sharing the triangle t , εt =

2π −
∑

σ θσ
t . We describe in appendix B how to express them in terms of the φs, or in terms of edge lengths

as it is done in Regge calculus.
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Bi j · Bik = ei jk
2(ei jl · eikl) − (ei jk · ei jl)(ei jk · eikl)

= Vi jk
2Vi jl Vikl

(
cos αil, jk − cos αi j,kl cos αik, jl

)
= Vi j Vik cos φ jk,i . (8)

Thus using (7) in (8) gives

cos φ jk,i =
cos αil, jk − cos αi j,kl cos αik, jl

sin αi j,kl sin αik, jl
. (9)

This relation can be inverted to give (1) with (2) holding (see appendix B). Conversely if (2)
and (5) are satisfied, we can proceed backwards and define bi-normals satisfying the simplicity
constraints5.

To further study this correspondence, a canonical analysis of the action (6) is in progress,
and will appear elsewhere [22].

4. Conclusions

We introduced a modified Regge calculus where the fundamental variables are areas and 3D
dihedral angles between triangles. The action, given in (6), is the conventional Regge term with
independent area–angle variables, plus two additional constraints. The first imposes the closure
of each tetrahedron in the triangulation, and the second guarantees a consistent gluing between
adjacent tetrahedra, by imposing the (conformal) geometry of the common triangle to be the
same. All the constraints are local in the triangulation. We expect our action to be related to a
discretization of Plebanski’s action.

Our main result is to show that the full set of constraints guarantees that local variables
determine completely the geometry of each 4-simplex and of each tetrahedron in the
triangulation. As 4-simplices are glued together identifying a tetrahedron in their boundary,
being able to determine the tetrahedra’s geometry is crucial to have a consistent propagation of
the degrees of freedom in the triangulation. The crucial counting of the independent constraints
was performed by linearizing the constraints around generic non-degenerate configurations (see
appendix B). In particular, we checked that the potentially harmful orthogonal configuration is
well behaved. The ambiguity of two sets of lengths giving the same areas [11] is removed in our
formalism simply because the two sets give different 3D angles. On the basis of our analysis,
we cannot exclude completely the presence of pathological configurations. However, a well-
behaved orthogonal configuration reassures us that at least for the regular lattice our approach
solves both difficulties with area Regge calculus described in section 1. This opens the way, for
instance, to perturbation theory on a flat background.

While studying the constraints we found a number of relations between the dihedral
angles of various dimensions of a 4-simplex. We present them together with their derivation
in appendix A. We provide an explicit algorithm to compute the edge lengths from area–angles
in a tetrahedron and in a 4-simplex in appendix B.

We expect our result to have a number of applications, and before concluding, we would
like to briefly point out a few potentially promising ones.

5 Notice that the simplicity constraints have typically solutions in two sectors. Here we are imposing directly the
solution in the geometric sector, so we do not comment about this ambiguity, which however plays an important
role in quantum models [15, 20, 21].
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At the classical level, the canonical analysis of (6) could shed light on the description
of the Hamiltonian algebra of deformation of discrete manifolds [22]. The applicability of
this approach to numerical studies of lattice gravity has to be explored. It would for instance
be interesting to study whether our approach keeps the good convergence properties of
conventional Regge calculus in the continuum limit [23].

At the quantum level, there are possible links to the spinfoam formalism that are worth
exploring. The formalism is expected to provide a well-defined measure for a regularized path
integral for non-perturbative quantum gravity (however, see also [24]). Recently, a spinfoam
model has been proposed [15] (see also [25]), whose dynamical variables can be expressed
as normals to triangles [20] (see also [21]). The scalar reduction of these quantities produces
exactly the variables (At , φ

τ
e ) considered here. The matching of variables suggests that the

discrete calculus introduced here is a candidate for the semiclassical limit of this new spinfoam
model, mimicking what happens in the 3D case with Regge calculus [26]. Indeed, the recent
advances [27] in calculating the graviton propagator from spinfoams [28] are based precisely
on such a link. In the context of pure area Regge calculus on a single 4-simplex, this idea has
been investigated in [29].

From this viewpoint, it would be useful to study the quantum theory defined on a regular
lattice in perturbative expansion around flat space-time, as done by Rocek and Williams [4].
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Appendix A. Relations between dihedral angles

To study the geometry of simplices, we use the affine (or barycentric) coordinates for Regge
calculus introduced in [30] and further developed in [31] (see also [32]). With the help of these
we derive relations between dihedral angles, and show how constrained areas and angles suffice
to reconstruct edge lengths in 4-simplices6.

