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Abstract. We consider a nanomechanical analogue of a nonlinear interferom-
eter, consisting of two parallel, flexural nanomechanical resonators, each with
an intrinsic Duffing nonlinearity and with a switchable beamsplitter-like cou-
pling between them. We calculate the precision with which the strength of the
nonlinearity can be estimated and show that it scales as 1/n3/2, where n is the
mean phonon number of the initial state. This result holds even in the presence
of dissipation, but assumes the ability to make measurements of the quadrature
components of the nanoresonators.
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1. Introduction

High-precision measurement is an essential component of any advanced technology, be it
classical or quantum. In the case of the emerging quantum technologies, however, constraints on
our ability to make precise measurements are imposed by the Heisenberg uncertainty principle.
It is often the case that the measurement objective is simply to estimate a single parameter of
the Hamiltonian of a system [1]. For example, in atomic clocks the objective is to estimate the
resonant frequency of a given electronic transition [2]. In the case of an optical interferometer,
the objective is to estimate an optical phase shift produced by some mechanism of interest,
which changes the relative path length. As the parameter varies, the dynamics of the system
changes, and precise determination of the parameter requires that the change in the dynamics of
the system be resolvable with sufficient sensitivity to the parameter.

The precision with which the parameter can be determined depends on the initial state
of the system, the nature of the Hamiltonian describing the system’s evolution, and the
measurements to be performed on the system. Most work on parameter estimation assumes
that system quanta are coupled independently to the parameter, meaning that the coupling is
quadratic in the field variables, which leads to equations of motion that are linear in the field
variables. For such linear couplings, the optimal precision in a parameter estimate scales as
1/n, where n is the number of system quanta used in the measurement, a scaling known as the
Heisenberg limit [3]. Achieving the Heisenberg limit with a linear coupling requires using an
entangled initial state [4]. If one is restricted to using product states, then a linear coupling can
only achieve a 1/n1/2 scaling, which is called the shot-noise limit or the standard quantum limit.

It was recently shown that quantum parameter estimation with scaling better than 1/n
could be attained by using a coupling to the parameter that is nonlinear in field variables [5];
such super-Heisenberg scalings can be obtained even with an initial product state [6]. The use
of product states, as opposed to entangled states, circumvents the difficulty of creating the
entangled states and also makes the scheme considerably more robust against the deleterious
effects of decoherence.

In a related development, a measurement of a phase shift of an optical field [7], using an
adaptive measurement scheme that requires no entanglement, has achieved a Heisenberg-limited
sensitivity in terms of number of interactions of photons with the phase shifter, rather than just
the number of photons. The number of interactions each photon undergoes is a discrete version
of the coherent evolution time in most metrology protocols. Increasing the coherent evolution
time, as in the experiment of [7], is generally a good strategy for improving sensitivity, but it
is relatively easy to do, and its utility is limited by the need to determine a parameter before it
changes (i.e. with a certain bandwidth) or by decoherence. Some quantum metrology literature
(see, for example [3, 8, 9]) regards the number of interactions as the relevant resource. In the
system we consider here, the number of quanta and the number of interactions each quantum
experiences are not equivalent resources. Hence, we use the number of quanta as the relevant
resource.

Flexural nanomechanical resonators have an intrinsic Duffing nonlinearity due to extension
on bending [10]; technology is progressing toward the point where such resonators can be
cooled to near their quantum ground state [11]. Thus nanoresonators might provide a system
in which parameter estimation beyond the 1/n Heisenberg limit could be demonstrated, in this
case measurement of the nonlinear coefficient for the Duffing nonlinearity. Other candidates
for the first experimental demonstration of super-Heisenberg scalings in parameter estimation
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Figure 1. Quantum circuit representation of nonlinear nanoresonator interfer-
ometer. The input nanoresonator modes experience a pulsed beamsplitter-like
interaction, evolve according to a nonlinear Hamiltonian, and the beamsplitter-
like interaction is then pulsed on again. We assume that measurements can be
made of either the X or the Y quadrature, of one or both output modes (denoted
‘+’ and ‘−’). Though not shown in the circuit, we have also considered the effect
of dissipation accompanying the nonlinear evolution.

include the measurement of phase in a nonlinear optics setting [12]–[14], the measurement of a
magnetic field in atomic magnetometry [15], and the measurement of atomic scattering strength
in coupled Bose–Einstein condensates [16]–[18].

