The open access journal at the forefront of physics

CORRIGENDUM • OPEN ACCESS

Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase

To cite this article: Shuichi Murakami 2008 New J. Phys. 10 029802

View the article online for updates and enhancements.

You may also like

- Classified

- Exhibition guide CMMP'94
- ASE exhibitions: Manufacturers' exhibition Bob Lovett

The open-access journal for physics

Corrigendum

Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase

Shuichi Murakami 2007 New J. Phys. 9 356

New Journal of Physics 10 (2008) 029802 Online at http://www.njp.org/ doi:10.1088/1367-2630/10/2/029802

The discussion on page 9 including figures 3 and 4 needs to be corrected. The last paragraph ('In the present system...') of section 2.2.2 should be replaced by the following.

'When the system becomes gapless, a monopole (charge q = 1) and an antimonopole (q = -1) are created in pairs. Because of the T-symmetry, the distribution of monopole charges is symmetric with respect to k = G/2. Hence for the simplest case, two monopole-antimonopole pairs are created at $k = \pm k_0 + G/2$ ($k_0 \neq 0$) simultaneously when $m = m_1$, and the system becomes gapless. When m is increased further, the monopoles and antimonopoles move in the k space, while the distribution of the monopole charges remains symmetric with respect to G/2. This system can open a gap again only when all the monopoles and antimonopoles annihilate in pairs. This occurs at $m = m_2$ as shown in figure 6. Thus the overall feature of the phase transition is schematically expressed as in figure 7.

Correspondingly, figures 3 and 4 should be replaced by figure 6 and figure 7 respectively. These corrections do not affect the main conclusions of the article.

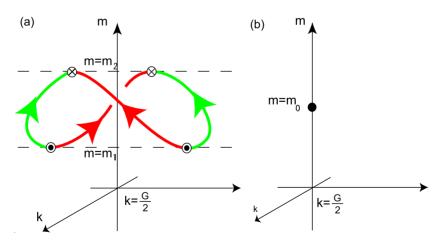
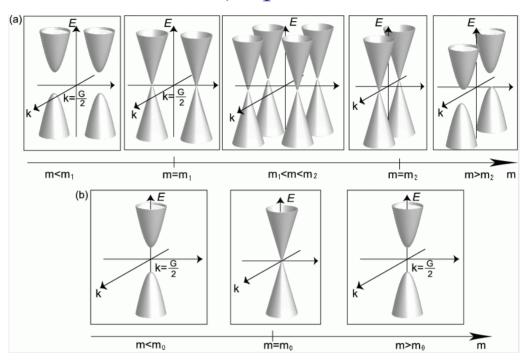



Figure 6. Location of the the gapless points by changing the external parameter *m* in (a) I-asymmetric systems and (b) I-symmetric systems. In (a) the green and the red denotes trajectories of the monopole and antimonopole, respectively.

Figure 7. Phase transition in 3D between the quantum spin Hall (QSH) and insulating phases for (a) I-asymmetric and (b) I-symmetric cases. In the case (b) all the states are doubly degenerate.