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Abstract. We demonstrate that polaritons in an array of interacting micro-
cavities with strong atom–photon coupling can form a two-component
Bose–Hubbard model in which both polariton species are protected against
spontaneous emission as their atomic part is stored in two ground states
of the atoms. The parameters of the effective model can be tuned via the
driving strength of external lasers and include attractive and repulsive polariton
interactions. We also describe a method to measure the number statistics in one
cavity for each polariton species independently.
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1. Introduction

In recent years, significant progress in the theoretical and experimental study of quantum many-
body phenomena has been made by employing artificial structures that permit unprecedented
experimental control and measurement access. Early activity in this field in arrays of Josephson
junctions [1] and was followed by several important developments with ultracold atoms in
optical lattices [2]. Despite their success, Josephson junction arrays and optical lattices face
limitations as it is challenging to access and control individual lattice sites, due to their small
separation.

A possibility to overcome these hurdles has very recently been suggested in arrays of
coupled micro-cavities, where a scheme for simulating the Bose–Hubbard Hamiltonian [3] and,
subsequently, models of interacting Jaynes–Cummings Hamiltonians [4] have been studied. The
phase diagrams of these models were studied [5, 6] and the existence of a glassy phase has
been predicted [6]. These set-ups, where atoms interact with the resonant modes of the cavities,
also offer the possibility to generate effective spin Hamiltonians [7] which, among many other
applications, may be used for cluster state generation.

Here, we show that coupled high-Q cavities can host an effective two-component Bose–
Hubbard model,

H =

∑
ER; j =b,c

µ j n( j )
ER

−

∑
〈 ER, ER′〉; j,l=b,c

Jj,l

(
j †

ER
l ER′ + h.c.

)
+

∑
ER; j =b,c

U j n( j )
ER

(
n( j )

ER
− 1

)
+

∑
ER

Ub,c n(b)

ER
n(c)

ER
, (1)
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Figure 1. An array of cavities as described by our model. Photon hopping occurs
due to the overlap (shaded green) of the light modes (green lines) of adjacent
cavities. Atoms in each cavity (brown), which are driven by external lasers (blue)
give rise to an on site potential.

where b†
ER
(c†

ER
) create polaritons of the typeb(c) in the cavity at site ER, n(b)

ER
= b†

ER
b ER and

n(c)
ER

= c†
ER
c ER. µb and µc are the polariton energies,Ub,Uc and Ub,c their on-site interactions

andJb,b, Jc,c andJb,c their tunnelling rates.
Bose–Hubbard models of two components can display several interesting phenomena

which are partly also known for a Luttinger liquid of low energy excitations in fermionic
systems [8]. Among these are spin density separation [9], spin order in the Mott regime [10]
and phase separation [11].

2. The basic setting

For the realization of the Hamiltonian (1), we consider an array of cavities which are coupled
via photon hopping (cf figure1). We study the dynamics of polaritons, combined atom–photon
excitations, in this arrangement. The interaction between two polaritons occupying the same
cavity is generated by a large Kerr nonlinearity [12, 13]. This interaction can be repulsive and
attractive. In each cavity, the resonant mode interacts with an ensemble of atoms, which are
driven by an external laser, to form the polaritons. By varying the intensity of the driving laser,
the parameters of the effective model (1) can be tuned. Since the distance between adjacent
cavities is considerably larger than the optical wavelength of the resonant mode, individual sites
can be controlled and measured with optical lasers. An experimental realization would require
cavities that operate in the strong coupling regime [14]–[19].

3. The atoms

The interaction between polaritons that are located in the same cavity is generated by a
nonlinearity in 4 level atoms with a level structure shown in figure2 which was initially
discovered by Imamŏglu et al [12]. The transitions between levels 2 and 3 are coupled to a
laser and the transitions between levels 2↔ 4 and 1↔ 3 couple via dipole moments to the
cavity resonance mode.
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Figure 2. The level structure and transitions of one atom,ωC is the frequency
of the cavity mode,� is the Rabi frequency of the driving laser,g13 andg24 are
dipole couplings to the cavity mode andδ, 1 andε are detunings.

