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Abstract. We describe an entanglement witness for N -qubit mixed states based
on the properties of N -point correlation functions. As the degree of violation
increases beyond different threshold values, or strata, this witness can guarantee
that no more than M qubits are separable from the rest of the state for any
M 6 N , or that there is some genuine M-party or greater multipartite
entanglement present. We illustrate the use our criterion by investigating the
existence of entanglement in thermal stabilizer states, where we demonstrate
that the witness is capable of witnessing bound-entangled states. Intriguingly,
this entanglement can be shown to persist in the thermodynamic limit at arbitrary
temperature.
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1. Introduction

Recently, there has been growing interest in the entanglement of large many-body systems.
The reasons for this are many and varied. From the quantum information perspective, quantum
computation intrinsically involves the use of large arrays of entangled qubits, including the one-
way model of computation [1] where the initial, cluster state, of the system is considered a
multipartite entangled resource for computation. This model for computation has the potential
to enable quantum information processing in many physical systems which were otherwise
considered infeasible. Generating the cluster state and finding signatures with which to
recognize its successful generation along with protecting and recovering it from the effects
of noise are thus matters of great importance. Of more immediate relevance to condensed
matter theory and experiments is the study of, for example, how thermodynamic parameters
of many-body systems as well as phase transitions can be directly related to entanglement
[2, 3]. However, it is still not clear if this relation always holds and if it is of any real significance
to our understanding of the physics of large quantum systems.

To be able to better investigate such properties both theoretically and experimentally, it is
interesting to develop techniques for entanglement detection in many-qubit systems. The most
straightforward approach is via the so-called entanglement witnesses. Entanglement witnesses
are Hermitian operators such that their mean value with an arbitrary separable state is always
less than one. Thus, if the observed value exceeds one, we are certain that a given state is
entangled. The significance of the entanglement witness approach is that, in principle, it can be
experimentally implemented and that one can find entanglement witnesses tailored to detect
multi-partite entanglement [4]–[6] as well as entanglement strong enough to violate some
Bell inequalities. It was shown in [7] that one can perform certain computational tasks more
efficiently than using classical resources only if entanglement violating Bell inequalities is
available as a resource.
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There is little literature dealing with entanglement witnesses for many qubit systems that
are capable of detecting genuine multipartite entanglement [6], [8]–[10]. The usual approach
(see, for instance, [6]) is to find an entanglement witness tailored for a specific state and
then show that it can be measured locally. Typically, such witnesses are capable of detecting
entanglement only in the neighbourhood of the state for which they have been optimized.

In this paper, we find a family of entanglement witnesses for N qubits capable of detecting
multipartite entanglement for a wide set of multi-qubit states, the mean value of which solely
depends on N -point correlation functions. We derive a relatively simple lower bound for the
witness and demonstrate its calculation with the examples of thermal stabilizer states and the
thermal single-excitation Bose–Hubbard model to obtain a range of temperatures for which
entanglement exists. We also relate the lower bound to the violation of Bell inequalities from
the so-called Werner–Wolf, Zukowski–Bruckner (WWZB) family [11]. Furthermore, we prove
that the violation of our entanglement witness is stratified—not only is there the single level
of violation indicating the existence of entanglement, but also there are further thresholds that
serve to lower bound the number of entangled qubits and the degree of multipartite entanglement
present.

2. Witnessing separability and multipartite entanglement

In [12], a convenient parametrization of all two-setting Bell inequalities of the WWZB-type was
developed by considering the Hermitian operator

W =
1

2

∑
Ek∈{0,1}N

bEk

(
Q+

Ek
− Q−

Ek

)
, (1)

subject to a variety of constraints on the coefficients bEk . The operators Q±

Ek
= |G±

Ek
〉〈G±

Ek
| are

orthogonal projectors on the generalized Greenberger–Horne–Zeilinger (GHZ) states |G±

Ek
〉 =

1
√

2
(|Ek〉 ± σ⊗N

x |Ek〉). For convenience, we can express σ⊗N
x |Ek〉 = |Ek ′

〉. We will now investigate the
properties of W devoid from the restrictions imposed in [12], except that we shall require W to
be an entanglement witness.

