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Abstract. Quantum metrology promises greater sensitivity for optical phase
measurements than could ever be achieved classically. Here, we present a theory
of the phase sensitivity for the general case where the detection probability is
given by an N photon interference fringe. We find that the phase sensitivity has
a complicated dependence on both the intrinsic efficiency of detection η and the
interference fringe visibility V . Most importantly, the phase that gives maximum
phase sensitivity is in general not the same as the phase at which the slope of the
interference fringe is a maximum, as has previously been assumed. We determine
the parameter range where quantum enhanced sensitivity can be achieved. In
order to illustrate these theoretical results, we perform a four-photon experiment
with η = 3/4 and V = 82 ± 6% (an extension of our previous work (Nagata
et al 2007 Science 316 726)) and find a phase sensitivity 1.3 times greater than
the standard quantum limit at a phase different to that which gives maximum
slope of the interference fringe.
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1. Introduction

The subwavelength sensitivity offered by optical phase measurements is the reason that they
have found applications across all fields of science, from cosmology (gravitational detection)
to nanotechnology (phase-contrast microscopy). Given finite resources (energy, number of
photons, etc) the phase sensitivity is limited by statistical uncertainty. It has been shown that
the use of semi-classical probes, i.e. coherent light fields, limits the sensitivity to the standard
quantum limit (SQL): δφ = 1/

√
N , where δφ is the error of the estimated phase and N is the

average number of photons used when the probe interacts only once with the phase-changing
object [1]. The more fundamental Heisenberg limit is attainable with the use of a quantum probe
(e.g. an entangled state of photons): δφ = 1/N [1]–[4]. The possibility to beat the SQL and
approach the Heisenberg limit is therefore of great fundamental interest in understanding how
quantum effects can be advantageous and may lead to important applications in the precision
measurements that are the basis of all quantitative science.

In this context, interference experiments using two- [5]–[10], three- [11], and four-photon
states [12]–[14] have been reported. In each case p ∝ sin(Nφ), where p is the detection
probability that gives rise to the N -photon interference. Observation of such a ‘λ/N ’ fringe,
with a period N times shorter than the single photon fringe of a semi-classical resource, is
called phase super-resolution [11, 15]. Phase super-resolution has sometimes been associated
with beating the SQL: phase super-sensitivity. However, Resch et al [15] have recently shown
that the phase super-resolution can be achieved with purely classical resources. In contrast,
the phase super-sensitivity is necessary to gain a quantum advantage in precision, and requires
quantum resources.

In their groundbreaking work, Resch et al pointed out that the phase sensitivity depends
on both the λ/N fringe visibility V and the efficiency η.6 Since a lower efficiency means that
more photons are necessary to achieve a given measurement precision, they assumed that it
is possible to treat the efficiency simply as an increase in the required photon number by a
factor of 1/η. However, this assumption requires that the statistical errors of the successful
measurements do not depend on the efficiency. As we show in the following, this is not the case
in typical experiments, where a particular event is selectively detected by coincident photon
counts to observe a λ/N interference fringe, since the detection probability p inseparably
combines the effects of η and V . Therefore Resch et al’s theory does not apply to previous
experiments with N > 2 such as the ones reported in [11]–[14], and a more detailed theoretical

6 Note that Resch et al used η as a phenomenological parameter that could include various kinds of experimental
efficiencies, whereas we consider just the intrinsic efficiency of the experimental scheme.
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analysis is required to determine the effects of efficiency η on the phase sensitivity of N -photon
interference experiments.

Here, we present a complete theory of the phase sensitivity S for the general case where
the detection probability is given by an N -photon interference fringe. We perform a statistical
error analysis for the event-detection probability which is valid for all N -photon interference
experiments, including those reported previously [11]–[14]. We find that the phase sensitivity
has a complicated dependence on both the intrinsic efficiency of detection η and the interference
fringe visibility V . Furthermore, the phase at which S is a maximum is generally not the same
as the phase at which the slope of p is a maximum, as has widely been assumed. In order
to illustrate these theoretical results, we apply this expression for S to a new experiment with
N = 4, η = 3/4 (improved by a factor of two from our previous experiment [14]) and V =

82 ± 6%, and find a phase super-sensitivity of 1.3 times greater than the SQL. As anticipated
from our theoretical analysis, we find that the maximum phase sensitivity does not occur at the
maximum slope of p.