Quite apart from any fundamental considerations, the ability to make high-precision
measurements of the Duffing nonlinearity of a nanomechanical resonator might be of
considerable practical interest. The Duffing nonlinearity of a nanomechanical resonator is an
expression of the applied strain [19]. Nonlinear micro-electromechanical systems (MEMS) have
already been used to make highly sensitive mechanical strain sensors and accelerometers, with
applications to engineering and biomedical systems [20]. High-precision measurements of the
Duffing nonlinearity would also have implications for ultra-sensitive nanomechanical mass and
force detection [21].

We consider two parallel, flexural nanomechanical resonators, each with an intrinsic
Duffing nonlinearity and with a switchable, electrostatically actuated beamsplitter-like coupling
between them. The measurement proceeds as follows: one nanoresonator is excited into a
large-amplitude coherent state, the beamsplitter interaction is pulsed on so that the coherent-
state excitation is split equally between the two resonators, the nanoresonators evolve
independently under the nonlinearities (and standard linear dissipation), the beamsplitter
interaction is pulsed in the same way again, and a homodyne measurement of the nanoresonator
quadratures is performed. As depicted in figure 1, this scheme effectively realizes a nonlinear
interferometer [22]. We have calculated the precision with which such a scheme can estimate
the nonlinear coefficient of one nanoresonator and demonstrated that the precision scales as
1/n3/2, where n is the mean phonon number of the initial coherent state.

2. System properties and Hamiltonian

Each nanoresonator can be regarded as a thin bar of length l and lateral width a. We are
interested in the fundamental mode of vibration of each nanoresonator in the lateral direction.
Each fundamental mode is described by a position–momentum pair, xi –pi , where i = a, b labels
the resonators. With a time-dependent capacitive coupling dependent on the displacements from
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the equilibrium positions, C(xa, xb), and Duffing nonlinearities characterized by coefficients χi ,
i = a, b, the system can be described classically by a Hamiltonian

Hcl =
1
2mω2x2

a + p2
a

2m + 1
2mω2x2

b + p2
b

2m + P(t) 1
2C(xa, xb)V 2

0 + 1
4χamω2x4

a + 1
4χbmω2x4

b , (1)

where P(t) specifies the coupling voltage pulses.
In current experiments, the nonlinear coefficient χ of a nanoresonator is estimated [10] by

measuring the critical amplitude ac at which the forced oscillations become bistable [23] and
the quality factor Q of the oscillator and then using the relation χ = 2

√
3/9a2

cQ. Achievable
values of these parameters are ac = 0.7 nm and Q = 20 000, giving a nonlinear coefficient
χ = 4 × 1013 m−2. We use this value of χ as a typical value in the following.

We assume that the nanoresonators are capacitively coupled to nearby bias conducting
surfaces in such a way that for small displacements, the capacitance can be expanded as

C(xa, xb) = C0

(
1 +

f x2
a + f x2

b + 2xaxb

d2
+ · · ·

)
. (2)

Here C0 is the capacitance when the oscillators are at their equilibrium positions. The capacitive
coupling must be balanced so that there is no net force on the resonators when the coupling
is switched on (i.e. no linear terms in the expansion). This leaves the quadratic terms as the
dominant effect of the coupling. In the quadratic terms, d ' 100 nm is a characteristic lateral
separation between the resonators and the other conducting surfaces and f is a factor of order
unity. Both d and f depend on the specific design of the capacitive coupling. Provided

C0V 2
0 /2mωd2

≡ κ � ω , (3)

we can neglect the renormalization of the resonator frequencies during the pulsing of
the capacitive coupling, retaining only the coupling between the resonators. With these
assumptions, the capacitive term in the Hamiltonian (1) can be replaced by P(t)C0V 2

0 xaxb/d2,
which gives rise to the desired beamsplitter coupling. The parameter κ , introduced in
equation (3), characterizes the strength of the beamsplitter coupling.