2.1. Conditions for full separability

The family of operators WÛ = Û WÛ †, where Û =
∏N

n=1 U (n) and U (l) is an arbitrary SU (2)
transformation on qubit l, becomes a family of entanglement witnesses if∑

Ek

|bEk|6 2N , (2)

since, if this condition holds, one has

〈ψsep|WÛ |ψsep〉6 1, (3)

for an arbitrary pure and fully separable state

|ψsep〉 =

N⊗
j=1

V ( j)
|E0〉.
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In the above formula, V ( j) is an SU (2) transformation which can be parametrized by V ( j)
=

e−iθ En j ·Eσ , where En is a unit vector. To prove equation (3), firstly observe that the unitaries U (l) can
be absorbed in V (l), so that we only have to show that

max
|ψsep〉

〈ψsep|W |ψsep〉 = max
|ψsep〉

∑
Ek

bEk Re
(
〈ψsep|Ek〉〈Ek ′

|ψsep〉

)
6 1, (4)

where we have made use of the expansion W =
1
2

∑
Ek bEk(|

Ek〉〈Ek ′
| + |Ek ′

〉〈Ek|). The properties of V ( j)

impose that

Re
(
〈ψsep|E0〉〈E0′

|ψsep〉

)
= Re

(
N∏

i=1

〈0|V (i)†
|0〉〈1|V (i)

|0〉

)
,

where we have also absorbed the σx rotations from Ek to E0 into the V ( j). Therefore, the maximum
over En and θ of equation (4) yields

max
|ψsep〉

〈ψsep|W |ψsep〉 =
1

2N

∑
Ek

|bEk|, (5)

with values nz = nx =
1
2 and θ = 0. This is not greater than 1 when equation (2) holds. Proving

this for pure states is sufficient since the convexity of the mixed separable states implies that
the optimum will be given by a pure state.

2.2. Entanglement witnesses

In order to detect entanglement, we have to calculate

Tr(Wρ)= max
Û

∑
Ek

bEk Re(〈Ek|ÛρÛ †
|Ek ′

〉),

subject to the constraint (2). We shall now consider two specific cases of the entanglement
witness W , by selecting two specific sets of bEk . The first, WA, is the strongest witness of this
class, and is selected by finding the value of Ek0 which maximizes maxÛ |Re(〈Ek|ÛρÛ †

|Ek ′
〉)|,

setting bEk0
to 2N , and all others to 0. This yields

WA = 2N−1(|Ek0〉〈Ek
′

0| + |Ek ′

0〉〈
Ek0|). (6)

In general, it is likely that the maximization over Ek will be difficult to do, so we choose another
witness, WB, which will give a lower bound to this value. We select

bEk = 2NλEk

∑
El

λEl

−1

, (7)

where

λEk =

∑
El

(−1)Ek·El cos
(
π

2
|El|

)
TEl .

The number TEl = Tr(ÛσElÛ
†ρ) is the average value of spin measurements along the directions

given by On x̂ and On ŷ (n = 1, . . . , N ), where On is an orthogonal representation of Un. We see
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that the only relevant N -point correlation functions are those for which |El|, i.e. the number of
σy in σEl before the local unitary operation Û , is an even number. The choice of bEk is clearly
sub-optimal, so Tr(WAρ)> Tr(WBρ). The reason for this particular choice is that

Tr(WBρ)= max
Û

∑
El∈even

T 2
El

 , (8)

as will be proved in the appendix.
Our starting point was motivated by the fact that it was shown in [12] that the family of

operators WÛ subject to the constraint
∑

Ek b2
Ek
= 2N and some complicated additional constraints

on the signs of the bEks coincide with the family of all two-setting Bell inequalities of
the WWZB-type [11]. Therefore, if for some state ρ one maximizes Tr(WÛρ) only under
the constraint

∑
Ek b2

Ek
= 2N , one gets the upper bound for violation of two-setting WWZB

inequalities. If this maximum is larger than one, nothing conclusive can be said about
violation of two-setting WWZB inequalities for the state ρ. However, if Tr(WÛρ)6 1, one
concludes that the state ρ cannot violate any of the two-setting inequalities from the WWZB
family.