Consider an n-dimensional simplex σ with n > 3 and choose an (n − 3)-dimensional
subsimplex σ(i jk). (Here, σ(i jk . . .) denotes the subsimplex spanned by all the vertices of
σ except for (i jk . . .).) We have three (n − 2)-dimensional subsimplices σ(i j), σ (ik) and
σ( jk) meeting at σ(i jk). These carry the three n-dimensional dihedral angles θi j , θik and θ jk ,
respectively.

In addition, the subsimplex σ(i jk) is shared by three (n − 1)-dimensional subsimplices
σ(i), σ( j) and σ(k). In the intrinsic geometry of these subsimplices we can define the (n − 1)-
dimensional angles φlm,i , where φlm,p denotes the dihedral angle in the subsimplex σ(p)

between the simplices σ(lp) and σ(mp). There are again three (n − 1)-dimensional angles φi j,k ,
φ jk,i and φik, j meeting at the subsimplex σ(i jk).

6 Given our interest in a Regge-like formulation of discrete geometry, we focus here only on the case of flat
simplices, with curvature concentrated on the (n − 2)-subsimplices. The same technique can be used to find similar
relations in the case of spherical or hyperbolical n-simplices.
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It turns out that the set of angles θi j , θik and θ jk can be computed from the set of
(n − 1)-dimensional angles φi j,k , φ jk,i and φik, j and vice versa. There are different methods
to derive these relations. Here we use the affine metric, referring to the appendix of [31] for an
introduction to affine coordinates and more details.

The affine metric g̃i j associated with an n-simplex satisfies the following properties:

g̃i j
= −

1

V 2

∂V 2

∂`i j
2
, i 6= j, g̃i i

=
1

n2

V (i)2

V 2
. (A.1)

Given the normal n(i) to a subsimplex i , we can use the affine metric to compute the scalar
products

n(i) · n(i) = g̃i i
≡ |n(i)|2, (A.2)

n(i) · n( j) = g̃i j
≡ −|n(i)||n( j)| cos θi j . (A.3)

Notice that with these conventions the closure condition reads

V ( j) =

∑
i 6= j

V (i) cos θi j .

In analogy with the continuum, the normal vectors allow us to introduce the induced metric on
a subsimplex k,

g̃i j(k) = g̃i j
−

g̃ik g̃ jk

g̃kk
. (A.4)

From (A.3) and (A.1(b)) we obtain

cos θi j = −n2 V 2

V (i)V ( j)
g̃i j . (A.5)

This relation can be straighforwardly pushed one dimension down using the induced
metric (A.4), to give

cos φi j,k = −(n − 1)2 V (k)2

V (ik)V ( jk)
g̃i j(k). (A.6)

Using (A.5) and the well-known generalized law of sines

sin θi j =
n

(n − 1)

V (i j)V

V (i)V ( j)
(A.7)

to eliminate the volume factors in (A.6), we finally get

cos φi j,k =
cos θi j + cos θik cos θ jk

sin θik sin θ jk
. (A.8)

These are relations between the three φ angles and the three θ angles at the subsimplex σ(ikl).
The inverse, giving the θ angles as a function of the three φ angles, has the following remarkable
form:

cos θi j =
cos φi j,k − cos φik, j cos φ jk,i

sin φik, j sin φ jk,i
. (A.9)
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The formulae (A.8) and (A.9) can be adapted to one dimension down, giving the
relations (1) and (9) in the main text between (n − 1)- and (n − 2)-dimensional angles7.

For the special case of 3D space, these formulae had already appeared in the mathematical
(e.g. [33]) and physical (e.g. [17, 31, 34]) literature.

From the formulae above, we can derive a number of other useful relations between areas
and angles or between angles alone. Introducing the shorthand notation c(i j, k) ≡ cos φi j,k ,
s(i j, k) ≡ sin φi j,k , we have

s( jl, i)s(i p, j)

s( j p, i)s(il, j)
=

V (i p)V (l j)

V (il)V (pj)
,

c(kl|i) − c(ki |l)c(li |k)

s(ki |l)s(li |k)
=

c(kl| j) − c(k j |l)c(l j |k)

s(k j |l)s(l j |k)
,

s( jl|i)s(kl| j)s(il|k) = s(kl|i)s(il| j)s( jl|k),

as well as

s(i j |k)s(ik|l)s( jl|i)s(kl| j) = s(i j |l)s(ik| j)s(kl|i)s( jl|k). (A.10)

Any of these relations can be taken as the starting point to constrain the area–angle variables.
Their geometric interpretation is less immediate than the relations (2), and we do not discuss
them here. The interested reader can work them out easily.

