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Abstract. Solution of the Dirac equation predicts that when an electron
with nonzero orbital angular momentum (OAM) propagates in a cylindrically
symmetric potential, its spin and orbital degrees of freedom interact, causing
the electron’s phase velocity to depend on whether its spin angular momentum
(SAM) and OAM vectors are oriented parallel or anti-parallel with respect to
each other. This spin–orbit splitting of the electronic dispersion curves can result
in a rotation of the electron’s spatial state in a manner controlled by the electron’s
own spin z-component value. These effects persist at non-relativistic velocities.
To clarify the physical origin of this effect, we compare solutions of the Dirac
equation to perturbative predictions of the Schrödinger–Pauli equation with a
spin–orbit term, using the standard Foldy–Wouthuysen Hamiltonian. This clearly
shows that the origin of the effect is the familiar relativistic spin–orbit interaction.
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1. Introduction

The physical consequences of the spin–orbit interaction (SOI) for an electron in a spherically
symmetric central potential are well known: the corrections to the bound-state eigen-energies
depend on the projection of the electron’s spin angular momentum (SAM) onto its orbital
angular momentum (OAM), Ŝ · L̂ [1]. This energy splitting contributes to the famous fine
structure of the energy states in the hydrogen atom. One can calculate it using either the
exact solution of the Dirac equation [2, 3], which includes SOI implicitly, or by perturbation
theory using the Pauli–Schrödinger equation, after explicitly adding a spin–orbit term in the
Hamiltonian [4] proportional to Ŝ · L̂. For an electron traveling within a cylindrically symmetric
potential of infinite length, the energy states are continuous rather than discrete. However, there
do exist transversely bound states, and one might still expect the SOI to alter the properties of
these states in some way. Surprisingly, this simple and analytically solvable problem does not
seem to have been considered previously in the literature.

In this paper, we solve the problem of an electron traveling down a cylindrically symmetric
step potential that is translationally invariant in the z-direction (see figure 1). We derive the
wavefunctions and dispersion relations connecting the electron’s energy and momentum. We
find in the cylindrical case that the energy corrections to the transversely bound states are
proportional to the product σm`, where σ and m` are quantum numbers corresponding to the
z-components of the electron’s spin vector Ŝ and OAM vector L̂, respectively. This stands in
contrast to the case of a central potential, where spherical symmetry dictates the dependence of
the energy splittings upon quantum numbers j , ` and s only, where j , ` and s correspond to
the electron’s total angular momentum, OAM and SAM, respectively. Similarly to the spherical
case, however, the cylindrical SOI arises only in the presence of an inhomogeneous potential;
this interaction is absent for an electron in free space, even when considering axially localized
beam-like states.

The relationship between the electron’s energy and longitudinal propagation constant is
given by the dispersion curves for the distinct transverse states. We calculate the splitting
of the dispersion curves induced by the SOI via two methods, paralleling the two standard
approaches to the spherically symmetric case discussed above. First, we employ first-order
perturbation theory on the Pauli–Schrödinger equation after explicitly adding to the Hamiltonian
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Figure 1. Two concentric cylindrical surfaces with nearly equal radii a and
a + δa. The inner (outer) cylinder is positively (negatively) charged, thereby
giving rise to an approximately constant electric field pointing radially outward
between the cylinders, as expressed in equation (1). The electric field is
zero elsewhere.

the appropriate spin–orbit term. In contrast to the former spherical case, we find that the added
term is proportional to the product of the z-components of the spin and OAM operators, Ŝz L̂ z . In
the second approach, we find nonperturbative solutions of the Dirac equation for the cylindrical
geometry. The two results for the SOI splitting are found to agree in the appropriate limit, thus
confirming the validity of the Hamiltonian used for the perturbative theory.

The splitting of the dispersion curves has the following meaning, apparently found here
for the first time: for a given electron energy, the phase velocity of the electron depends on
whether the quantum number σ has equal or opposite sign as the quantum number m`. That is,
they depend on whether Ŝz points parallel or anti-parallel in relation to L̂ z. This coupling of
σ and m` has an interesting consequence: it implies that there exist stable electronic states whose
transverse spatial wavefunctions rotate as they propagate down the cylinder, with the direction
of rotation depending on the sign of σ (see figure 4). One can therefore in principle exploit this
interaction to achieve spin-controlled manipulation of the spatial electron wavefunction.

This spin-dependent rotational effect occurs in two distinct contexts (see figure 3): when
the electron wavefunction is a superposition of degenerate energy eigenstates with the same
value of σ but opposite values of m`, the rotation occurs as a function of z. Complementarily,
when the electron is a superposition of degenerate eigenstates of the z-component of linear
momentum, while still having the same σ and opposite m`, the rotation occurs as a function
of time. The possibility of this latter type of rotation for photons was predicted in [5]. Both of
these effects are the result of a varying relative phase between the propagating parallel and anti-
parallel eigenstates, which in turn originates from the SOI-induced corrections to the dispersion
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mentioned above. Although these phenomena arise from relativistic dynamics, they persist even
for nonrelativistic velocities.

We are not aware of electron experiments to date that are sensitive to the predicted
SOI effects in cylindrical geometry. Semiconductor waveguides used for studying ballistic
transport of low-temperature electrons are typically rectangular in cross section, so OAM is
not conserved. Electrons in linear accelerator beams do not typically have transverse coherence
areas as large as the beam area, so coherent quantum effects would not be observed. In fact, the
present calculation was motivated by considering the analogous problem of a single photon
traveling in a cylindrical optical fiber, where analogous effects have been predicted [6, 7].
Although in this work we consider in detail only the simple case of a step potential, we expect
the aforementioned SOI splitting effects to persist in any inhomogeneous cylindrical potential
that is translationally invariant in the z-direction. However, if the requirement of translation
invariance is dropped, we expect the SOI to manifest itself in a more complicated way, in
analogy with predictions of SOI for photons in a cylindrical Bragg cavity [8]. In a future paper,
we will elucidate the electron–photon SOI analogy in detail.

In section 2 of this work, we derive the SOI Hamiltonian using a heuristic classical
model of a charged particle with a magnetic moment propagating in a cylindrical waveguide.
In section 3, we quantize this Hamiltonian and employ perturbation theory, thereby
deriving the aforementioned energy and propagation constant splitting, as well as the spin-
controlled spatial rotation effect on the wavefunctions. After starting from the quasi-relativistic
Foldy–Wouthuysen representation of the Dirac equation, we arrive in section 4 at the same SOI
Hamiltonian obtained in the heuristic model. We also give more explicit expressions for the first-
order energy and propagation constant corrections and corresponding rotation rate. We provide
in section 5 the most rigorous perspective on the SOI by obtaining relativistic wavefunctions
directly from the Dirac equation with a step potential, thereby showing the equivalence of our
results in the Dirac, Foldy–Wouthuysen, and heuristic pictures in the appropriate limits. We
conclude this work in section 6 with a comparison of the physical origins of the SOI for electrons
with the analogous case of a photon propagating in a step-index optical fiber.

2. Spin–orbit Hamiltonian

Consider a cylindrically symmetric potential which can be modeled by two concentric
cylindrical surfaces with nearly equal radii a and a + δa (see figure 1). The inner cylinder
is uniformly positively charged (as observed in the laboratory frame), and the outer cylinder
is uniformly negatively charged, in such a way that overall the waveguide is neutral. The
electric field is zero inside the inner cylinder and outside the outer cylinder, but is nonzero
(and approximately constant) in the region between the cylinders, such that

E = E0
a

ρ
2 (ρ) ρ̂ ≈ E02(ρ) ρ̂, (1)

where 2(ρ)≡ θ(ρ− a)− θ(ρ− (a + δa)) with θ being the Heaviside step function and
ρ the radial distance in cylindrical coordinates, and where ρ̂ is the radial unit vector. The
approximation on the right-hand side of (1) is valid in the regime where δa � a. The magnetic
field is zero everywhere in the laboratory frame.