Specifically, selecting bk = 2Nλk/

√∑
k λ

2
k yields the maximum under the constraint∑

Ek b2
Ek
= 2N , and gives

WC =

√
WB = max

Û

√∑
El∈even

T 2
El
. (9)

Thus, if WC 6 1, which is equivalent to the condition WB 6 1, one cannot violate two-
setting Bell inequalities from the WWZB family. This is in agreement with the necessary
condition given in [11] for not violating two-setting WWZB inequalities. Interestingly, WB > 1
is a sufficient condition for violation of the multi-setting WWZB Bell inequalities presented
in [13].

2.3. WA as a witness of partial separability

Let us examine the witness WA more carefully, detailing its effect on pure states ρ = |ψ〉〈ψ |.

Tr(WAρ)= 2N max
k,Û

Re(〈k|Û |ψ〉〈ψ |Û †
|k ′

〉)

= 2N max
Û

Re
(
〈0|

⊗NÛ |ψ〉〈ψ |Û †
|1〉

⊗N
)
.

We can now split |ψ〉 into a part |ψ̃〉 acting on M qubits, and |ψ̃sep〉, a fully separable state on
the other N − M qubits. The witness does not change under permutations, so without loss of
generality, we can take the qubits of |ψ̃〉 to be the first M qubits. Having already established
that

max
Û

Re
(
〈0|

⊗N−MÛ |ψ̃sep〉〈ψ̃sep|Û
†
|1〉

⊗N−M
)

=
1

2N−M
.

We see that the maximum value of Tr(WAρ) where no more than M qubits are entangled is
given by Tr(WA|ψ̃〉〈ψ̃ |), our entanglement witness on M qubits. Hence, the largest possible
value is 2M−1, where |ψ̃〉 = (|0〉

⊗M + |1〉
⊗M)/

√
2. We conclude that if Tr(WAρ) > 2M−1, fewer
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than N − M qubits are separable. Again, by convexity, the results also apply to mixed states,
even though we only performed the calculation for pure states. So, our entanglement witness
witnesses not only the fact that there is some entanglement, but also provides distinct levels,
or strata, above which at least M + 1 qubits are entangled, although this currently makes no
statement about the type of entanglement present.

2.4. WA as a witness of multipartite entanglement

Given that we can witness the fact that many qubits are entangled, it would also be interesting
if we can witness different types of multipartite entanglement. The first step in this process is
to determine if M-party (or greater) multipartite entanglement is involved. Again, we consider
WA acting on pure states. Since we know that GHZ states maximize the value of the witness
(by design), then if M-partite entanglement is involved (assuming N/M is an integer), the

maximum violation of WA must be given by |ψ〉 = |ψ̃〉
⊗N/M

, where |ψ̃〉 = (|0〉
⊗M + |1〉

⊗M)/
√

2.
We find that

Tr(WAρ)= Tr(WA|ψ̃〉〈ψ̃ |)N/M
= 2N−N/M .

Thus, if Tr(WAρ) > 2N−N/M , the multipartite entanglement that is involved must be at least
(M + 1)-partite. If N/M is not an integer, the maximal violation is given by bN/Mc copies of
an M-qubit GHZ state, and a single M(N/M − bN/Mc)-qubit GHZ state, giving a violation of

Tr(WAρ)= 2N−1−bN/Mc.

Note that for large M , several values give the same threshold. For example, all values N/2<
M 6 N give a violation of 2N−2, so, again, we have a distinct stratification rather than a
continuum of values in the thermodynamic limit. It is also worth observing that since WB

provides a lower bound to WA, WB can be assigned the same interpretation for violating the
strata of thresholds.

Finally, one can also take a more specialized approach to using the witness, developing
specific strategies to resolve different types of entanglement. For example, were one to be
presented with an N -qubit pure state |ψ〉, and promised that it is an M-qubit W -state, with
all other qubits separable, then we might like to determine the value of M . This can be achieved
by measuring the value of WA on N − 2 different partitions. By measuring WA on a subset of
qubits, if that subset entirely encompasses the W -state, we get value Tr(WAρ)= 2. However,
if it only encompasses R of the M qubits, the value is 1 + R/M . Thus, by using a systematic
search of subsets of qubits 1 to n for 2< n 6 N , the changes in value can be detected, and M
determined.