2. Derivation of S

To derive the phase sensitivity in a typical N -photon interference experiment, we start with the
probability for the successful detection of the desired N -photon event in a single trial. For a
λ/N fringe, the phase dependence of this probability is given as

p(φ)=
η

2
[1 + V sin(N80 + Nφ)] , (1)

where 80 is a bias phase, which is the known initial phase of the interferometer, and φ is
the small phase shift to be measured. The interference fringe is thus characterized by two
key parameters: the intrinsic efficiency 06 η 6 1 is determined by the experimental scheme
used and indicates the probability with which a given input photon contributes to the N -photon
interference; and the visibility 06 V 6 1 of the interference fringe observed in the output of the
interferometer indicates the quality of the N -photon interference.

Given the dependence of detection probability on phase (equation (1)), the phase sensitivity
can be derived using standard methods of metrology [16]. The phase estimate is determined
from the average number of times that the selected N -photon event is observed in k trials,

Ck = kp(φ). (2)

Small phase shifts can be estimated by the deviation of Ck from its value at80. If the phase shift
is much smaller than 1/N , an estimate of φ can be obtained by dividing the change of Ck by
the derivative of Ck at 80. For k → ∞, the difference between the observed number of counts
and the expected number at 80 then allows a precise determination of φ. In practice, however,
k is finite, so that the actual number of N -photon events observed has a finite statistical variance
given by

1C2
k = kp(1 − p). (3)

If the change of Ck is smaller than the square root of this variance, the phase shift φ cannot be
distinguished from the statistical errors. Specifically, the statistical fluctuations in the observed
N -photon events cause an error of δφ that limits the accuracy of the estimate of φ. If φ is
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sufficiently smaller than 1/N , it is possible to use linear error propagation based on the slope of
Ck at 80, and the phase error reads

δφ2
=

1C2
k

(dCk/dφ|φ=0)2
. (4)

For direct comparison with the SQL, we can define the phase sensitivity S as the ratio of the
phase error δφ and the phase error of 1/

√
k N at the SQL:

S2
≡
(
k Nδφ2

)−1

= N
(η/2)V 2 cos(N80)

2

(1 + V sin(N80))(1 − (η/2)(1 + V sin(N80)))
. (5)

A phase sensitivity of S > 1 then beats the SQL, and the Heisenberg limit is reached when
S =

√
N .

Since k N is the total photon number used in k trials and 1/δφ2 is the Fisher
information [17] of the phase estimate, the squared phase sensitivity S2 can also be interpreted
as the Fisher information per photon. The SQL therefore corresponds to a Fisher information of
one per photon, and beating it indicates a quantum mechanical increase of the Fisher information
density beyond this limit, up to a maximal Fisher information of N per photon at the Heisenberg
limit.

It may also be worth noting that the sensitivity determined here can be applied to a Bayesian
phase estimation of a completely unknown phase [18], even though this means that the phase
80 is initially unknown. In that case, 80 is the result of the Bayesian estimate and δφ2 is the
variance of the Gaussian probability distribution around 80 for sufficiently large numbers of
trials k. Effectively, the assumption of small φ corresponds to the ‘fine tuning’ of a measurement
result near 80. The condition for the linearization of Ck around 80 is then that the number of
trials k should be large enough to achieve an error δφ much smaller than 1/N .

As equation (5) shows, the phase sensitivity depends on the bias phase 80 in a rather
nontrivial manner. Moreover, the dependences of the phase sensitivity on the efficiency η and the
visibility V are quite different from each other. Figure 1 illustrates these different dependences
for N = 4. Figure 1(a) shows the interference fringe p(φ), as given by equation (1). Figure 1(b)
shows the phase sensitivity S for various visibilities V at η = 1. As might be expected, the
maximum sensitivities SM =

√
N V are obtained where the slope |dp/d80| of the fringes is

maximum. In the case of V = 0.4, S is always smaller than 1, indicating that the SQL cannot
be beaten with V lower than a threshold value of 1/