We are interested in the case of an electron traveling down the cylinder with magnetic
moment Eµ and nonzero OAM z-component L z = ρpφ with respect to the cylinder axis.
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We also assume that the electron is moving paraxially with respect to the cylinder axis such that
|pT| � |pz|, where pz ≡ pz ẑ and pT ≡ pρρ̂ + pφφ̂ are the electron’s longitudinal and transverse
momenta in cylindrical coordinates, respectively. We will show that when such an electron
is present in the region with nonzero electric field, the electronic motion gives rise to a SOI
between its magnetic moment z-component µz and OAM L z.

The standard theory of SOI is summarized in [9]. The magnetic field in the (primed) rest
frame of the electron is

B′
= −γ

v
c

× E ≈ −
v
c

× E, (2)

where v is the electron velocity in the laboratory frame, and the Lorentz factor γ ≈ 1 for
sufficiently low v, which we will assume throughout this section. Also in (2), we have employed
Gaussian units, following [9]. The presence of the electron’s magnetic moment Eµ in such a
field gives rise to a magnetic dipole interaction energy H ′

= −Eµ · B′. After accounting for the
relativistic Thomas precession effect2, which effectively contributes a factor of 1/2, this energy
becomes

H ′
=

1

2
Eµ ·

(v
c

× E
)

= −
1

2mc
Eµ ·

(
E ×

(
pz ẑ + pT

) )
, (3)

where p = pz ẑ + pT is the electron momentum in the laboratory frame. The SOI Hamiltonian
therefore contains two parts in our present case with respective forms Eµ · (E × pz ẑ) and
Eµ · (E × pT). As the former term depends on the longitudinal momentum pz only, and therefore
does not involve the electron’s transverse OAM, we henceforth disregard it as a candidate for
SOI. Upon employing (1), however, it is evident that the latter term involves a magnetic field
vector proportional to E × pT = E0 pφ2(ρ)ẑ, which points either parallel or anti-parallel with
the z-axis according to the sign of pφ =

1
ρ

L z (see figure 2). From (3), this results in a SOI energy
contribution of

HSOI ≈ −
1

2mc

E0

a
µz L z2(ρ) , (4)

where ρ ≈ a has been used. From (4) we see that when the electron is in the region a 6 ρ 6
a + δa, it experiences a SOI energy shift proportional to the product of µz and L z. In other
words, the sign of the spin–orbit energy shift depends upon whether µz and L z are pointing
parallel or anti-parallel to each other.

3. Propagation constant splitting and spin-controlled rotation

We quantize (4) by letting µz → −
e

mc Ŝz = −
eh̄

2mc σ̂z and L z →
h̄
i
∂

∂φ
(σ̂z is the Pauli matrix), so

that the quantized Hamiltonian is

Ĥ SOI =
e

2m2c2

E0

a
Ŝz L̂ z2(ρ)

=
e

2m2c2

E0

a

(
h̄

2

)( h̄
i
∂

∂φ
0

0 −
h̄
i
∂

∂φ

)
2(ρ) , (5)

where e = |e| is the elementary charge.

2 See pp 276–8 of [9].
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Figure 2. The magnetic field contribution due to an electron propagating
paraxially between the cylinders of the waveguide with nonzero pφ, as
experienced in the electron’s rest frame. As discussed in the main text of the
paper, we ignore the contribution due to pz (represented by the dotted arrow in
the figure), so that the field shown in the figure is that due only to the transverse
component of momentum pT (represented by the bold arrow in the figure). This
effective magnetic field points in the negative z-direction for anti-clockwise pφ
(as shown above), and in the positive z-direction for clockwise pφ .

The Hamiltonian in (5) is analogous to that which arises from an electron orbiting around
a proton in a hydrogen atom—the canonical example for SOI. In that case, the electric field can
be written as E =

1
r E

Coulomb
0 r, where ECoulomb

0 =
e
r2 is the Coulomb field due to the proton, so that

the Hamiltonian in (3) gives rise to the well-known atomic spin–orbit coupling Hamiltonian for
a Coulomb potential:

Ĥ Coulomb =
e

2m2c2

ECoulomb
0

r
Ŝ · L̂. (6)

Though the Hamiltonians in (5) and (6) have similar forms and in both cases the SOI arises
from the same Hamiltonian (3), the difference between the spherical and cylindrical geometries
has significant physical consequences. In particular, for the cylinder case the spin and orbital
quantum angular momentum operators corresponding to the quantities µz and L z commute with
the Hamiltonian, whereas for the atomic interaction this is not the case, so that one must use the
total angular momentum operator Ĵ 2 and the z-component of total angular momentum Ĵ z in the
place of these. Therefore, while the total angular momentum quantum numbers j and m j are
good quantum numbers for the hydrogen atom, the spin and OAM quantum numbers σ and m`

are not. Conversely, σ , m` and m j are all good quantum numbers for the cylinder case (though
j is not, due to the breaking of the spherical symmetry), so that states with well-defined σ and
m` are energy eigenstates. We will make implicit use of this fact shortly.
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We treat (5) as a perturbation of the standard Schrödinger Hamiltonian Ĥ 0 =
p̂2

2m −

eV (ρ), where V (ρ) > 0. Our present task is therefore to find the unperturbed Schrödinger
wavefunctions. Assuming the traveling wave form ψ ∝ ei(β0z−(E0/h̄)t) for the unperturbed
eigenstates, in cylindrical coordinates the unperturbed equation of motion Ĥ 0ψ = E0ψ takes
the form

∇
2
Tψ + κ2

0ψ = 0, (7)

where ∇
2
T is the transverse Laplacian ∇

2
−

∂2

∂z2 , and the transverse wavenumber is

κ2
0 ≡

2m

h̄2 (E0 + eV (ρ))−β2
0 . (8)

For a constant electric potential V (ρ)= V0 inside the cylinder, this is Bessel’s equation, with
solutions

|ψ0〉 = N J|m`|
(κ0ρ) eim`φ

(
δσ+

δσ−

)
ei(β0z−(E0/h̄)t), (9)

where we have constrained the wavefunctions to be finite at the origin. In (9), N is a
normalization constant, the radial function J|m`|

(κ0ρ) is a Bessel function of the first kind

of order |m`| = 0, 1, 2, . . . , and
(
δσ+

δσ−

)
is a two component spinor composed of Kronecker

delta functions such that δσ+ = 1 if σ = +1 and δσ+ = 0, if σ = −1, etc. In expressing
these wavefunctions, we have chosen the following complete set of commuting operators,
{Ĥ , p̂z, L̂ z, Ŝz}, which have the following respective eigenvalues, {E0, h̄β0, h̄m`,

h̄
2σ }. We will

henceforth designate the states in (9) by |ψ0〉 ≡ |m`, σ 〉.
From (5) and (9), we conclude that the first-order correction to the energy of an unperturbed

state, δE = 〈m`, σ |Ĥ SOI|m`, σ 〉, is proportional to product σm` provided that the wavefunction
is nonzero in the region a 6 ρ 6 a + δa. This is indeed always the case for the transverse bound
electronic states in (9) (we will show this in section 4 when we apply the appropriate boundary
conditions). Explicitly, the first-order energy shift in this heuristic model is

δEσm`
= σm`

E0eh̄2

4m2c2

{
2πN 2 1

a

∫ a+δa

a
ρ dρ J 2

|m`|
(κ0ρ)

}

≈ σm`

E0eπ h̄2δa

2m2c2
N 2 J 2

|m`|
(κ0a) . (10)

Therefore, if the electron’s SAM points parallel to its OAM, then the energy will shift upward,
whereas for the anti-parallel case the shift will be downward.