2.5. Summary

In this section, we have presented a stratified entanglement witness, WA. Depending on the
degree of violation, it detects not only full separability, but also can give an upper bound on the
number of separable qubits. The extent of the violation also serves to witness the presence of
genuine multipartite entanglement of differing types, tuned most specifically to be sensitive to
GHZ-like entanglement. Since the optimization involved in calculating WA is typically difficult,
we presented a sub-optimal witness WB that also possesses these properties, and is easier
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Figure 1. A plot of the violation of the entanglement witness WA (see equation
(6)) as a function of inverse temperature, β, for the 5-qubit GHZ state (dashed)
and 7-qubit cluster state (solid). Indicated in black are the strata for the
minimum number of qubits, {2, 3, 4, 5}, that are entangled for values {1, 2, 4, 8},
respectively. The values of {1, 4, 8} also witness, for the GHZ state, the existence
of {2, 3, 5}-partite entanglement. The vertical grey line indicates the temperature
below which either state can be purified.

to calculate. Furthermore, the witness provides an upper bound to the violation of WWZB
inequalities—if Tr(WBρ)6 1 is not violated, then no WWZB inequality can be violated.

In the following section, we will apply the witness to some simple examples. This will
enable us to demonstrate some of the properties of the entanglement witness. For example, it is
capable of witnessing bound entanglement. We will also be able to compare the two witnesses
and see how tight a lower bound is provided by WB. A summary of the results is depicted in
figure 1.

3. Examples

3.1. Thermal stabilizer states

In this section of the paper, we analyse entanglement in thermal mixtures of the stabilizer
Hamiltonians with the help of the entanglement witnesses WA and WB. The stabilizer states,
which are the eigenstates of an associated Hamiltonian H = −

1

2

∑N
n=1 Kn, where [Kn, Km] = 0,

Tr(Kn)= 0 and1 is a constant defining the energy scale of the Hamiltonian (henceforth taken to
be 1), enable a particularly simple description of the thermal state. They are of particular interest
because special cases of the stabilizer states include many of the important states in quantum
information such as GHZ states, cluster states and error correcting codes. The examples that
we present serve to illustrate the variety of properties that can be detected by our entanglement
witness.

The thermal state of H can be expanded due to the commutation of the operators, and the
fact that K 2

n = 1, such that

ρ =
e−βH

Tr(e−βH )
=

1

2N

N∏
n=1

(1 + tanh(β/2)Kn), (10)
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where, as usual, β−1
= kBT , kB is the Boltzmann constant and T the temperature of the system5.

To evaluate the witnesses, we need to find the values of the N -point correlations functions
and optimize over all possible local bases, and to achieve this we simply need to consider the
products of the operators Kn.

While we have been considering calculating WB as a lower bound for WA because, in
general, WA is more difficult to calculate, in the following examples, it turns out to be no harder
than the calculation of WB. Let us assume that we have a minimal sequence of products of
stabilizers that gives an N -body correlator, and perform local rotations such that this is the
correlator of all σxs. Additionally, assume that all other N -body correlators will come from
multiplying additional terms with this one. The local rotations also ensure that these terms
that we multiply by are σzs, such that the outcome is iσy . Thus, the overall phase is given

by i|El| = cos
(
π

2 |El|
)

where El denotes the positions of the σzs. This cos
(
π

2 |El|
)

in TEl multiplies

the identical term in the expression for λEk , and gives +1 since |El| is even. Hence, all the terms
are positive quantities, except for the term (−1)El·Ek , which can be set positive for all El by choosing
Ek = 0. Consequently, for all these cases, we can achieve

Tr(Wρ)=

∑
Ek

|TEk|,

which is also an upper bound to the value of WA, and is hence the optimal choice. This presents
the opportunity of assessing how well WB performs as a lower bound to WA. In fact, given the
assumption that all correlators are the result of the products of stabilizers, then all TEl are powers
of tanh(β/2), and hence if WA determines a critical temperature of βA, then

tanh(βA/2)= tanh2(βB/2).

At the extreme of large βA, βB = βAln(2), and for small βA, βB =
√

2βA, so the bound does not
seem wholly unreasonable.