Now we quantize by introducing the operators

x̂a = (a + a†)

√
h̄

2mω
, p̂a = −i(a − a†)

√
h̄mω

2
(4)

satisfying the usual commutation relations, and similarly for nanoresonator b. Transforming to
an interaction picture and using the rotating-wave approximation, we find

H = h̄γ (a†a)2 + h̄β(b†b)2 + h̄κ P(t)(a†b + ab†) , (5)

where

γ ≡
3
4ωχa(1x)2 , β ≡

3
4ωχb(1x)2 , (6)

with 1x =
√

h̄/2mω being the half-width of the ground-state wave function. The use of the
rotating-wave approximation requires that the timescale δt over which the coupling is varied in
P(t) be significantly longer than the periods of the nanomechanical resonators. Since δt ' κ−1,
this is the requirement, already introduced in equation (3), that κ � ω.

At low temperatures, nanoresonator damping is thought to be mostly due to coupling to a
bath of two-level systems, but this mechanism is not fully understood. Therefore we do not try
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to model this mechanism, but rather treat dissipation using a quantum optics master equation
(with a zero-temperature bath), with the expectation that this generic model of damping provides
a reasonable account of the effect of dissipation on parameter estimation. Then the evolution of
the density matrix describing the state of the two nanoresonators is given by

ρ̇(t) = −
i

h̄
[H, ρ] +

0a

2
(2aρa†

− a†aρ − ρa†a) +
0b

2
(2bρb†

− b†bρ − ρb†b) . (7)

Experimentally reasonable values for the system properties are l = 2 µm, a = 40 nm, m =

10−17 kg, ω = 2π × 15 MHz = 9.4 × 107 rad s−1, d = 120 nm, Q = 20 000, χ = 4 × 1013 m−2,
C0 = 10 aF, and V0 = 1 V. These correspond to 1x = 240 fm, 0i = 4 700 s−1, γ, β = 1.6 ×

10−4 s−1 (we use 10−4 s−1 as a typical value in the following), and κ = 3.7 × 105 s−1. The
quantity 1/2χ(1x)2

= 5 × 1011 is roughly the number of phonons required to make the quartic
nonlinearity as large as the harmonic potential; it corresponds to an oscillation amplitude
1/

√
χ = 200 nm. The quality factor and resonant frequency of a nanomechanical resonator

have been measured to exhibit a weak temperature dependence [24]. The assumption of a zero
temperature bath does not, however, constrain us to the use of ‘zero temperature’ parameters for
our generic model of dissipation. The parameters listed here correspond to values accessible in
experiments.

In section 4, we analyze estimation of the nonlinear coefficient γ of oscillator a, assuming
that oscillator b has no nonlinearity (β = 0). Other operating conditions are possible and yield
similar results, but the figures in the remainder of the paper refer to the β = 0 case. We consider
a fiducial evolution time t = 10−3 s, so that 0i t = 4.7, meaning that the effects of dissipation
are large, but not overwhelming, and we consider a fiducial initial phonon number n = 107, so
that the nonlinear phase shift nγ t is about 1 rad. We investigate values within about an order
of magnitude of these fiducial values. Notice that a phonon number n = 107 corresponds to an
oscillation amplitude 1x

√
2n = 1 nm. This amplitude is close to the value we assumed for ac,

not by accident, but because the two oscillation amplitudes quantify, one for free oscillations
and one for forced oscillations, the same measure of the relative strengths of the nonlinearity
and the damping.

Our assumptions about the switchable beamsplitter coupling require that κ � ω, so that we
can make the rotating-wave approximation, and that t � κ−1

= 2.7 µs, so that we can regard the
beamsplitter pulses as essentially instantaneous. Both of these inequalities are well satisfied by
the above values.