As introduced previously, two physical consequences of (10) are the splitting of the phase
velocity (and therefore also the propagation constant β0) of electron cylinder wavefunctions with
different values of σm`, and the related spin-controlled spatial rotation of these wavefunctions.
In order to better understand these effects, we note that due to the electron’s wavelike properties,
we can think of (8) as a dispersion relation defining β(E)= β(h̄ω):

β (h̄ω)=

√
2m

h̄2 (h̄ω + eV0)− κ2. (11)

Later, in section 5, we show that the Dirac boundary conditions imply in general that the value
for an electron’s transverse wavenumber κ differs slightly according to whether σm` is positive
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Figure 3. The splitting of the parallel and anti-parallel states involving |m`| = 1.
This plot is a blown-up version of the inlaid box in figure 4, which plots the
dispersion curves for all allowed states |m`, σ 〉 with R = 6 and e1V = 0.02mc2

(for definitions of R and 1V , see equations (27) and (20), respectively). The
dashed curve is a plot of the unperturbed dispersion relation. The inlaid picture
is a plot of the resulting transverse spatial probability density distribution when
the parallel and anti-parallel states with |m`| = 1 are superposed. For a fixed β,
the azimuthal lobes of this distribution rotate as a function of time, whereas for
fixed energy they rotate as a function of distance down the cylinder as shown
in equation (17). In both cases the direction of rotation is dependent upon the
spin of the superposition mode. For further discussion and the interpretation
of the intersecting vertical and horizontal lines and arrows, see the main text of
the paper.

or negative (that is, whether Sz and L z are parallel or anti-parallel). We thus employ positive and
negative sign superscripts to denote these two cases, so that κ → κ+ or κ → κ− depending on
whether the SAM and OAM are parallel or anti-parallel, etc. Therefore, we conclude from (11)
that a parallel and anti-parallel state with the same value for β will have slightly differing
frequency (energy) values ω+ and ω−, respectively. This is the energy splitting which we have
calculated in (10). However, we can also use (11) to argue the converse—that parallel and anti-
parallel states with the same frequency (energy) value ω will have slightly differing values for
their propagation constants β+ and β−, respectively.

For a visualization of this point, refer to figure 3, which gives a plot of the dispersion
relations β(E) for the states with σm` = +1 and σm` = −1, thereby explicitly showing the
splitting of the curves (the dotted curve is a plot of the unperturbed dispersion relation). These
parallel and anti-parallel states have different energies E‖ (E+) and E 6‖ (E−) for a fixed value
for the propagation constant β0, as shown by the solid vertical and horizontal lines in the
figure. Conversely, the two states have different β values β‖ (β+) and β 6‖ (β−) for a fixed
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value of the energy E0, as shown by the dotted vertical and horizontal lines. The horizontal
and vertical arrows, respectively, show the directions (signs) of the energy and propagation
constant shifts δE and δβ for a parallel state (for an anti-parallel state, the signs of both δE and
δβ are switched). The inlaid picture shows the resultant transverse spatial probability density
distribution when the parallel (see equation (14)) and anti-parallel (see equation (15)) states
with |m`| = 1 are superposed, as given by equation (17).

In order to calculate the propagation constant shift δβ to first order in terms of the energy
shift δE = h̄δω which we have already found, we expand the propagation constant β(h̄ω)
to first order in h̄ω about the unperturbed energy value h̄ω0, thus approximating β(h̄ω)≈

β(h̄ω0)± |δβ|. In this way, the absolute value |δβ| can be written as

|δβσm`
| =

∣∣∣∣ ∂βh̄∂ω

∣∣
ω=ω0 h̄ (ω−ω0)

∣∣∣∣= 1

h̄vz (ω0)
|δEσm`

|, (12)

where δEσm`
is the first-order energy shift, and vz(ω0) is the (positive) z-component of the group

velocity of the matter wave, which is interpreted as the velocity of the electron as it travels down
the cylinder. In order to determine the relative sign of δβσm`

and δEσm`
, refer to figure 3. From

the figure it is evident that for the dispersion curve of the parallel state, the energy shift δEσm`

is positive, whereas the propagation constant shift δβσm`
is negative, as shown by the horizontal

and vertical arrows. Conversely, for the dispersion curve of the anti-parallel state, δEσm`
is

negative, whereas δβσm`
is positive. We therefore conclude that

δβσm`
= −

1

h̄vz (ω0)
δEσm`

. (13)

This splitting in the propagation constants between electrons with parallel and anti-parallel
SAM and OAM has a remarkable consequence: if one superposes a parallel and an anti-parallel
state with the same value for σ and the same absolute value for m`, then the OAM of the
parallel state will be σ |m`|, whereas the OAM of the anti-parallel state will be −σ |m`|. In the
quasi-paraxial regime the resulting superposition wavefunction will then possess an azimuthal
pattern that rotates as the particle propagates in the step potential, with the sense of the rotation
depending on the spin σ . This spin-controlled rotation effect is a direct result of the varying
relative phase between the parallel and anti-parallel states as they propagate down the cylindrical
potential, which is in turn caused by the difference in the propagation constants of these states.

More concretely, from (9), a parallel state has the approximate form3∣∣ψ‖

〉
= N J|m`|

(κ0ρ)

(
δσ+

δσ−

)
ei(σ |m`|φ+β+z)e−i(E0/h̄)t , (14)

inside the cylinder, whereas an anti-parallel state is∣∣ψ6‖

〉
= N J|m`|

(κ0ρ)

(
δσ+

δσ−

)
e−i(σ |m`|φ−β−z)e−i(E0/h̄)t . (15)

The equal superposition of these two states, which we denote as |ψσ 〉, is therefore equal to

|ψσ 〉 = N J|m`|
(κ0ρ)

(
δσ+

δσ−

)(
ei(σ |m`|φ+β+z) + e−i(σ |m`|φ−β−z)

)
e−i(E0/h̄)t . (16)

3 Strictly speaking, the wavenumbers κ+ and κ− of the parallel and anti-parallel states are not equal to each other
or to κ0 as given in (14) and (15). However, the approximation κ+

≈ κ−
≈ κ0 is indeed justified as we show near

the end of section 5 via solution of the Dirac equation.
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MeV

Figure 4. Dispersion curves for each of the allowed transversely bound electronic
states |m`, σ 〉 for R = 6 and eV = 0.02mc2. Note the splittings of the parallel and
anti-parallel curves for states with |m`| 6= 0, which have been exaggerated by a
factor of 50 with respect to their actual values for purposes of visualization. The
inlaid pictures are electronic transverse spatial probability density distributions
associated with various values of |m`|, as discussed in the main text below.
The varying azimuthal lobe structure of each of the plotted superposition states
undergoes clockwise or counter-clockwise spin-controlled rotation as shown in
equation (17). A blown up plot of the small inlaid box which intersects the curves
with |m`| = 1 is presented as figure 3.