√
N = 0.5. Figure 1(c) shows S for various

efficiencies η at V = 1. In contrast to figure 1(b), maximum sensitivity is now obtained at the
minima of the interference fringes p(80), even though the slope at these points is equal to
zero. The key to understanding this curious phenomena is that, since V = 1, p is exactly zero
at these points. Thus the variance of Ck given by equation (3) is also zero, and equation (5)
defines a finite phase sensitivity depending on the asymptotic ratio of the squared slope and
the variance. The maximum sensitivity thus obtained is SM =

√
Nη, indicating that the SQL

cannot be beaten with η lower than a threshold value of 1/N = 0.25. Finally, figure 1(d) shows
the phase sensitivity for η = 3/4 and V = 0.82, which correspond to the data obtained in the
experiment described below. Interestingly, the combined effects of V < 1 and η < 1 result in
zero sensitivity at the minima of p(80), but bend the maxima away from the maximum slope of
the fringes and towards the positions of the minima. As a result, the phase bias which gives the
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Figure 1. Phase sensitivity for N -photon interference. (a) Detection probability
fringe with N = 4, where η/2 and ηV correspond to the average and the
amplitude of the fringe, respectively. (b) Phase sensitivities S for η = 1
and various visibilities V . (c) Phase sensitivities S with V = 1 and various
efficiencies η. (d) Phase sensitivity S for η = 3/4 and V = 0.82, corresponding
to our experimental results.

maximum phase sensitivity is not the same as the phase with the maximum slope of the event
probability p(80).

In order to find the phase bias at which optimal phase sensitivity is obtained, it is convenient
to express the phase error in terms of the Heisenberg limit plus excess noise,

δφ2
=

1

k N 2

(
1 +

(2 − η(1 + V 2))+ 2(1 − η)V sin(N80)

(ηV 2(1 − sin(N80)2))

)
. (6)

By minimizing this function of sin(N80), we can find the following relation for the optimal
phase bias 8opt:

sin(N8opt)=
(η/2)(1 + V 2)− 1 +

√
(1 − V 2)((1 − η/2)2 − (ηV/2)2)

(1 − η)V
. (7)
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Figure 2. Contour plot of the maximum phase sensitivity SM. The values on
the right end are the sensitivities along the contours. The phase sensitivities in
the area covered by diagonal lines beat the SQL for N = 4. The star indicates the
performance of our four-photon interferometer for the data in figure 3.

The maximum phase sensitivity obtained at this phase bias is given by

S2
M = N

(
1 +

(1 − η)2

η(1 − (η/2)(1 + V 2)−
√
(1 − V 2)((1 − η/2)2 − (ηV/2)2))

)−1

. (8)

Equation (8) defines the phase sensitivity of N -photon interference in terms of the experimental
parameters V and η. It thus provides the basis for evaluating the actual phase sensitivities
achieved in a specific experiment. A contour plot of equation (8) is shown in figure 2. The
values on the right-hand side give the sensitivities corresponding to each contour. Note that the
sensitivities increase with

√
N , indicating that the SQL can be beaten at lower values of V and

η as the photon number N increases. The area shaded with diagonal lines indicates the region
where the sensitivity SM is greater than one for N = 4, which is the condition for beating the
SQL with a four-photon interferometer. Note that our theory does not consider the quantum
efficiencies of the single photon detectors or the optical losses. The result therefore represents
the phase sensitivity that could be achieved by the N-photon state in the interferometer if no
further photons are lost in the detection process.

3. Experiment

We now apply the evaluation of phase sensitivity derived above to an improved version of the
four-photon interference experiment reported in [14], and proposed in [19]. A product state
|22〉ab of two two-photon Fock states is generated by parametric down-conversion and injected
into a Mach–Zehnder (MZ) interferometer (figure 3(a)). The state after the first beam splitter of
the interferometer is

|ψpath〉 =

√
3
8 |40〉cd +

√
1
4 |22〉cd +

√
3
8 |04〉cd, (9)
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Figure 3. Experimental λ/4 fringe with η = 3/4. (a) A schematic of a MZ
interferometer consisting of two 50 : 50 beamspltters (BS1 and BS2). (b) Single
photon counts as a function of PP angle for a single photon input. (c) Four-fold
coincidence counts of three photons in mode e (or f ) and one photon in mode
f (or e).