3. System evolution in the Q representation

Now suppose that nanoresonator a is excited into a coherent state with amplitude α0, assumed
real. The (product) state of the two nanoresonators is then given, in the Q representation [25], by
Q(α, α∗

; t = 0) = e−|α−α0|
2
/π and Q(β, β∗

; t = 0) = e−|β|
2
/π . If we pulse on the beamsplitter

interaction for a time δt = π/4κ , the state of the system is a product of two equal-amplitude
coherent states; in other words, we have a ‘balanced’ beamsplitter. The pulse time δt is
sufficiently short that the effect of nonlinearities and dissipation are negligible. We then have

Q(α, α∗
; t = δt) =

1

π
e−|α−α0/

√
2|

2
, Q(β, β∗

; t = δt) =
1

π
e−|β−α0/

√
2|

2
. (8)
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Setting P(t) = 0 in equation (5) for the time between the beamsplitter pulses, the master
equation (7) can be converted into a Fokker–Planck equation for the Q function and solved
to give [26]

Q(α, α∗
; t) =

e−|α|
2

π

∞∑
p,q=0

1

p ! q!

(
α∗α0
√

2

)p (
αα∗

0
√

2

)q

fa(t)
(p+q)/2 exp

[
−|α0|

2 fa(t) + iδa

2(1 + iδa)

]
, (9)

Q(β, β∗
; t) =

e−|β|
2

π

∞∑
p,q=0

1

p ! q!

(
β∗α0
√

2

)p (
βα∗

0
√

2

)q

fb(t)
(p+q)/2 exp

[
− |α0|

2 fb(t) + iδb

2(1 + iδb)

]
, (10)

where

δa = 2γ (p − q)/0a, δb = 2β(p − q)/0b, (11)

fa(t) = exp[−0at − 2iγ t (p − q)] , fb (t) = exp[−0bt − 2iβt (p − q)]. (12)

The beamsplitter interaction is pulsed on again for time δt , giving output quadratures

X± =
a + a†

± b ± b†

√
2

, Y± = −
i(a − a†

± b ∓ b†)
√

2
. (13)

We can calculate the first and second moments of these quadratures using equations (9) and (10),

〈X±〉 =
√

2
∫

d 2αRe(α)Q(α, α∗
; t) ±

√
2

∫
d 2βRe(β)Q(β, β∗

; t) , (14)〈
X 2

±

〉
= −1 + 2

∫
d 2α [Re(α)]2 Q(α, α∗

; t) + 2
∫

d 2β [Re(β)]2 Q(β, β∗
; t)

± 4
∫

d 2αRe(α)Q(α, α∗
; t)

∫
d 2βRe(β)Q(β, β∗

; t) . (15)

Corresponding moments of the conjugate quadratures Y± are given by the same expressions
with the replacement Re(α) → Im(α).

The evaluation of these moments reduces to the calculation of two integrals,
√

2
∫

d 2α α Q(α, α∗
; t) =

√
ne−(0a t+nC2)/2ei(γ t+nD2/2) , (16)

2
∫

d 2α [C(α)]2 Q(α, α∗
; t) = 1 +

n

2
e−0a t

±
n

2
e−0a t−nC4/2 cos(4γ t + nD4/2), (17)

where n = α2
0 , C(α) =Re(α) for the upper sign and C(α) = Im(α) for the lower sign, and

Cr = Cr(γ, 0a, t) =
1

1 + (0a/rγ )2

[
1 − e−0a t cos rγ t −

0a

rγ
e−0a t sin rγ t

]
, (18)

Dr = Dr(γ, 0a, t) =
1

1 + (0a/rγ )2

[
0a

rγ
+ e−0a t sin rγ t −

0a

rγ
e−0a t cos rγ t

]
. (19)
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The general results are complicated and thus are not quoted here. In the case of no damping
(0a = 0 = 0b), we can show that

〈X±〉 =
√

ne−n(1−cos 2γ t)/2 cos
(
γ t +

n

2
sin 2γ t

)
±

√
ne−n(1−cos 2βt)/2 cos

(
βt +

n

2
sin 2βt

)
, (20)