In a rotating frame with respect toH0 = ωC(a†a + 1
2) +

∑N
j =1(ωCσ

j
22 +ωCσ

j
33 + 2ωCσ

j
44), the

Hamiltonian of the atoms in the cavity reads,

HI =

N∑
j =1

(εσ
j

22 + δσ
j

33 + (1 + ε)σ
j

44) +
N∑

j =1

(� σ
j

23 + g13 σ
j

13 a† + g24 σ
j

24 a† + h.c.), (2)

whereσ
j

kl = |k j 〉〈l j | transfers levell of atom j to levelk of the same atom,ωC is the frequency
of the cavity mode,δ, 1 andε are detuning parameters (see figure2), � is the Rabi frequency of
the classical control laser andg13 andg24 are the parameters of the dipole coupling of the cavity
mode to the respective atomic transitions which are all assumed to be real. All atoms interact in
the same way with the cavity mode and hence the only relevant states are Dicke-type dressed
states which we present in the appendix4. In the following derivation, all operator equations
are only meant to hold for the matrix elements of the operators in the subspace spanned by the
states (A.1)–(A.11).

4. Polaritons

In the case whereg24 = 0 andε = 0, the HamiltonianHI can be written in terms of three species
of polaritons,p†

0, p†
+ and p†

−. It takes on the form,

[HI ]g24=0,ε=0 = µ0 p†
0 p0 +µ+ p†

+ p+ +µ− p†
−

p−. (3)

4 If the atoms were distributed on fixed positions in space, the dressed states are no longer symmetric but the
approach still works exactly the same.
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The creation (and annihilation) operators read,

p†
0 =

1

B

(
gS†

12 − �a†
)

and p†
±

=

√
2

A(A± δ)

(
�S†

12 + ga†
±

A± δ

2
S†

13

)
, (4)

where g =
√

Ng13, B =
√

g2 +�2, A =
√

4B2 + δ2, S†
12 =

1
√

N

∑N
j =1 σ

j
21 and S†

13 =

1
√

N

∑N
j =1 σ

j
31. The frequencies of the polaritonsp†

0, p+ and p†
− are given byµ0 = 0 and

µ± = (δ ± A)/2. In the relevant Hilbert space spanned by symmetric Dicke-type dressed states
(A.1)–(A.11) and forN � 1, they satisfy bosonic commutation relations,

[ p j , pl ] = 0 and [p j , p†
l ] = δ j l for j, l = 0, +, − , (5)

where the neglected terms are of order ‘number of polaritons’/N. p†
0, p†

+ and p†
− thus describe

independent bosonic particles.
We will now consider the caseδ � �, g. Here, the polaritons and their frequencies read,

p†
0 =

1

B

(
gS†

12 − �a†
)

, µ0 = 0,

p†
−

≈
1

B

(
�S†

12 + ga†
)

−
B

δ
S†

13, µ− = −
B2

δ
, (6)

p†
+ ≈ S†

13 +
1

δ

(
�S†

12 + ga†
)

, µ+ = δ +
B2

δ
,

up to first order inδ−1. There is no spontaneous emission from the atomic level 2 and hence
to leading order, the polaritonsp†

0 and p†
− do not experience spontaneous emission loss. We

therefore define the two polariton species

b†
=

1

B

(
gS†

12 − �a†
)

and c†
=

1

B

(
�S†

12 + ga†
)
. (7)

In the rotating frame, the polaritonsb† have an energyµb = 0 and the polaritonsc† have an
energyµc = −B2/δ. A possible disorder in the resonance frequency of the cavities and hence
in δ would thus affectµb andµc differently which can have interesting consequences for the
phase transitions of the model [20]. The dynamics of these two species is governed by the two
component Bose–Hubbard Hamiltonian (1) as we shall see.

The Zeeman quantum numbers of atomic levels 1 and 2 can either be the same or differ by
2. In the latter case, the polaritonsp†

0 and p†
− can have magnetic moments [21]. Assuming that

the atomic cloud in a cavity has the diameter of an optical wavelength, we estimate the exchange
energy of the magnetic dipole–dipole interaction to be∼1 Hz. This is significantly smaller than
all parameters of (1) and can thus be neglected in our approach.