3.2. GHZ Hamiltonian

By choosing the following stabilizers:

K1 =

N∏
n=1

σ (n)x ,

Kn = σ (1)z σ (n)z , (11)

the ground state of H is the N -qubit GHZ state (|0〉
⊗N + |1〉

⊗N )/
√

2. The excited states
constitute the ground state with local operators σ (1)z or σ (n 6=1)

x applied. Since our entanglement
witness is formed from projectors on GHZ states, this is a natural test candidate.

It is evident that the optimal choice of basis consists of the eigenstates of the Pauli
operators σx and σy . This is particularly clear in the case of odd N , where the N -body correlator
necessarily includes a term due to K1 (

∏
n 6=1 Kn creates a correlator on all other qubits, but not

qubit 1). Once K1 is included, multiplying by any other stabilizer necessarily gives an N -body

5 We are assuming that the ground state is uniquely defined, i.e. there is no degeneracy.
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term formed of σx and σy terms. All such products introduce an even number of σys so that
we get

Tr(WAρ)=

N−1∑
n=0

(
N − 1

n

)
tanhn+1(β/2)

= tanh(β/2) (1 + tanh(β/2))N−1 ,

Tr(WBρ) = tanh2(β/2)
(
1 + tanh2(β/2)

)N−1
. (12)

In the thermodynamic limit, i.e. N → ∞, we find the limit of Tr(WAρ)= 1 at tanh(β/2)≈

1/
√

N . Since this shows that β → 0, it has the interpretation that large systems of this
form are always entangled. However, we know from [14] that distillation is impossible if
β 6 ln (

√
2 + 1), which causes us to conclude that this persistent entanglement is bound

entanglement, i.e. entanglement that cannot be distilled by a multipartite distillation protocol.
This proof arises from considering a particular bipartition of the qubits, and showing that
distillation across that bipartition is impossible. However, there exist other bipartitions across
which distillation is possible. Witnesses, including Bell tests, for bound entanglement have
previously been demonstrated [15]–[17]. What is perhaps most remarkable about this system is
that entanglement becomes more persistent in larger systems. Unfortunately, the N -body term
K1 in the Hamiltonian is not particularly physical, so we should not necessarily expect to see
the consequences in real-world systems involving local interactions.

3.3. Cluster state

Another example of a stabilizer state is the cluster state. We shall restrict to the one-dimensional
(1D) version, where the stabilizers are defined as

K1 = σ (1)x σ (2)z ,

KN = σ (N−1)
z σ (N )x ,

Kn = σ (n−1)
z σ (n)x σ (n+1)

z .

From the results on purification of these states [18], 2D and 3D cluster states have exactly the
same persistence of purifiable entanglement, but in the present case, being certain of having the
optimal basis Û is much harder. To compute the expectation of the witness, we consider three
cases enumerated by r (r = 0, 1, 2). Each case corresponds to the different length of the chain
Nr = 3m + 2r (m is an integer). In each of these cases, the minimal product of stabilizers to give
an N -point correlation function is (m + r)6. Further N -body correlators can be constructed by
multiplying by pairs of operators. For example, for r = 0, the basic product is K2K5K8 . . . KN−1,
and further products can be constructed by multiplying terms K3s K3s+1, or using the end terms
K1 and KN . Thus, the value of TEk is simply a power of tanh(β2 ), where the power is the number of
products that have been used. As our Hamiltonian is defined, the best basis varies with position.
For r = 0, it is given by σz and σy for the end terms, σx and σy at position 3s + 2, and σz and σx ,
otherwise. Thus, we find that∑

Ek

|TEk| = tanhr+m(β/2)(1 + tanh2(β/2))m+r−1(1 + tanh(β/2))2−r (13)

6 r = 1 must be treated as a special case since there are two such products. However, this only makes a difference
to the m = 0 case.
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and that
∑

T 2
Ek

is given by the same expression, but replacing all the tanh(β/2) with tanh2(β/2).
In the limit of large N , we find that the critical values of β, corresponding to WA and WB read
βB

cr = 2.35 and βA
cr = 1.67.