〈Y±〉 =
√

ne−n(1−cos 2γ t)/2 sin
(
γ t +

n

2
sin 2γ t

)
±

√
ne−n(1−cos 2βt)/2 sin

(
βt +

n

2
sin 2βt

)
, (21)

and

〈X 2
±
〉 = 1 + n +

n

2
e−n(1−cos 4γ t)/2 cos

(
4γ t +

n

2
sin 4γ t

)
+

n

2
e−n(1−cos 4βt)/2 cos

(
4βt +

n

2
sin 4βt

)
±ne−n(2−cos 2γ t−cos 2βt)/2 cos

(
γ t − βt +

n

2
sin 2γ t −

n

2
sin 2βt

)
±ne−n(2−cos 2γ t−cos 2βt)/2 cos

(
γ t + βt +

n

2
sin 2γ t +

n

2
sin 2βt

)
, (22)

〈Y 2
±
〉 = 1 + n −

n

2
e−n(1−cos 4γ t)/2 cos

(
4γ t +

n

2
sin 4γ t

)
−

n

2
e−n(1−cos 4βt)/2 cos

(
4βt +

n

2
sin 4βt

)
±ne−n(2−cos 2γ t−cos 2βt)/2 cos

(
γ t − βt +

n

2
sin 2γ t −

n

2
sin 2βt

)
∓ne−n(2−cos 2γ t−cos 2βt)/2 cos

(
γ t + βt +

n

2
sin 2γ t +

n

2
sin 2βt

)
. (23)

Note that these results could have been calculated directly in the Heisenberg picture with
initial coherent states in each mode. Making, in addition, the short-time approximation,
n(γ t)2, n(βt)2

� 1, which still allows nonlinear phase shifts nγ t and nβt much larger
than unity, we find the same expectation values as for the analogous classical nonlinear
interferometer:

〈X±〉 →
√

n cos nγ t ±
√

n cos nβt , 〈Y±〉 →
√

n sin nγ t ±
√

n sin nβt . (24)

We can define a regime of strong damping by the conditions

0a

γ
,
0b

β
�

√
n , γ t,

0at

n
,
0bt

n
� 1 . (25)

The conditions on the evolution time are of little consequence because long before they are
violated, the oscillators will have damped to the ground state. Notice that these conditions allow
the case of most interest to us, i.e. 0b = 0a ' γ n, with nγ t ' 0at allowed to be considerably
larger than unity. In the strong damping regime, we have

〈X±〉 =
√

ne−0a t/2 cos
[

nγ

0a
(1 − e−0a t)

]
±

√
ne−0bt/2 cos

[
nβ

0b
(1 − e−0bt)

]
, (26)

〈Y±〉 =
√

ne−0a t/2 sin
[

nγ

0a
(1 − e−0a t)

]
±

√
ne−0bt/2 sin

[
nβ

0b
(1 − e−0bt)

]
. (27)

In addition, in this regime 〈X 2
±
〉 = 1 + 〈X±〉

2 and 〈Y 2
±
〉 = 1 + 〈Y±〉

2, which means that the
quadrature uncertainties are at the coherent-state level, i.e. 1X± = 1Y± = 1.

The dependence of the expectation values of the ‘+’ quadrature amplitudes on the
nonlinearity and damping rate is shown in figure 2; similar behavior is displayed by the ‘−’
quadratures. The nonlinearity gives rise to rapidly oscillating fringes, and this is the key, as
we see in the following section, to the enhanced sensitivity of the nonlinear interferometer.
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Figure 2. Magnitude of expectation values of output quadratures X+ and Y+ as
functions of the nonlinearity γ (expressed in terms of the nonlinear phase shift
nγ t) and nanoresonator damping 0(= 0a = 0b), for the choices n = 107, β = 0
and t = 10−3 s. The rapidly oscillating fringes with respect to γ give rise to the
enhanced sensitivity of this parameter estimation scheme. Damping leads to a
shift in the location of the fringes and to a decay of the quadrature expectations.
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Figure 3. Uncertainty in the output quadratures X+ and Y+ as a function
of the nonlinearity γ (expressed in terms of the nonlinear phase shift nγ t)
and nanoresonator damping 0(= 0a = 0b), for the choices n = 107, β = 0,
and t = 10−3 s. Squeezing and anti-squeezing are observed for low damping,
corresponding to shearing of the contours of the Q function in phase space.
Dissipation suppresses this effect, and coherent-state variances, corresponding
to decay to the vacuum, are seen at high damping rates.