5. Perturbations

To write the full HamiltonianHI , in the polariton basis, we express the operators
∑N

j =1 σ
j

22 and

a†
∑N

j =1 σ
j

24 in terms ofb†, c† and p†
+. In the subspace spanned by the states (A.1)–(A.11), we

have
∑N

j =1 σ
j

22 = S†
12S12 and

∑N
j =1 σ

j
24 = S†

12S14, whereS†
14 =

1
√

N

∑N
j =1 σ

j
41 . We thus obtain,

N∑
j =1

σ
j

42 a ≈ −S†
14

(
g�(c2

− b2) + (g2
− �2)bc

)
/B2 , (8)
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where we made use of a rotating wave approximation: sinceδ � �, g, couplings to the
polaritonsp†

+ can be neglected, provided that

|g24| , |ε| , |1| � |µ+ − µb| , |µ+ − µc| . (9)

This is because all couplings betweenp†
+ andb† or c† are much too weak to overcome the energy

differences|µ+ − µb| and|µ+ − µc| betweenp†
+ andb† or c†.

For max(|g24g�/B2
|, |g24(g2

− �2)/B2
|) � |1|, the couplings to level 4 can be treated

in a perturbative way. If furthermore|g24g�/B2
| � |B2/δ|, this results in energy shifts of

nb (nb − 1)Ub, nc (nc − 1)Uc and nb nc Ubc, wherenb and nc are the numbers ofb† and c†

polaritons respectively. The on-site interactions for the polaritonsb† and c† can thus be
written as5,

Ub b†b (b†b− 1) + Uc c†c (c†c− 1) + Ubc b†b c†c (10)

with

Ub = −
g2

24g
2�2

B41
, (11)

Uc = −
g2

24g
2�2

B4(1 + 2B2/δ)
(12)

and

Ubc = −
g2

24(g
2
− �2)2

B4(1 + B2/δ)
. (13)

Note thatUb > 0 if 1 < 0,Uc > 0 if 1 + 2B2/δ < 0,Ubc > 0 if 1 + B2/δ < 0 and vice versa.
There can thus be repulsive and attractive interactions at the same time, e.g. for1 < 0 and
|1| < B2/δ we haveUb > 0,Uc < 0 andUbc < 0. In a similar way, the two photon detuningε
leads to an additional on-site term

ε

B2

(
g2b†b+�2c†c+ g�(b†c+ c†b)

)
, (14)

where the transitionsb†c+ c†b are suppressed if|εg�/B2
| � |B2/δ|.

6. Polariton tunnelling

If the cavities are either coupled by optical fibre tapers or directly via an overlap of evanescent
fields, photons can tunnel between neighbouring cavities. This process is described by the
Hamiltonianα (a†

ER
a ER′ + h.c.) with the photon tunnelling rateα. We translate this term into

the polariton picture and assume that the tunnelling rate is much smaller thanδ. In this regime,
the tunnelling does not induce transitions between the polaritonsb† or c† and p†

+. Hence thep†
+

decouple from the polaritonsb† andc† whose tunnelling terms read,

Jbbb
†
ER
b ER′ + Jccc

†
ER
c ER′ − Jbc(b

†
ER
c ER′ + c†

ER
b ER′) + h.c. , (15)

where

Jbb = αg2/B2 , (16)

Jcc = α�2/B2 (17)

5 For |g24g�/B2
| > |B2/δ|, an additional term−g2

24g
2�2B−41−1(c†c†bb+ b†b†cc) arises.
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Figure 3. Left: the polariton interactionsUb (dashed line),Uc (grey line) and
Ubc (solid line) in units ofg13 as a function of�/g13. Right: the tunnelling rates
|Jbb| (dashed line),|Jcc| (grey line) and|Jbc| (solid line) together with|µc − µb|

(dotted line) in units ofg13 as a function of�/g13. The parameters of the system
areg24 = g13, N = 1000, δ = −g13/20, δ = 2000

√
Ng13 andα = g13/10.

and

Jbc = αg�/B2 . (18)

If |Jbc| � |B2/δ|, transitions betweenb† andc† are suppressed. This is the case for any� as
long asg2

� αδ/2.