Note however that (ei(σ |m`|φ+β+z) + e−i(σ |m`|φ−β−z)) can be written as cos(|m`|φ + σ1βz) eiβ̄z,
where 1β ≡

1
2(β

+
−β−) and β̄ ≡

1
2(β

+ +β−) thereby leading us to our final result,

|ψσ 〉 = N J|m`|
(κ0ρ) cos (|m`|φ + σ1βz)

(
δσ+

δσ−

)
ei(β̄z−(E0/h̄)t). (17)

Equation (17) is a major result of this paper; for a cylindrical step potential it predicts the
existence of Schrödinger wavefunctions with an azimuthal lobe structure that rotate clockwise
or counterclockwise about the cylinder axis as the particle propagates, with the sense of the
rotation depending on the spin σ . Furthermore, the rotation rate 1β of the wavefunction has
already been given implicitly via (10) and (13), and will be calculated explicitly using two
different approaches in sections 4 and 5.

Dispersion curves associated with the parallel and anti-parallel states in equations (14)
and (15) are plotted in figure 4 for several values of m`. The inlaid pictures associated with
each value of |m`| are plots of electronic transverse spatial probability density distributions.
The distributions labeled by |m`| = 0 are obtained via equation (9), whereas those labeled
by |m`| = 1, 2 and 3 are the rotating superposition states as given by (17), which result from
superposing the parallel and anti-parallel states with equal |m`| from equations (14) and (15).
For a superposition state of a given energy, the spatial rotation rate 1β is just half the
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splitting between its associated parallel and anti-parallel dispersion curves. The method used for
calculating the curves is derived presently in section 4: for a given value of |m`| we solve (26)
and (27) for κ0 and then substitute the result into equation (11). For the values chosen for
the figure, there are two allowed solutions for |m`| = 0, giving rise to two distinct |m`| = 0
dispersion curves and therefore also two distinct probability densities. For |m`| = 1, 2 and 3,
the dispersion curve splitting gives rise to stable superposition states as shown.

4. Spin–orbit splitting: explicit calculation

In order to obtain explicit results for the SOI energy and propagation constant shifts, it is
instructive to approach the problem from the more rigorous viewpoint of the Foldy–Wouthuysen
representation [3], wherein the Dirac Hamiltonian has the general property that the positive
energy solutions are decoupled from the negative energy solutions so that we can describe
the electron via a two-component spinor. In the presence of an arbitrary electrostatic field in
the laboratory frame (the magnetic field is zero), to order ( vc )

4, the Dirac Hamiltonian in the
Foldy–Wouthuysen representation takes the form [3]

Ĥ8 =
1

2m
p̂2

− eV (r)+
{
−

1

8m3c6
p̂4 +

ieh̄

4m2c2
Ŝ · (∇ × E)+

e

2m2c2
Ŝ ·
(
E × p̂

)
+

eh̄2

8m2c2
∇ · E

}
,

(18)

where Ŝ is the spin vector operator of 2 × 2 Pauli matrices, the rest mass term has been dropped,
and Gaussian units have again been employed. Our first goal is to argue that the contribution of
the terms in curly brackets to the SOI has the form of the heuristically derived equation (5). Note
that the first term in curly brackets arises from the relativistic mass increase, and is independent
of the form of the electric field E. In the canonical case of a Coulomb field, the next two terms
(which are only Hermitian when taken together) give rise to the atomic SOI, whereas the last
term becomes the well-known Darwin term. In light of this, we expect only the two middle
terms to contribute to the SOI in the cylindrical case, and we henceforth drop the first and
fourth terms. In section 5, we show that this is indeed justified by comparing the results of this
section to those obtained directly from the Dirac equation.

For electrostatic fields with zero curl the second term in the curly brackets also vanishes,
so that after dropping the aforementioned terms there remains only the term e

2m2c2 Ŝ · (E × p̂).
Furthermore, since E = −∇V , for a translationally invariant cylindrically symmetric potential
V (ρ) this term becomes

−
e

2m2c2

(
1

ρ

∂V (ρ)

∂ρ

)
Ŝ ·
(
Eρ× p̂

)
, (19)

(for a spherically symmetric atomic potential, this spin–orbit term has the same form, but with
the replacement ρ → r ) [9]. From (19) it is clear from the derivative that the SOI depends on the
inhomogeneity of the potential and therefore does not occur in free space, thereby confirming
the corresponding statements made in the introduction.

We now introduce the cylindrical step potential

V (ρ)= V0 −1V θ (ρ− a) , (20)

where V0 > 0 and 1V > 0. Substituting (20) into (19), and noting that ∂θ(ρ−a)
∂ρ

= δ(ρ− a)
(where δ(ρ) denotes the Dirac delta function), we find that the Hamiltonian in (18) takes the
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form (after dropping the aforementioned terms in curly brackets)

Ĥ8 = Ĥ 0 + Ĥ SOI, (21)

where Ĥ 0 =
p̂2

2m − eV (ρ) is the standard Schrödinger Hamiltonian and

Ĥ SOI =
e

2m2c2

1V

ρ
δ (ρ− a) Ŝ ·

(
Eρ× p̂

)
(22)

is the perturbative SOI Hamiltonian. Furthermore, note that Ŝ · (Eρ× p̂) in Ĥ SOI can be expressed
as Ŝz L̂ z + (yŜx − x Ŝy) p̂z. Since the unperturbed eigenstates |m`, σ 〉 of Ĥ 0 have already been
given via (8) and (9), we focus on the expectation of Ĥ SOI as expressed in the unperturbed state
basis, which is thereby proportional to the following two terms:

〈HSOI〉 ∝

〈
m ′

`, σ
′

∣∣∣Ŝz L̂ z

∣∣∣m`, σ
〉

+
〈
m ′

`, σ
′

∣∣∣(yŜx − x Ŝy

)
p̂z

∣∣∣m`, σ
〉
. (23)

However, since 〈m ′

`, σ
′
|(yŜx − x Ŝy) p̂z|m`, σ 〉 always vanishes, we conclude that for the

purpose of first-order perturbation theory we can write

HSOI =
e

2m2c2

1V

ρ
δ (ρ− a) Ŝz L̂ z. (24)

Note that this is equivalent to our dropping of the term proportional to Eµ · (E × pz ẑ) in (3). The
operator ĤSOI in (24) is diagonal in the unperturbed basis, so we can readily calculate the energy
shifts of the unperturbed eigenstates,

δEσm`
= σm`

π h̄2e1V

2m2c2
N 2 J 2

|m`|
(κ0a) , (25)

which agrees with the heuristically derived equation (10), since 1V ≈ E0δa.
Though we have managed to obtain the general form of the energy shifts without

considering the boundary conditions, we must do so now in order to obtain explicit numerical
results. We have already required that the wavefunctions be finite at the origin, resulting in (9),
which is valid inside the cylinder. In addition to this, we furthermore constrain |ψ0〉 to be zero
at infinity, with both |ψ0〉 and its derivative continuous at the boundary (where ρ = a). For
the region outside the cylinder, the former condition results in the modification of (9) via the
replacement J|m`|

(κ0ρ)→ K|m`|
(κ̃0ρ), where K|m`|

(κ̃0ρ) is a modified Bessel function of the
second kind of order |m`| (κ0 and κ̃0 denote the values of the transverse wavenumber inside
and outside the boundary, respectively, as defined through (8)). After employing the well-
known cylinder function recursion relations [10], the latter two conditions thereby lead to the
characteristic equation

κ0a
J|m`|+1 (κ0a)

J|m`|
(κ0a)

= κ̃0a
K|m`|+1 (κ̃0a)

K|m`|
(κ̃0a)

. (26)

Equation (26) is an equation in the two unknowns κ0 and κ̃0; in order to find a second equation
in these variables, we use (20) to evaluate (8) inside and outside the cylinder and subtract the
results to obtain(