Dissipation leads to a reduction in the expectation values and also to a reduction in the fringe
frequency. Figure 3 shows the uncertainties in X+ and Y+, also as functions of the nonlinearity
and damping rate. In the case of low damping, as the nonlinear phase shift increases, the
variances oscillate, corresponding to the shearing apart and partial recurrence of the contours
of the Q function in phase space. Squeezing and anti-squeezing are apparent in the variance
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oscillations [27], and the squeezing can be quite substantial. (Achieving quantum squeezing
is quite difficult for reasonable damping rates and would be made even more so by a finite-
temperature bath.) Damping suppresses the shearing—and, hence the squeezing and anti-
squeezing—and suppresses the quantum interference effects that give rise to partial revivals.
Strong damping leads to a decay of the expectation values and to quadrature variances that take
on the coherent-state value. At reasonable damping rates, we cannot derive any benefit from the
squeezing, though neither are we adversely affected by the anti-squeezing of the quadratures.
The deleterious effect of damping is almost entirely a consequence of reducing the signal carried
by the expectation values, not of changing the variances.

4. Precision of parameter estimate

To analyze the precision of estimating the strength of the Duffing nonlinearity, we specialize in
this section to the case where oscillator b has no nonlinearity (β = 0). We are thus estimating
the nonlinear coefficient γ of oscillator a. Other operating conditions are possible, but we focus
on this one as a representative possibility in this section.

We phrase our results in terms of the precision in estimating the related dimensionless
parameter γ t , with t regarded as fixed. The uncertainty in an estimate of γ t based on multiple
measurements of a quantity Z—in our case, Z is one of the output quadratures—can be
calculated from

δ(γ t) = tδγ = t
1Z

|d〈Z〉/dγ |
=

1Z

|d〈Z〉/d(γ t)|
, (28)

where 1Z is the uncertainty in Z . In the case of no damping and again making the short-time
approximation, the quadrature variances all take on coherent-state values, i.e. 1X±, 1Y± → 1.
The precision of the estimate of γ t thus becomes

δX±
(γ t) =

1

n3/2| sin nγ t |
, δY±

(γ t) =
1

n3/2| cos nγ t |
. (29)

These sensitivities oscillate with the fringes produced by the nonlinear phase shift nγ t , but
they all have the same basic scaling of 1/n3/2 with phonon number. This scaling beats the 1/n
scaling achievable with a linear Hamiltonian and is consistent with the general result [6] for
nonlinear Hamiltonians and initial product states. The factor of n enhancement compared with
the standard quantum limit for linear Hamiltonians is a consequence of the rapidly oscillating
fringes in the expectation values of the output quadratures.

From an experimental perspective, the strong damping regime (25) is most relevant. In
this regime, the quadrature variances have coherent-state values, and the derivatives of the
expectation values lead to sensitivities

δX±
(γ t) =

0at e0a t/2

n3/2(1 − e−0a t)| sin[nγ (1 − e−0a t)/0a]|
,

δY±
(γ t) =

0at e0a t/2

n3/2(1 − e−0a t)| cos[nγ (1 − e−0a t)/0a]|
.

(30)

The improved 1/n3/2 sensitivity scaling survives in the presence of dissipation, but the absolute
sensitivity is degraded, and the fringes become more widely separated. For feasible damping
rates, the sensitivity is worsened by less than an order of magnitude, but if the damping is further
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Figure 4. Precision δ(γ t) for measurements of the X+ and Y+ quadratures as
a function of the nonlinearity γ , expressed as the nonlinear phase shift nγ t ,
for the choices n = 107, β = 0, t = 10−3 s, and 0a = 0b = 0. Zero damping and
moderate damping cases are shown for each quadrature. For zero damping, fringe
boundaries are located at nγ t = mπ/2, with the fringes based on measurements
of conjugate quadratures displaced by π/2. Dissipation leads to an overall
reduction in sensitivity, and the fringes become more widely spaced.

increased, the sensitivity diverges, reflecting the absence of signal in the quadrature expectation
values.