7. Parameter range

Here, we give one example of how the parameters of the effective Hamiltonian (1) vary as a
function of the intensity of the driving laser�. We choose the parameters of the atom cavity
system to beg24 = g13, N = 1000, 1 = −g13/20, δ = 2000

√
Ng13 and α = g13/10. Figure3

shows the interactionsUb,Uc andUbc, the tunnelling ratesJbb, Jcc and Jbc and |µc − µb| as
a function of�/g13. For g ≈ �, we have|Ubc| � |Ub|, |Uc| and Jbb ≈ Jcc ≈ Jbc. Whenever
|µc − µb| < |Jbc|, b† polaritons get converted intoc† polaritons and vice versa via the tunnelling
Jbc. With the present choice ofα and δ, this happens for 0.16g < � < 1.6g. To avoid such
processes, one either needs to chooseα smaller orδ larger, where both choices would require
higher Q of the cavities to ensure sufficient lifetime. The interactionsUb,Uc and Ubc can
furthermore be adjusted by varying the detuning1. This can be done by generating a Stark
shift to the atomic level 4 with an additional laser that drives the transition between level 4 and
a further atomic level in a dispersive (detuned) way.

8. Numerical results

To confirm the validity of the approximations involved in the above derivation, we present a
numerical simulation of the full dynamics of polaritonsb† andc† in three cavities that each
couple to N = 1000 atoms and compare it to the dynamics of the corresponding effective
model (1). We consider initial conditions with exactly one polaritonb† in cavities 1 and 2 and
exactly one polaritonc† in cavity 3. Figure4(a) shows the numbersNb = 〈nb〉 and Nc = 〈nc〉

of polaritonsb† andc† and their number fluctuationsFb = 〈n2
b〉 − N2

b and Fc = 〈n2
c〉 − N2

c for
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Figure 4. (a) Nb (dotted line),Nc (dashed line),Fb (solid line) andFc (dash-
dotted line) for a full model of 3 cavities withg24 = g13, ε = 0, N = 1000,
� =

3
2

√
Ng13, δ = 104g13, 1 = −46g13 andα = 2.2× 10−3g13. (b) Differences

between the full and the effective description, [Nb]full − [Nb]BH (dotted line),
[Nc]full − [Nc]BH (dashed line), [Fb]full − [Fb]BH (solid line) and [Fc]full − [Fc]BH

(dash-dotted line) for the same model.

the first cavity. Figure4(b) in turn shows differences between the full description and the
effective model (1), [Nb]full − [Nb]BH, [Nc]full − [Nc]BH, [Fb]full − [Fb]BH and [Fc]full − [Fc]BH.
The effective model describes the dynamics very well.

9. Experimental realizability

To analyse the model’s experimental realizability, possible decay mechanisms for the polaritons
need to be considered. Level 2 of the atoms is metastable and hence its decay rate is negligible
on the relevant timescales. The decay mechanisms for the polaritonsb† andc† thus originate in
the cavity decay of the photons and the very small but non-negligible occupations of the excited
levels 3 and 4. The occupation of level 4 is due to the coupling

∑N
j =1(σ

j
42a + h.c.), whereas the

occupation of level 3 only affects the polaritonsc† and stems from the linear correction term
−(B/δ)S†

13 in equation (6). The resulting effective decay rates,0b for the polaritonsb† and0c

for the polaritonsc†, read

0b =
�2

B2
κ +2(nb − 2)

g2
24g

2�2

12B4
γ4, (19)

0c =
g2

B2
κ +

B2

δ2
γ3 +2(nc − 2)

g2
24g

2�2

12B4
γ4 , (20)

where2 is the Heaveside step function,κ the cavity decay rate andγ3 (γ4) the spontaneous
emission rates from levels 3 (4). For successfully observing the dynamics and phases of
effective Hamiltonian (1), the interactionsUb,Uc and Ubc need to be much larger than0b

and0c.
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The experimentally least demanding case is the one-component model for the polaritons
b†, for which δ∼g. Assuming g24 = g13 the maximal achievable ratio ofUb/0b is here
1
2 g13/

√
κ 2(nb − 2)γ4 . In particular the Mott state for the polaritonsb†, wherenb < 2, can

even be realized in bad cavities without the strong coupling regime. However, to observe the
transition to the superfluid phase, the strong coupling regime withg13 �

√
κγ4 is required for

the single component model, too.
To obtain an estimate for a model with both components,b† andc†, we consider three cases,

g ≈ ω, � ≈ 10g and� ≈ g/10. Note thatg � δ and hence spontaneous emission via level 3 is
strongly suppressed. Denotingζ = g13/

√
κγ4, the achievable ratios of interaction versus decay

rates forg ≈ � areUb/0b ≈ Uc/0c ≈ ζ/(2
√

2), while the cross interaction vanishes,Ubc ≈ 0.
For � = 10g (� = g/10) the achievable ratios areUb/0b ≈ ζ/100(Ub/0b ≈ ζ/2),Uc/0c ≈

ζ/2(Uc/0c ≈ ζ/100) andUbc/max(0b, 0c) ≈ ζ(Ubc/max(0b, 0c) ≈ ζ ).
Realizing these parameters requires cavities that operate in the strong coupling regime with

large cooperativity factors,ζ � 1. This regime is currently being achieved in several devices,
in BECs coupled to fibre-based cavities [14] (ζ ≈ 17), photonic band gap cavities [15] (ζ ≈ 8),
Fabry–Perot cavities [16] (ζ ≈ 13), toroidal micro-cavities [17] (ζ ≈ 7) and micro-cavities on a
gold coated silicon chip [18] (ζ ≈ 6) among others. Our scheme should thus be experimentally
feasible with current or soon to be available technology. Values ofζ that are predicted to
be achievable are as high as 200 for photonic bandgap cavities and 3000 for toroidal micro-
cavities [19].

Besides the strong coupling itself, a realization of our scheme also requires that the atoms
remain in the location of strong coupling for sufficient time. The parameters of the effective
Hamiltonian (1) are at most two or three orders of magnitude smaller than the atom–photon
couplingg13, see figure3. Currently strong coupling regimes withg13 ≈ 10 GHz are achieved,
which requires an atom–photon interaction time of microseconds to be able to observe the
interesting dynamics. This time is sufficient for driving the system through phase transitions
(see also figure 4 in [3] for a simulation of the one component case) and is even achieved with
falling atoms [17]. Trapping times for cold atoms exceed this timescale by far [22].

Another limiting factor could be the thermal motion of trapped atoms. If one requires that
an atom should not move more than 100 nm in 1µs, the temperature of the atoms needs to be
∼ 10−4 K which is routinely realized in cold atom experiments.

10. Measurements

The number statistics of both polariton speciesb† andc† in one cavity can be measured using
state selective resonance fluorescence in a way proposed in [23]. In the one-component BH
model [3], the polaritons can therefore be mapped by a STIRAP passage [24] onto the atomic
levels. In the two-component case, the STIRAP can however not be applied as in [3] because
the energiesµb andµc are similar and the passage would thus need to be extremely slow to be
adiabatic.

For two components, one can do the measurements as follows. First the external driving
laser� is switched off. Then the roles of atomic levels 1 and 2 are interchanged in each atom
via a Raman transition by applying aπ/2-pulse. To this end the transitions 1↔ 3 and 2↔ 3
are driven with two lasers (both have the same Rabi frequency3) in two-photon resonance for
a timeT = πδ3/|3|

2(δ3 is the detuning from atomic level 3). The configuration is shown in
figure5(a). This pulse results in the mapping|1 j 〉 ↔ |2 j 〉 for all atoms j .
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Figure 5. (a) Configuration of theπ/2-pulse. Two driving lasers in two-photon
transition with identical Rabi frequencies3 couple to the atomic transitions
1 ↔ 3 and 2↔ 3. (b) Configuration for the STIRAP process. A driving laser
couples to the 1↔ 4 transition with Rabi frequency2. The cavity mode couples
to transitions 2↔ 4 and 1↔ 3, where the coupling to 1↔ 3 is ineffective and
not shown.