κ̃2
0 − κ2

0

)
a2

= 2
(

2πa

λ

)2 (e1V

mc2

)
≡ R2, (27)

where λ≡ h̄/mc is the electron’s Compton wavelength (h̄ is Planck’s constant). Equations (26)
and (27) can be simultaneously solved for κ0, and the result substituted into (9), which allows
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us to conclude that the wavefunction is indeed nonzero at the boundary as required in section 2.
Finally, from (9), the normalization factor in (25) is found to be

N 2
=

1

πa2

1

J 2
|m`|
(κ0a)

{
K|m`|−1 (κ̃0a) K|m`|+1 (κ̃0a)

K 2
|m`|
(κ̃0a)

−
J|m`|−1 (κ0a) J|m`|+1 (κ0a)

J 2
|m`|
(κ0a)

}−1

. (28)

Therefore, (25) and (13) give the propagation constant corrections as

δβσm`
= −σm`

1

vz

h̄e1V

2m2c2a2

{
K|m`|−1 (κ̃0a) K|m`|+1 (κ̃0a)

K 2
|m`|
(κ̃0a)

−
J|m`|−1 (κ0a) J|m`|+1 (κ0a)

J 2
|m`|
(κ0a)

}−1

, (29)

so that 1β =
1
2(δβ‖ − δβ 6‖)=

1
2(δβ+|m`|

− δβ−|m`|
) can be written as

1β = − |m`|
1

vz

h̄e1V

2m2c2a2

{
K|m`|−1 (κ̃0a) K|m`|+1 (κ̃0a)

K 2
|m`|
(κ̃0a)

−
J|m`|−1 (κ0a) J|m`|+1 (κ0a)

J 2
|m`|
(κ0a)

}−1

. (30)

This is the explicit form for the rotation rate of the electron spatial wavefunction as defined in
equation (17).

5. Dirac equation solutions

A few gaps persist so far in the development of this work. Specifically, in section 3 we relied on
the result that the electron’s transverse wavenumber κ differs slightly according to whether
σm` is positive or negative, whereas in section 4 we assumed that neither the relativistic
mass increase nor the Darwin term contributes to the SOI. Also, we have implicitly assumed
throughout the validity of the paraxial approximation, which is expressed as |pT| � |pz|, or
equivalently as κ � β. In this section, we will demonstrate the validity of each of these
assumptions by deriving the relativistic analogue of equations (17) and (30), obtaining the
bispinorial wavefunctions directly from the Dirac equation. Our derivation involves several
steps. Firstly, we construct the wavefunctions of interest, and boost them to a convenient frame.
Next, we apply appropriate boundary conditions and derive a characteristic equation. Finally, we
approximate this equation to the appropriate order, thereby showing its equivalence to result (30)
in section 4.

The Dirac equation in bispinor form for an electron in a constant electric potential
V (ρ)= V0 > 0 is(

mc2 cEσ · p
cEσ · p −mc2

)(
χ+

χ−

)
= (±E + eV0)

(
χ+

χ−

)
, (31)

where E > 0 is the absolute energy of the particle, and the upper and lower signs correspond to
positive and negative energy solutions, respectively. Free space solutions to the Dirac equation
in cylindrical coordinates have been found [11]. Since the potential V (ρ) is piecewise-constant
for our case of interest, the solutions to (31) will have the same form (before boundary matching)
as the ones in [11]. Following [11], we choose a complete set of commuting operators as
{Ĥ , p̂T, Ĵ z, ĥT}, with corresponding eigenvalues {±E, h̄κ, h̄m j , h̄σT}, where Ĵ z = L̂ z + Ŝz is the
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total angular momentum operator and ĥT = γ5γ3
6·pT

|pT|
is the transverse helicity operator with

6 ≡


1

−1
1

−1


such that its eigenvalues σT = ±1, whereas m j is half an odd integer.

For simplicity (and in order to avoid Klein’s paradox as discussed below), we will focus on
the positive energy solutions to (31), which are of the form

∣∣E, κ,m j ,±1
〉
≡

 χ±

m j

h̄c (β ∓ iκ)
mc2 + E + eV0

χ∓

m j

 ei(βz−(E/h̄)t), (32)

where

χ±

m j
≡

(
Zm j −(1/2) (κρ) ei(m j −(1/2))φ

±Zm j +(1/2) (κρ) ei(m j +(1/2))φ

)
(33)

and Zn(κ0ρ) denotes an arbitrary cylinder function of order n. Equation (31) contains the
relativistic analogue of (8),

(cp)2 = h̄2c2
(
β2 + κ2

)
= (E + eV (ρ))2 − m2c4, (34)

which for a sufficiently small step potential4, can be used to derive a relativistic analogue to (27),

(
κ̃2

− κ2
)

a2
= 2γ

(
2πa

λ

)2 (e1V

mc2

)
≡ R2

γ , (35)

where E = γmc2 (in the laboratory frame) has been used, and γ = (1 −
v2

c2 )
−

1
2 is the Lorentz

transformation factor between the laboratory frame and the electron rest frame.
Consider now the state

|σ 〉 ≡
1
2

(∣∣E, κ,mσ
j ,+1

〉
+ σ

∣∣E, κ,mσ
j ,−1

〉)
, (36)

where mσ
j ≡ (m` + 1

2σ). By (32) and (33) we can write this as

|σ 〉 =



δσ,+ Zm`
(κρ) eim`φ

δσ,−Zm`
(κρ) eim`φ

h̄c
(
βδσ,+ Zm`

(κρ) eim`φ − iκδσ,−Zm`−1 (κρ) ei(m`−1)φ
)

mc2 + E + eV0

h̄c
(
iκδσ,+ Zm`+1 (κρ) ei(m`+1)φ −βδσ,−Zm`

(κρ) eim`φ
)

mc2 + E + eV0


ei(βz− E

h̄ t), (37)

where δσ,± are Kronecker delta functions and σ = ±1 as before. We denote the state in (37)
by |σ 〉 because it becomes an eigenstate of Ŝz =

h̄
26 with eigenvalue h̄

2σ in the paraxial regime
where κ � β. Note also that in the same limit |σ 〉 is also an eigenstate of L̂ z = −ih̄ ∂

∂φ
with

eigenvalue m`.

4 We use a small potential satisfying eV 0 � mc2 in order to avoid the violation of particle number conservation,
called Klein’s paradox. See also the discussion above equation (38).
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It will simplify the analysis considerably to boost to a frame in which the terms involving
β in both of the lower components of (37) become vanishingly small relative to those terms
involving κ . For an electron wave traveling with a sufficiently nonrelativistic group velocity,
such a frame will always exist provided that 1

2mv2
T � eV0 � |

κ

β
|mc2, where the lower bound

ensures the existence of bound states, whereas the upper bound constrains the potential energy
in order to avoid pair creation, which would invalidate the single particle Dirac theory. We
henceforth assume that the above inequality holds and carry out the boost, so that in the new
(barred) frame (37) is approximated as

|σ 〉 = e−σ
αz
2



δσ,+ Zm`
(κρ) eim`φ

δσ,−Zm`
(κρ) eim`φ

−ih̄cκδσ,−Zm`−1 (κρ) ei(m`−1)φ

2mc2 + γzeV0

ih̄cκδσ,+ Zm`+1 (κρ) ei(m`+1)φ

2mc2 + γzeV0


e−i(E/h̄)t , (38)

where γz is the Lorentz transformation factor between the laboratory frame and the barred frame
such that γz ≈ γ since κ � β, and where V̄0 = γzeV0 ≈ eV0 and Ē ≈ mc2 have been used.