Appendix B. Lengths from area–angles

In this appendix, we show how to explicitly construct the edge lengths from area–angles in
a tetrahedron and in the full 4-simplex. Let us begin by considering the tetrahedron i , in the
notation used so far. The closure reads

V (ik) =

∑
j 6=i

V ( jk) cos φi j,k. (B.1)

Heron’s formula for the area gives

16V (i j)2
= 2

∑
k,l 6=i, j

V (i jk)2V (i jl)2
−

∑
k 6=i, j

V (i jk)4.

Using the law of sines (A.7) adapted to 3D, the rhs gives fi j(V (ik), sin φkl,i)/V 4 where fi j is a
simple polynomial in the areas and the sines. From this we read an (asymmetric) expression for

7 An interesting alternative derivation of (A.8) and (A.9) uses a vanishing curvature condition. Consider the three
(n − 1)-dimensional subsimplices joined at σ(i jk) as a piecewise linear (n − 1)-dimensional geometry. Its intrinsic
curvature is given by the deficit angle εi j = 2π − φi j,k − φ jk,i − φki, j , i.e. 2π minus the sum of the three (n − 1)-
dimensional angles meeting at σ(i jk). In the flat n-dimensional embedding provided by the n-simplex, its extrinsic
curvature is given by the three n-dimensional dihedral angles. That is, if we parallel-transport an n-dimensional
vector according to the n-dimensional geometry around σ(i jk) we should obtain the identity. The latter is a rotation
in the 3D subspace orthogonal to σ(i jk) that can be expressed using the θs and φs. Hence requiring this rotation
to be equal to the identity leads to three conditions which can be used to express one set of angles as functions of
the other set.
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the tetrahedron’s volume in terms of areas and angles,

V (i)4
=

1

16V (i j)2
fi j

(
V (ik), sin φkl,i

)
. (B.2)

Finally, we can use (A.7) to express the six edge lengths in terms of areas and angles,

V (i jk) =
4
3 f −1/4

i j V (i j)3/2V (ik) sin φ jk,i . (B.3)

Notice that the procedure becomes ill-defined for degenerate configurations where V (i) = 0,
but it is perfectly well defined otherwise, including orthogonal configurations with right
angles.

For the 4-simplex we proceed exactly as above, using the relations (B.3) in each
tetrahedron. All that remains to prove is that conditions (2) are enough to ensure that (B.3)
applied to the different tetrahedra sharing the same edge gives the same value, namely that

V (i jk) =
2

3

V (i j)V (ik)

V (i)
sin φ jk,i

=
2

3

V (i j)V ( jk)

V ( j)
sin φik, j

=
2

3

V (ik)V ( jk)

V (k)
sin φi j,k.

Thus, for instance, we need to show that

V (i)

V (ik) sin φ jk,i
=

V ( j)

V ( jk) sin φik, j
.

This is a tedious but straighforward check that can be done using (B.2) for the two volumes, and
then twice (A.10).

This construction shows explicitly how constraints (2) and (5), which imply (A.10)
and (B.2), allow us to reconstruct unambiguously the edge lengths of a tetrahedron and of a
4-simplex starting from areas and angles.

To make sure that the set of constraints (2) and (5) are sufficient, we studied the matrix
of coefficients of their linearization in a 4-simplex. The entries in this matrix depend on the
configuration around which we choose to linearize. We considered two different configurations:
the equilateral and the orthogonal ones. The equilateral one has no φ angles equal to π/2 (which
would lead to zeros in the matrix of coefficients), and in this sense is representative of a generic
configuration. The orthogonal one has the maximal number of φ angles equal to π/2 and thus
the maximal number of zeros in the matrix of coefficients. It is the dangerous configuration
where area Regge calculus is ill-defined, and it corresponds to a 4-simplex fitting into a regular
hypercubical lattice. In both cases the rank of the matrix turned out to be exactly 30, meaning
that the initial 40 variables can be reduced to ten, which can then be chosen to be the edge
lengths using the explicit procedure described above. The same procedure was used to check
that (3) has rank 21.

This shows that there cannot be singular configurations where two different sets of lengths
(and thus two different metrics) correspond to the same set of area–angle variables, as is the
case for area Regge calculus.
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