Therefore, above the temperature T B
cr = (kBβ

B
cr)

−1, the thermal cluster state does not violate
two-setting WWZB inequalities, yet is entangled until at least T A

cr = (kBβ
A
cr)

−1, above which,
the entanglement witness WÛ fails to detect entanglement. However, we know from [18] that
purifiable entanglement exists below the temperature given by β = ln(

√
2 + 1). Thus, for all N ,

our bound finds a lower temperature than the critical temperature for purification, and hence,
does not detect any bound entanglement, in contrast to the GHZ state.

It was experimentally shown based on the results in [19] that cluster states violate some
Bell inequalities [20]. Interestingly, these Bell inequalities are not violated by the GHZ state,
which explains why there is a range of temperatures for which the thermal cluster state does not
violate two-setting WWZB inequalities.

3.4. Thermal Bose–Hubbard with single excitation

Moving away from stabilizer Hamiltonians, consider a 1D regular array of N lattice sites with
periodic boundary conditions in which we place a single particle (the extension to d-dimensional
lattices is trivial because we are only using a single excitation). This particle is free to hop
between nearest-neighbour sites with a constant hopping amplitude. We can define a basis |n〉,
denoting that the particle is on the nth qubit.

The eigenstates of such a system are readily expressed as

|ψm〉 =
1

√
N

N∑
n=1

e2π imn/N
|n〉,

and the eigenvalues are Em = 2 cos
(

2πm
N

)
.

The thermal state of the system in this ‘position’ representation therefore reads

ρ =

∑N
r,s,m=1 e−βEm |r〉〈s|e2π i(r−s)m/N

Z(β)
, (14)

where Z(β)= N
∑

m e−βEm is the partition function. At this stage, on each site, we associate
the presence/absence of a particle with the qubit levels |1〉/|0〉. The interpretation of whether
any observed violation of the entanglement witness is really entanglement has been discussed
elsewhere [21]. Instead of engaging in a complete analysis of the correlators, we can trivially
observe that Tzz...z = −1, and therefore WB > 1. This arises because we know that Tr(ρ)= 1,
and Z behaves exactly like 1, except that a negative sign is introduced in the presence of an
odd number of excitations, i.e. to all terms. Thus, entanglement persists at all temperatures.
However, in contrast to the GHZ state, this entanglement is always purifiable, as can be proven
by demonstrating an explicit purification protocol. Let us perform Z -measurements on all sites
but a particular nearest-neighbour pair, r and r + 1, and post-select on all measurement results
being |0〉. This leaves the density matrix

ρr,r+1 =

∑
m e−βEm

(
1 e2π im/N

e−2π im/N 1

)
2
∑

m e−βEm
.
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The fidelity with the singlet state (|r〉 − |r + 1〉)/
√

2 is

F =
1

2
−

∑
m e−βEm Em

2
∑

m e−βEm
.

Note that the terms with negative energy have largest weight, and therefore F > 1
2 , and so it can

be purified to the perfect singlet. By symmetry this can happen between all nearest-neighbour
sites, which is sufficient to reproduce any desired output state.

4. Summary

We have investigated a family WÛ of N -qubit entanglement witnesses which are functions of
N -point correlators. We have derived a lower bound Tr(WBρ) for Tr(WÛρ) (ρ is an arbitrary
N -qubit state) and demonstrated that the condition Tr(WBρ)= 1 separates states that do not
violate two-setting WWZB-type Bell inequalities from the entangled states violating multi-
setting WWZB-type Bell inequalities. Both WB, and the stronger witness WA are stratified in
that they prove that if Tr(Wρ) > 2M−1, at least M + 1 qubits are entangled. Similarly, above
certain thresholds, the presence of genuine multipartite entanglement can be detected.

Interestingly, in [22, 23] it was shown that the degree of violation of the WWZB
inequalities is related to the degree of distillability, which is similar to the ability of our witnesses
to detect the lower number of entangled qubits. This is the result of the origin of the presented
witnesses that stems from the orthogonal decomposition of the WWZB operator.