We now impose boundary conditions upon |σ̄ 〉 by requiring the wavefunctions to be finite at
the origin, zero at infinity, and continuous across the step potential V (ρ)= V0 −1V2(ρ− a),
similarly to section 4. Note, however, that in the present case we drop the requirement of the
existence of a continuous derivative of the wavefunction at the boundary. The reason for this
stems from the difference in order between the Schrödinger and Dirac equations—the second-
order Schrödinger equation requires two conditions at the boundary (both continuity and a
continuous derivative) in order to determine the wavefunction, whereas the first-order Dirac
equation requires only one. Application of these conditions on the boosted wavefunction (38)
results in the characteristic equation

κ

2mc2 + γzeV0

Jm`+σ (κa)

Jm`
(κa)

=
κ̃

2mc2 + γze (V0 −1V )

Km`+σ (κ̃a)

Km`
(κ̃a)

, (39)

which, since γzeV 0 � mc2, is well approximated by

κ
Jm`+σ (κa)

Jm`
(κa)

− κ̃
Km`+σ (κ̃a)

Km`
(κ̃a)

= γz
e1V

2mc2
κ

Jm`+σ (κa)

Jm`
(κa)

. (40)

In appendix A, we show that equation (40) is equivalent to the following condition:

κ
J|m`|+1 (κa)

J|m`|
(κa)

− κ̃
K|m`|+1 (κ̃a)

K|m`|
(κ̃a)

= σ
m`

|m`|

(
γz

e1V

2mc2

)
κ

J|m`|+σ
m`
|m`|
(κa)

J|m`|
(κa)

. (41)

Again, as in (26), we have arrived at an equation for two unknowns κ and κ̃ , which is solved
together with (35). The solution for κ then yields β via (34).

From (41) we can clearly see that κ (and therefore also β) depends upon the quantity
σ m`

|m`|
, which we assumed in section 3 in order to arrive at the spin-dependent rotation effect

of equation (17). In particular, σ m`

|m`|
= +1 in (41) corresponds to the case of parallel SAM

and OAM (with κ → κ+), whereas σ m`

|m`|
= −1 corresponds to anti-parallel angular momenta

(with κ → κ−). In appendix B, we show that equation (41) gives a prediction for the spatial
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Figure 5. Plot of the Dirac and Foldy–Wouthuysen predictions for the

rotation rate (propagation constant splitting)1β versus R ≡

√
2( 2πa

λ
)2( e1V

mc2 ), for

eV = 0.02mc2.

wavefunction rotation rate δβ that agrees very well with that of equation (30). Therefore, we
conclude that the Hermitian perturbation

ieh̄

4m2c2
Ŝ · (∇ × E)+

e

2m2c2
Ŝ ·
(
E × p̂

)
, (42)

in (18) is indeed the correct choice of Hamiltonian for the cylindrical SOI. For comparison,

plots of the rotation rate 1β as a function of R ≡
2πa
λ

√
2e1V
mc2 as given by both the Dirac and

Foldy–Wouthuysen approaches are shown in figure 5. In both plots we keep eV = 0.02mc2

constant, so that an increase in R corresponds to an increase in the ratio of the cylinder potential
radius to the Compton wavelength a

λ
. While it can be seen from the figure that the plots from

both approaches agree very well with one another, there is a small relative discrepancy which
increases as R becomes small, as higher order relativistic effects come into play. Furthermore,
the predicted decrease in 1β with increasing R is to be expected, as the transverse electron
wavefunctions will tunnel into the step potential with decreasing amplitude as a

λ
increases. The

two predictions also approach each other asymptotically in this regime, as expected.
Having demonstrated the equivalence of the Dirac and Foldy–Wouthuysen approaches with

regard to the cylindrical SOI phenomenon, our final aim is to derive the analogue of (17) in
section 3, showing the spatial rotation of the Dirac bispinors. By an argument similar to that
surrounding equation (17), starting from the (non-boosted) equation (37) we find that in the
paraxial regime κ � β, for ρ < a, a parallel bispinor (that is, σm` = +1) has the form

∣∣ψp

〉
= (±1)|m`|



δσ,+

δσ,−

h̄cβ+

mc2 + E + eV0
δσ,+

−h̄cβ+

mc2 + E + eV0
δσ,−


J|m`|

(
κ+ρ

)
ei(σ |m`|φ+β+z)e−i(E0/h̄)t , (43)
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whereas an anti-parallel bispinor (σm` = −1) is

∣∣ψap

〉
= (±1)|m`|



δσ,+

δσ,−

h̄cβ−

mc2 + E + eV0
δσ,+

−h̄cβ−

mc2 + E + eV0
δσ,−


J|m`|

(
κ−ρ

)
e−i(σ |m`|φ−β−z)e−i(E0/h̄)t . (44)

The key point here is that we are working in the near-paraxial regime, where κ+
≈ κ−

≈

κ̄ ≡
1
2(κ

+ + κ−) and β+
≈ β−

= β̄ ≡
1
2(β

+ +β−). This fact allows us to make the following
approximation: we completely neglect the small differences in transverse wavenumber κ±

and propagation constant β± in the amplitudes of the spinorial components of (43) and (44),
while retaining the propagation constant differences in the phase factors eiβ±z. This is a valid
approximation, since a small varying phase difference between propagating superposition states
can have a large qualitative effect on the evolution of the probability distribution, whereas small
amplitude differences will have only a small effect on this evolution. Under the aforementioned
approximation, the approximate superposition |ψσ 〉 of (43) and (44) can be written as

|ψσ 〉 ≈ (±1)|m`|



δσ,+

δσ,−

h̄cβ̄

mc2 + E + eV0
δσ,+

−h̄cβ̄

mc2 + E + eV0
δσ,−


J|m`|

(κ̄ρ)
[
ei(σ |m`|φ+β+z) + e−i(σ |m`|φ−β−z)

]
e−i(E0/h̄)t . (45)

Recalling from section 3 that (ei(σ |m`|φ+β+z) + e−i(σ |m`|φ−β−z)) can be written as cos(|m`|φ +
σ1βz)eiβ̄z, we present the final form for the quasi-paraxial spin-dependent spatially rotating
Dirac bispinors:

|ψσ 〉 = (±1)|m`|



δσ,+

δσ,−

h̄cβ̄

mc2 + E + eV0
δσ,+

−h̄cβ̄

mc2 + E + eV0
δσ,−


J|m`|

(κ̄ρ) cos (|m`|φ + σ1βz) ei(β̄z−(E/h̄)t). (46)

If we neglect the two lower small components, we find that (46) does indeed approximately
reduce to the two-component Schrödinger spinor in (17), and clearly shows the spatial rotation
effect.

6. Conclusions

We have shown via direct solution of the Dirac equation for a cylindrical step potential that
the SOI Hamiltonian derived heuristically as equation (5) and more rigorously as equation (24)
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correctly predicts a splitting of the dispersion curves of the electronic eigenstates according to
the relative direction of their SAM and OAM. This splitting can cause a propagation constant
(phase velocity) difference between parallel and anti-parallel states, which in turn gives rise to
states that exhibit spin-controlled rotation of their spatial probability distributions. In particular,
we found that for a given energy, a parallel electronic state has a slightly smaller propagation
constant than that of an anti-parallel state. Although we have treated only the simple case of a
step potential in detail, it is clear from (19) that any inhomogeneous cylindrical potential that is
translationally invariant in the z-direction will give rise to a similar SOI.