where c and d are the two paths inside the interferometer. A phase shift of φ is then applied to
mode d. The state after the second beam splitter of the interferometer is

|ψout〉 =

√
6

16 (1 − 2ei2φ + ei4φ)(|40〉e f + |04〉e f )+ 1
8(3 + 2ei2φ + 3ei4φ)|22〉e f

+
√

6
8 (1 − ei4φ)(|31〉e f + |13〉e f ), (10)

where e and f are the output modes of the MZ interferometer. Significantly, the amplitudes of
the |31〉e f and |13〉e f components do not include the phase oscillation of exp(i2φ) associated
with the |22〉cd component inside the interferometer. It is therefore possible to observe pure
four-photon interference fringes in the detection probabilities P3e f of |31〉e f and P3 f e of |13〉e f .
In our previous experiment [14], we counted only the detection of three photons in mode e and
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one in mode f , for an efficiency of η = 3/8. However, we can also observe a four-photon fringe
by detecting one photon in mode e and three in mode f . By using both detection events, we can
improve η to 3/4. Ideally, the total detection probability then reads P3e f +3 f e =

3
8(1 − cos 4φ).

A frequency doubled 780 nm fs pulsed laser (repetition interval 13 ns, power 200 mW)
pumps a type-I phase-matched beta barium borate (BBO) crystal (2 mm thickness) to generate
the state |22〉ab via spontaneous parametric down-conversion. The down-converted photons
pass through interference filters with 4 nm bandwidth and are then guided via polarization
maintaining fibres (PMFs) to a displaced-Sagnac interferometer, which is essentially equivalent
to a MZ interferometer [14]. A variable phase shift in mode d is realized by changing
the angle of a phase plate (PP) in the interferometer. Photons are collected in single mode
fibres (SMFs) at the output modes and detected using three cascade single photon counting
modules (SPCM, detection efficiency 60% at 780 nm) in modes e and f (a total of six
detectors). To test the performance of the four-photon interferometer, we used a relatively low
efficiency source and modest efficiency detectors which means that many more photons pass
through the interferometer than lead to a four-photon detection event. For applications (such
as biological sensing) where photon flux is important, high efficiency number resolving visible
light photon counters [20, 21] would dramatically improve detection efficiency. Using a home-
made coincidence counter, we counted either of the following four-fold coincidence events:
(i) detection signals from one of the three counters in mode e and all of the three counters in
mode f , and (ii) from one of the three counters in mode f and all of the three counters in
mode e.

Figure 3(b) shows a single-photon interference fringe with V = 99.2 ± 0.3%, obtained by
inputting single photons in mode a and detecting the rate of single photons in mode e. The
result of the four-photon interference (P3e f +3 f e) is shown in figure 3(c). As expected, the fringe
period is 1/4 that of figure 3(b), demonstrating phase super-resolution. The visibility V of the
fitted curve is 82 ± 6%. Using equation (8), we can now determine the phase sensitivity for the
experimental parameters η = 3/4 and V = 0.82. The maximum phase sensitivity achieved by
the four-photon interferometry is then found to be SM = 1.30, i.e. the phase sensitivity of our
interferometer is 1.3 times greater than the SQL. Note that SM = 1.30 is the sensitivity value
that could be reached if the experiment is performed with unit quantum efficiency detectors
and without losses. This experimental result is indicated by the star mark in figure 2, which
illustrates the relation between the experimental parameters and the conditions for beating the
SQL. Note that SM = 1.30 is achievable not at the maximum slope of p but at the points shifted
to the valleys of p as shown in figure 1(d).

4. Summary

We have derived the phase sensitivity when the detection probability of an output event is
given by an N -photon interference fringe. We find that the phase sensitivity shows quite
different dependences on the efficiency η and the visibility V . As a result, the phase bias
that gives the maximum phase sensitivity is in general not the same as the phase with the
maximum slope of the detection probability. We have determined the optimal phase bias and the
corresponding maximum phase sensitivity as a function of efficiency η and visibility V obtained
for a specific experiment. With this result, we can determine the quantitative enhancement of
the phase sensitivity achieved in any N -photon interference experiment. In order to illustrate
the theoretical results, we have applied this evaluation method to an improved four-photon
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interference experiment with an efficiency of η = 3/4 and obtained a maximum phase sensitivity
of 1.3 above the SQL given the experimentally observed visibility of 0.82. Finally, it may be
possible to extend the analysis presented here to include schemes which allow multiple passes
of single photons [22] and those using trapped ions [23, 24].
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