The family of witnesses WÛ has been tested on the thermal stabilizer states (GHZ
Hamiltonian and cluster state Hamiltonian) as well as on the one excitation Bose–Hubbard
thermal state. In the case of the thermal GHZ stabilizer state, we have found that in the
thermodynamic limit one can always detect entanglement with the help of WÛ at any finite
temperature, although it is known that there is a finite regime of temperatures for which
the state is entangled and purifiable. Hence, the state is bound entangled. Contrastingly,
when we considered the thermal cluster state, we found a critical temperature T A

cr below
which entanglement is detected. The critical temperature due to the witness WB also shows
that if we are below T B

cr < T A
cr , we have entanglement. However, above T B

cr , no two-setting
WWZB inequality is ever violated. In the regime between these two temperatures, the state
violates multi-setting WWZB Bell inequalities. Finally, we have also examined the thermal one
excitation Bose–Hubbard model, which always violates multi-setting WWZB Bell inequalities
for any finite temperature, although we have argued that in this case, the entanglement is always
purifiable.

It would be interesting to apply the entanglement witnesses WÛ to thermal states of spin
Hamiltonians of ferromagnetic and anti-ferromagnetic type as well as to other models used in
condensed matter physics. Another interesting question is whether the witnesses derived in the
paper can be expressed as a function of the partition function and its higher order derivatives.
Higher order derivatives of the partition function have not yet found applications in condensed
matter physics.
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Appendix. Derivation of W B

In this appendix, we must prove that for our choice of bEk in equation (7), we get the relation in
equation (8). It is convenient to write W in the Pauli basis, i.e. the basis consisting of elements
σl1 ⊗ · · · ⊗ σlN with σ0 = 1, σ1 = σx , σ2 = σy and σ3 = σz. The coefficients of the expansion
µl1...lN in this basis read

µl1...lN = Tr(σl1 ⊗ · · · ⊗ σlN W )=

∑
Ek

bEkRe
(
〈Ek ′

|σl1 ⊗ · · · ⊗ σlN |Ek〉

)
. (A.1)

Note that Re(〈Ek ′
|σl1 ⊗ · · · ⊗ σlN |Ek〉) vanishes whenever at least one of the indices l j = 0, 3.

Thus, let us define the vector El = (l1 . . . lN ) such that l j = 0(1) corresponds to σx(σy) at the
j th position. Thus, we find the relation

σEl |
Ek〉 = (−1)Ek·El(i)|El||Ek ′

〉 (A.2)

and the entanglement witnesses for a particular choice of Û ,WÛ can be written as

WÛ =
1

2N

∑
Ek,El

(−1)Ek·ElbEk cos
(
π

2
|El|

)
ÛσElÛ

†. (A.3)

Consequently, the trace of WÛ with an arbitrary density operator ρ reads

Tr(WÛρ)=
1

2N

∑
Ek

bEkλEk. (A.4)

The number TEl = Tr(ÛσElÛ
†ρ) is the average value of spin measurements along the directions

given by On x̂, On ŷ (n = 1, . . . , N ), where On is an orthogonal representation of Un. We see
that the only relevant N -point correlation functions are those for which |El|, i.e. the number of σy

in σEl before the local unitary operation Û , is an even number.
To derive WB we put bEk = 2NλEk(

∑
El λEl)

−1, which still satisfies equation (2), and is hence a
sub-optimal choice of witness. The result is

max
Û

(
Tr(WÛρ)

)
= max

Û

( ∑
Ek λ

2
Ek∑

Ek |λEk|

)
. (A.5)

By definition λEk = 2N−1Tr (Û †ρÛ (Q+
Ek
− Q−

Ek
)) thus∑

Ek

|λEk|6 2N−1
∑

Ek

Tr
(

Û †ρÛ (Q+
Ek

+ Q−

Ek
)
)

= 2N , (A.6)

where we have used the completeness of the operators Q±

Ek
, except that we remember that each

is counted twice; once for k and once for k ′. Moreover,∑
Ek

λ2
Ek
=

∑
El, Em,Ek

(−1)Ek·(El+ Em) cos

(
π |El|

2

)
cos

(
π | Em|

2

)
TEl TEm

= 2N
∑

El

cos2

(
π |El|

2

)
T 2

El
= 2N

∑
El∈even

T 2
El
, (A.7)
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where we have made use of the formula
∑

Ek(−1)Ek·(El+ Em)
= 2NδEk, Em . The notation El ∈ even means

summation only over vectors El with even Hamming weight. Combining the last two equations
we finally get

WB = max
Û

∑
El∈even

T 2
El

 , (A.8)

as required.
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