A similar SOI effect occurring for a photon propagating paraxially in a cylindrically
symmetric step-index optical fiber can also be viewed in the above manner. For the photonic
case, the step index in the dielectric medium plays the role of the step potential, and the
photon helicity plays the role of the electron spin. Stable, spin-controlled, rotating photonic
superposition states with field distributions similar to those shown in figure 4 occur also for
the photon case [7], which arise from a similar splitting of the dispersion curves for parallel
and anti-parallel photons. We note that the photonic spin-controlled rotational effect (called the
optical Magnus effect) was predicted in [7] for a graded-index fiber with a parabolic profile and
also for a step-index profile, however, to our knowledge analytic results for the step-index case
have not been presented in the context of the wave theory of SOI for a photon.

As is well known, the basis of the electronic SOI is the sum of two physical effects:
the interaction of the electron’s magnetic moment with the magnetic field resulting from the
electron’s motion through an inhomogeneous potential, and the Thomas precession resulting
from the electron’s curvilinear path of travel due to this potential. It is interesting, however, that
for the analogous case of a photon propagating in an inhomogeneous medium, the SOI effect
persists although the photon lacks a physical analogue to the electron’s magnetic moment. The
SOI of a particle with arbitrary spin has been discussed in [12], in which the SOI is explained in
terms of non-commutative space-time coordinates which arise from a non-Abelian Berry gauge
connection. In a future paper, we will give the details of the SOI calculation for photons in a
step-index fiber, employing both the ‘perturbative’ and ‘exact’ approaches in parallel with this
present work, in order to further elucidate the electron–photon SOI analogy.
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Appendix A. Equivalent characteristic equation

It will be convenient in what follows to express the Kn(x) functions (modified Bessel functions
of the second kind with purely real arguments) of (40) in terms of Hn(ix) (Hankel functions of
the first kind with purely imaginary arguments). These functions are related by the identity5

Hn (ix)= (−i)n+1 2

π
Kn (x) . (A.1)

5 See [10], p 961, equation 8.407-1
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The reason for this replacement is that the Jn(x) and Hn(ix) obey the same recursion
relations6, whereas the Jn(x) and Kn(x) do not. Using (A.1), we find that equation (40) can
be written as

u
Jm`+σ (u)

Jm`
(u)

− v
Hm`+σ (v)

Hm`
(v)

= εu
Jm`+σ (u)

Jm`
(u)

, (A.2)

where u ≡ κa, v ≡ iκ̃a, ε ≡ γz
e1V
2mc2 , and where we have for later convenience multiplied both

sides by a.
Our next task is to explicitly account for the absolute sign of m` in equation (A.2). We

therefore replace m` → ±|m`| in (A.2), where the upper sign corresponds to case where m` > 0
(positive OAM) in the spinor in (37), whereas the lower sign corresponds to m` < 0 (negative
OAM). Under this replacement, (A.2) becomes

u
J±|m`|+σ (u)

J±|m`|
(u)

− v
H±|m`|+σ (v)

H±|m`|
(v)

= εu
J±|m`|+σ (u)

J±|m`|
(u)

. (A.3)

We can re-express this, however, using the Bessel function relations7 Z−n(x)= (−1)n Zn(x)
(the Z -functions stand for either the Jn(x) or the Hn(x) cylinder functions), so that (A.3)
becomes

u
J|m`|±σ (u)

J|m`|
(u)

− v
H|m`|±σ (v)

H|m`|
(v)

= εu
J|m`|±σ (u)

J|m`|
(u)

. (A.4)

Now, for σ = +1 (A.4) becomes

u
J|m`|±1 (u)

J|m`|
(u)

− v
H|m`|±1 (v)

H|m`|
(v)

= εu
J|m`|±1 (u)

J|m`|
(u)

, (A.5)

which consists of two distinct equations, corresponding to the choice of sign in the expression
|m`| ± 1 appearing in the cylinder function arguments in the numerators. Focusing now on the
case involving |m`| − 1, where the left-hand side of (A.5) is

u
J|m`|−1 (u)

J|m`|
(u)

− v
H|m`|−1 (v)

H|m`|
(v)

, (A.6)

we employ the following Bessel function identity:

u
J|m`|−1 (u)

J|m`|
(u)

− v
H|m`|−1 (v)

H|m`|
(v)

= −u
J|m`|+1 (u)

J|m`|
(u)

− v
H|m`|+1 (v)

H|m`|
(v)

, (A.7)

6 See [10], pp 960–61, 979, equation 8.471-1,2.
7 See [10], p 979, equation 8.472-5.
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which can be proved substituting the fundamental identities8 Zn−1(x)=
2n
x Zn(x)− Zn+1(x)

(again, Z stands for either Jn(x) or Hn(x)) into the left-hand side of (A.7). Using (A.7) in (A.6)
allows us to write the two equations in (A.5) as

u
J|m`|+1 (u)

J|m`|
(u)

− v
H|m`|+1 (v)

H|m`|
(v)

= ±εu
J|m`|±1 (u)

J|m`|
(u)

. (A.8)

We note here that (A.8) is an expression of (A.4) in the case where σ = +1 (note also the new
factor of ±1 on the right-hand side of (A.8)).

We now insert σ = −1 into (A.4), and carry out a simplification analogous to (A.5)–(A.8),
concluding that for σ = −1, (A.4) is equivalent to

u
J|m`|+1 (u)

J|m`|
(u)

− v
H|m`|+1 (v)

H|m`|
(v)

= ∓εu
J|m`|∓1 (u)

J|m`|
(u)

. (A.9)

Comparing (A.8) and (A.9), it is apparent that both equations can be expressed simultaneously
via

u
J|m`|+1 (u)

J|m`|
(u)

− v
H|m`|+1 (v)

H|m`|
(v)

= ±σεu
J|m`|±σ (u)

J|m`|
(u)

. (A.10)

Recalling that the upper and lower signs in (A.10) denote the cases of positive and negative m`,
respectively, we replace the ‘±’ notation on the right-hand side with the equivalent expression
m`

|m`|
. In this way, we arrive at our final form for the characteristic equation,

u
J|m`|+1 (u)

J|m`|
(u)

− v
H|m`|+1 (v)

H|m`|
(v)

= σ
m`

|m`|
εu

J|m`|+σ
m`
|m`|
(u)

J|m`|
(u)

, (A.11)

which, in light of (A.1), is just equation (41) of section 4.

Appendix B. Wavefunction rotation rate

Our aim here is to expand equation (41) in such a way that it gives rise to an equation of the
form (30) for the wavefunction rotation rate 1β, thus showing that the exact solution presented
in section 4 is well approximated by the perturbative approach of section 3. We start therefore
with equation (41), written in the form given in appendix A as equation (A.11),

u
J|m`|+1 (u)

J|m`|
(u)

− v
H|m`|+1 (v)

H|m`|
(v)

= σ
m`

|m`|
εu

J|m`|+σ
m`
|m`|
(u)

J|m`|
(u)

(B.1)

recalling that u → u+
≡ κ+a and v → v+

≡ iκ̃+a or u → u−
≡ κ−a and v → v−

≡ iκ̃−a
depending on whether σ m`

|m`|
= +1 or σ m`

|m`|
= −1, respectively. Since ε ≡ γz

e1V
2mc2 is small,

however, we have from (B.1) that u+
≈ u−. We can exploit this by adding/subtracting

equation (B.1) with σ m`

|m`|
= +1 to/from equation (B.1) with σ m`

|m`|
= −1.