Figure 4 shows the measurement precision for measurements of the X+ and Y+ quadratures
as a function of the nonlinearity γ and for two values of the damping rate 0 = 0a = 0b.
Fringe boundaries are located at nγ t = mπ/2; those based on measurement of the X+ and Y+

quadratures are displaced by π/2. As the damping rate increases, the overall sensitivity worsens,
and the fringes become more widely spaced. These effects can be traced back to the reduced-
amplitude and reduced-frequency oscillations of the quadrature expectations as a function of
the nonlinear phase shift.

The scaling of the measurement precision as a function of n is plotted in figure 5. Here
n is chosen so that nγ t < 1. The precision associated with measurement of the Y+ quadrature
is then near its optimal value, away from its first fringe boundary at nγ t = π/2, whereas the
precision associated with measurement of the X+ quadrature decreases rapidly as it falls from
the very poor sensitivity near its central fringe boundary at nγ t = 0. From the log–log plot, we
can calculate that δX+ ∝ n−5/2 and δY + ∝ n−3/2, though the extra n−1 in the n−5/2 scaling is due
to the sensitivity falling from the central fringe boundary, and the true scaling of the optimal
sensitivity achievable is n−3/2. The scaling behavior is maintained in the presence of feasible
levels of dissipation, although there is a marked deterioration in sensitivity.

In practice, the initial state of the excited nanoresonator would be better described by a
displaced thermal state. Provided that the thermal width of this state is small compared with the
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Figure 5. Precision δ(γ t) for measurements of the X+ and Y+ quadratures as a
function of mean phonon number n in the initial coherent state, for the choices
γ = 10−4 s−1, β = 0, t = 10−3 s and 0a = 0b = 0. Plots for three values of the
damping constant 0 are shown for each quadrature. These plots correspond to the
regime nγ t < 1. From the log–log plots, we see that δX+ ∝ n−5/2 and δY + ∝ n−3/2.
The extra n−1 factor for measurement of the X+ quadrature is due to the precision
improving as one moves away from the very poor sensitivity near the central
fringe boundary.

amplitude of the displacement, a condition that would be well satisfied by an excitation at the
level we are considering, the primary effect of an initial thermal distribution would be simply
to increase the output quadrature variances, leading to a reduction in sensitivity, but not to
change in the scaling behavior. In the strong damping regime, contact with a finite temperature
bath would result in thermal rather than coherent-state variances in the output quadratures,
again leading to a reduction in sensitivity, but not to a change in the scaling with n. Note
that the quantum optics master equation for the nonlinearities we consider and with a finite
temperature bath has been solved analytically using the Q representation [28]. We conclude
that the measurement scheme we describe is reasonably robust to increases in temperature. A
more severe difficulty lies in performing quantum-limited homodyne detection of the output
quadratures, though it is conceivable that such measurements could be performed using coupled
microwave cavities [29].

5. Conclusions

We have calculated the precision with which the nonlinearity of a nanomechanical resonator
can be estimated, using a nanomechanical analogue of a nonlinear interferometer. For an input
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coherent state, the precision scales as 1/n3/2, a scaling beyond that achievable with a linear
coupling even when entangled input states are employed. This scaling behavior is maintained
in the presence of dissipation, which we modeled using a quantum optics master equation,
and it is expected that this scheme is reasonably robust to increases in temperature. Quantum-
limited homodyne detection of the nanoresonator quadratures is, however, a very challenging
experimental task.

An alternative scheme would use a single nonlinear nanomechanical resonator coupled
to the field in a superconducting microwave cavity, which would act as the second ‘arm’
of an interferometer. The nonlinearity would then only be in the mechanical arm of the
interferometer. The initial state would be excited by driving the cavity, and readout would
be performed by quantum-limited homodyne detection of the cavity output. A beamsplitter-
like interaction between the cavity and nanoresonator could be realized by driving the cavity
on its red sideband [30]. This beamsplitter coupling would be continuous, so the analytical
results obtained here are not directly applicable. Investigating the achievable sensitivity of this
cavity–nanoresonator scheme is the subject of ongoing work.
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