Next another laser,2, that drives the transition 1↔ 4 is switched on, see figure5(b).
Together with the couplingg24, this configuration can be described in terms of three polaritons,
q†

0, q†
+ andq†

−, in an analogous way top†
0, p†

+ and p†
−, where now the roles of the atomic levels

1 and 2 and the levels 3 and 4 are interchanged. Hence, if we choose2 = � the π/2-pulse
maps theb† onto the dark state polaritons of the new configuration,q†

0, whereas if we choose
2 = −� it maps thec† ontoq†

0. The driving laser is then adiabatically switched off,2 → 0, and
the corresponding STIRAP process maps theq†

0 completely onto atomic excitations of level 1.
This process can now be fast since the detuning1 is significantly smaller thanδ and hence
the energies of all polariton speciesq†

0, q†
+ andq†

− are well separated. Anotherπ/2-pulse finally
maps the excitations of level 1 onto excitations of level 2, which can be measured by state
selective resonance fluorescence in the same way as discussed in [3, 23].

The whole sequence ofπ/2-pulse, STIRAP process and anotherπ/2-pulse can be done
much faster than the timescale set by the dynamics of the Hamiltonian (1) [3] and b† or c†

can be mapped onto atomic excitations in a time in which they are not able to move between
sites. The procedure thus allows us to measure the instantaneous local particle statistics of each
species separately.

11. Summary

We have shown that a two-component Bose–Hubbard model of polaritons can be created in
coupled arrays of high-Q cavities. As new features, the model allows for single site addressing
and can display transitions between the two particle species. An experimental realization is
feasible with cavities that have cooperativity factors much greater than unity and interact
with the atoms for sufficient time. The local particle number statistics of both species can be
measured independently with high accuracy.

Acknowledgments

This work is part of the QIP-IRC supported by EPSRC (GR/S82176/0), the Integrated Project
Qubit Applications (QAP) supported by the IST directorate as contract number 015848 and

New Journal of Physics 10 (2008) 033011 (http://www.njp.org/)

http://www.njp.org/


11

was supported by the EPSRC grant EP/E058256/1, the Alexander von Humboldt Foundation,
the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Royal
Society.

Appendix. The relevant dressed states

For each cavity, we restrict our presentation here to the subspace which contains at most two
excitations. The Hamiltonian (2) decouples into a zero excitation, a one excitation and a two
excitation manifold. The zero excitation manifold consists of only one state|φ0〉, in which there
is no photon and all atoms are in their ground state

|φ0〉 = |0photon〉 ⊗

N∏
j =1

|1 j 〉 . (A.1)

There are three states in the one excitation manifold,

|φa
1〉 = |1photon〉 ⊗

N∏
j =1

|1 j 〉, (A.2)

|φb
1〉 = |0photon〉 ⊗

1
√

N

N∑
j =1

| . . . 3 j . . .〉, (A.3)

|φc
1〉 = |0photon〉 ⊗

1
√

N

N∑
j =1

| . . . 2 j . . .〉, (A.4)

where| . . . k j . . .〉 denotes the state where atom numberj is in state|k〉 and all others are in state
|1〉. The two excitation manifold contains seven states,

|φa
2〉 = |2photon〉 ⊗

N∏
j =1

|1 j 〉, (A.5)

|φb
2〉 = |1photon〉 ⊗

1
√

N

N∑
j =1

| . . . 3 j . . .〉, (A.6)

|φc
2〉 = |1photon〉 ⊗

1
√

N

N∑
j =1

| . . . 2 j . . .〉, (A.7)

|φd
2〉 = |0photon〉 ⊗

1
√

2N(N − 1)

N∑
j =1

∑
l 6= j

| . . . 3 j . . . 3l . . .〉, (A.8)

|φe
2〉 = |0photon〉 ⊗

1
√

N

N∑
j =1

| . . . 4 j . . .〉, (A.9)

|φ
f

2 〉 = |0photon〉 ⊗
1

√
N(N − 1)

N∑
j =1

∑
l 6= j

| . . . 2 j . . . 3l . . .〉, (A.10)
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|φ
g
2〉 = |0photon〉 ⊗

1
√

2N(N − 1)

N∑
j =1

∑
l 6= j

| . . . 2 j . . . 2l . . .〉. (A.11)

Here,| . . . 2 j . . . 3l . . .〉 denotes a state, where atom numberj is in state|2〉, atom numberl is in
state|3〉 and the other atoms are all in the ground state.
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[12] Imamŏglu A, Schmidt H, Woods G and Deutsch M 1997Phys. Rev. Lett.791467

Imamŏglu A, Schmidt H, Woods G and Deutsch M 1998Phys. Rev. Lett.812836
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