8 See [10], p 979, equation 8.471-1.
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Adding the two cases of this equation gives

u+
=
(
u+
)

+ u−
=
(
u−
)
− v+

ℵ
(
v+
)
− v−

ℵ
(
v−
)

≈ ε

[
u+ J|m`|+1 (u+)

J|m`|
(u+)

− u−
J|m`|−1

(
u−
)

J|m`|
(u−)

]
, (B.2)

where =(x)≡
J|m`|+1(x)

J|m`|(x)
and ℵ(x)≡

H|m`|+1(x)

H|m`|(x)
. We now multiply both sides of (B.2) by a

2 and Taylor

expand =(u±) and
J|m`|±1(u±)

J|m`|(u
±)

about the point ū ≡
1
2(u

+ + u−), to first order in δu, where δu ≡

1
2(u

+
− u−) so that u±

= ū ± δu; we also Taylor expand ℵ(v) about the point v̄ ≡
1
2(v

+ + v−), to
first order in δv, where δv ≡

1
2(v

+
− v−) so that v±

= v̄± δv. These substitutions result in the
following equation:

ū= (ū)− v̄ℵ (v̄)+
{
(δu)2 =

′ (ū)− (δv)2 ℵ
′ (v̄)

}
≈ εū

J|m`|+1 (ū)− J|m`|−1 (ū)

J|m`|
(ū)

+εδu
{

J|m`|+1 (ū)+ J|m`|−1 (ū)

J|m`|
(ū)

+ ū

(
J ′

|m`|+1 (ū)+ J ′

|m`|−1 (ū)
)

J|m`|
(ū)−

(
J|m`|+1 (ū)+ J|m`|−1 (ū)

)
2J 2

|m`|
(ū)

}
,

(B.3)

where the primes denote derivatives with respect to functional arguments. In (B.3), the term in
curly brackets on the left-hand side is negligible because it is second order in (δu)2 and (δv)2,
whereas the term in curly brackets on the right-hand side is negligible because both ε and δu
are small quantities. Thus, to first order we have

ū= (ū)− v̄ℵ (v̄)= εū
J|m`|+1 (ū)− J|m`|−1 (ū)

J|m`|
(ū)

(B.4)

and since (35) implies that

v̄ = i
√

R2
γ − ū2 (B.5)

we have in (B.4) and (B.5) two equations in the two unknown variables ū and v̄ . Therefore,
upon substituting for v̄ via (B.5), (B.4) can be solved for ū numerically.

We now subtract the equations (B.1), and find

u+
=
(
u+
)
− u−

=
(
u−
)
−
(
v+

ℵ
(
v+
)
− v−

ℵ
(
v−
))

= ε

[
u+ J|m`|+1 (u+)

J|m`|
(u+)

+ u−
J|m`|−1

(
u−
)

J|m`|
(u−)

]
. (B.6)

Multiplying (B.6) by a
2 as before, again Taylor expanding to first order in δu and δv about ū and

v̄, and neglecting quantities of order (δu)2 and εδu, we arrive at

δu= (ū)+ ū=
′ (ū) δu −

(
δvℵ (v̄)+ v̄ℵ′ (v̄) δv

)
≈
ε

2

(
ū

J|m`|+1 (ū)+ J|m`|−1 (ū)

J|m`|
(ū)

)
. (B.7)

Now, using (35) to expand v to first order, we find that

v ≈

√
ū2 − R2

γ ±
ūδu√

ū2 − R2
γ

= v̄± δv (B.8)
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so that

δv =
ūδu√

ū2 − R2
γ

=
ū

v̄
δu, (B.9)

which can be used in (B.7) to yield

δu
1

ū
= (ū)+ =

′ (ū)−
1

v̄
ℵ (v̄)+ ℵ

′ (v̄)≈
ε

2

(
J|m`|+1 (ū)+ J|m`|−1 (ū)

J|m`|
(ū)

)
. (B.10)

To simplify the term on the left-hand side, we substitute =(x)≡
J|m`|+1(x)

J|m`|(x)
and ℵ(x)≡

H|m`|+1(x)

H|m`|(x)
, while again using (A.1) and (B.5) along with the cylinder function relations9 Z ′

n(x)=

Zn−1(x)− n
x Zn+1(x) and Z ′

n+1(x)= Zn(x)− n+1
x Zn+1(x) (Z stands for either Jn(x) or Hn(x)), in

order to obtain

1

ū
= (ū)+ =

′ (ū)−
1

v̄
ℵ (v̄)+ ℵ

′ (v̄)=
K|m`|−1 (−iv̄) K|m`|+1 (−iv̄)

K 2
|m`|
(−iv̄)

−
J|m`|−1 (ū) J|m`|+1 (ū)

J 2
|m`|
(ū)

. (B.11)

For the term on the right-hand side of (B.10), we use (see footnote 8) 2n
x Jn(x)= Jn+1(x)+

Jn−1(x) so that

ε

2

(
J|m`|+1 (ū)+ J|m`|−1 (ū)

J|m`|
(ū)

)
≈ ε

|m`|

ū
. (B.12)

Substituting the results (B.11) and (B.12) in (B.10) and solving for ūδu then gives

ūδu ≈ ε |m`|

[
K|m`|−1 (−iv̄) K|m`|+1 (−iv̄)

K 2
|m`|
(−iv̄)

−
J|m`|−1 (ū) J|m`|+1 (ū)

J 2
|m`|
(ū)

]−1

. (B.13)

δu can thereby be found by substitution of ū and v̄ as given numerically by (B.4) and (B.5).
Having calculated the difference between the transverse wavenumbers δu ≡

1
2a(κ+

− κ−),
we can now find the difference between the associated propagation constants,
1β ≡

1
2(β

+
−β−). To do this we start with equation (34), which upon substitution of

E ≈ γzmc2 is equivalent to(
β±
)2

≈
1

c2h̄2

[ (
γ 2

z − 1
)

m2c4 + 2γzmc2eV + (eV (ρ))2 − c2h̄2
(
κ±
)2
]
, (B.14)

in the unbarred (laboratory) frame. Taking the square root of both sides and using (γ 2
z − 1)=

(γz
vz

c )
2 and γzeV 0 � mc2 in order to Taylor expand the radical then gives

β±
≈ γz

mvz

h̄

[
1 −

eV

γzmv2
z

+
1

2

(
c

vz

eV

γzmc2

)2

−
1

2

(
h̄κ±

γzmvz

)2 ]
. (B.15)

Therefore, we find that

1β = −
1

4

h̄

γzmvz

[(
κ+
)2

−
(
κ−
)2
]
. (B.16)

9 See [10], p 979, equation 8.471-2.
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However, since κ±a = ū ± δu, to first order in δu (B.16) is equivalent to

1β = −
h̄

γzmvz

1

a2
ūδu. (B.17)

Substituting (B.13) into (B.17) then yields the desired expression for 1β,

1β = − |m`|
1

vz

h̄e1V

2m2c2a2

{
K|m`|−1 (−iv̄) K|m`|+1 (−iv̄)

K 2
|m`|
(−iv̄)

−
J|m`|−1 (ū) J|m`|+1 (ū)

J 2
|m`|
(ū)

}−1

, (B.18)

where ε ≡ γz
e1V
2mc2 has been used. For clarity, we remind the reader that −iv̄ =

√
R2
γ − ū2

via (B.5), where R2
γ is defined in equation (35), and that ū is found by solving equation (B.4).

Comparing this first-order result of (B.18) to equation (30), we see that the two equations
are of the same form. Furthermore, since ε� 1 and γz ≈ 1, equation (B.4) is nearly equivalent

to equation (26), so that ū ≈ κ0a and
√

R2
γ − ū2 ≈ κ̃0a . We have therefore demonstrated that

the perturbative approach of section 4 is approximately equivalent to the direct approach of
section 5.
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