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Abstract. The force–extension measurements on simple poly(ethylene glycol)
molecules by Oesterfeltet al in different solvents can be quantitatively explained
based onab initio quantum mechanical calculations of the potential energy
surfaces of the polymer segments in vacuum and in the solvated form. The
proper statistical mechanical calculations of the force–extension relation, both for
isothermal–isochoric and isothermal–isobaric conditions (the latter appropriate
to the experimental set-up), demonstrate, that in the low-force regime transitions
from the amorphous to the helical conformers, and in the high-force regime
stretching of the helical to the planar ‘all-trans’ conformer occur. The
presence of water affects all but the ‘all-trans’ conformer by shortening and
stiffening.
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1. Introduction

Single-molecule force microscopy has been a versatile and powerful tool to measure binding
forces of receptor ligand systems [1, 2], to observe the unfolding of protein domains [3] or to
measure the elastic properties of individual macromolecules [4]. In a recent paper Oesterhelt
et al [6] reported force measurement on individual poly (ethylene glycol) chains (PEG)† which
were fixed to a substrate by covalent bonds and elongated using an atomic force microscope
(AFM) tip. The measurements showed that the forces necessary to stretch the polymer chains
depend strongly on the solvent surrounding the molecule, i.e. PBS buffer or hexadecane. In
the low- and high-force regime the measurements show no difference between the polar and
non-polar solvents. In the stretched regime, before rupture occurs, the elasticity is dominated by
the stiffness of the bond angle potentials, which are expected not to depend on the surrounding
solvent. However, in the intermediate-force regime the elongation observed at constant force is
substantially smaller in PBS buffer than in hexadecane.

For a discussion of these results we have to recall the possible molecular conformations
of the ethylene oxide (EG) units in PEG. The helical structure of PEG is characteristic for
the crystalline state of the polymer, and it is locally retained when the polymer is dissolved
in water. In the helical structure of PEG the bonds of the backbone are arranged in a trans–
gauche–trans (tgt) order, where the gauche angle is rotated uniformly with respect to the –
C–C–O plane over the length of the helix, either clockwise or counterclockwise ((+) or (−)).
Introduction of gauche rotations other than those characteristic for the uniform helix leads to
a gauche defect and ultimately to an amorphous conformation in which the sense of gauche
rotation between the ethylene oxide units is arbitrary. Accordingly, the overall length of the
polymer chain depends on the concentration of gauche defects. In the stretched planar ‘all-
trans’ form (ttt), which can be obtained by mechanically stretching the polymer, the chain is
fully extended. Hence, with increasing contour length of the polymer chain, the conformation
will change from an amorphous via a helical to a planar ‘all-trans’ structure. All these
conformations are likely to occur with contour-length-dependent statistical weight in the force
versus extension measurements of Oesterheltet al [6], since the polymer used had a molecular
weight distribution of around 30 000 Daltons, which corresponds to about 750 ethylene oxide
units.

Oesterheltet al [6] propose that the stabilization in PBS buffer arises from the solvation of
the polymer, and discuss a model for the interaction of water with the ethylene oxide moieties
as proposed previously by us [5]. In our ab initio calculations on the interaction of water with
the helical and planar ‘all-trans’ conformers of methoxy-tri(ethylene oxide) undecanethiolate in
self-assembled monolayers on gold and silver substrates we found, that two next-nearest oxygen
atoms in atgt–tgt helical conformation generate a strong dipolar field in which a water molecule
can bind in two different ways, either via a single hydrogen bridge bond or in a double-bridge
mode (see figure 3 [5]). In the stretchedttt conformation the distance between the oxygens is
too large so that the water molecules can only interact with a single oxygen. The difference in
binding energy of water to thetgt–tgt andttt–ttt conformers is about+180 meV‡. Accordingly,
water stabilizes thettg conformers with respect to the stretchedttt structure and the solvation
shell constitutes a barrier towards stretching the polymer chain. Hexadecane does not interact

† PEG is also referred to as poly(ethylene oxide) (PEO) and poly(oxyethylene) (POE). In this paper, we will use
the term poly(ethylene glycol) (PEG) for polymers or oligomers of all molecular weights.
‡ 100 meV= 9.65 kJ mol−1 = 2.305 kcal mol−1.
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strongly with the ethylene oxide moeities and hence does not contribute to the stabilization of a
particular conformer.

Oesterheltet al [6] have analysed their data on the basis of the freely jointed chain model
of elastically coupled two-level systems which yields a force–extension relation†

L(F ) = Ns

[
Lplanar

e∆G/kBT + 1
+

Lhelical

e−∆G/kBT + 1

]
[coth(FLK/kBT )− kBT/FLK] +NsF/Ks. (1)

Here

∆G(F ) = Gplanar −Ghelical − F [Lplanar − Lhelical] (2)

is the difference in Gibbs free energy between a planar and a helical EG subunit in the presence
of a forceF with Lplanar andLhelical their respective lengths (in the absence of the force). The
Kuhn lengthLK (= 7 Å), the stretching modulus (or segment elasticity)KS (= 150 N m−1)
andLhelical (= 2.8 ) are fitted to the experiments withLplanar = 3.58 estimated from bond
lengths and angles of the planar ‘all-trans’ (ttt) structure. This results in∆G = (3 ± 0.3)kBT
which is consistent with priorab initio calculations. Note that for these numbers the last term in
equation (1) is negligible up to forces in the nanonewton regime, and the entropy contribution,
the square bracket involving the Kuhn length, is unity for forces larger than about 10 pN.

As discussed by Oesterheltet al [6], the elastic response of PEG can be grouped into three
regimes: initial small forces have to overcome the entropy elasticity (well described by the freely
joined chain model) to uncurl the molecule into a straight, unstretched more or less linear chain
of random sequences ofttt andtgtEG subunits with the gauche rotation both clockwise(g+) and
anticlockwise(g−). When forces reach the piconewton level a supramolecular reorganization
occurs in that the shorter units, having one or more gauche rotations, are converted into longer
‘all-trans’ (ttt) units. After this is completed bond-angle deformation in the all-trans conformer
sets in when forces reach hundreds of piconewton.

In this paper we will set up the statistical mechanics of the late stages of the elastic response,
i.e. in the regimes of supramolecular reorganization and of bond angle deformation. Such a first-
principles theory must (i) calculate the energy spectrum (or the density of states) for PEG chains
from quantum mechanics, and (ii) derive the proper statistical ensemble appropriate for the given
experiment.

In the next section we outline the theoretical framework. Examples of relevant energy
surfaces and excitation spectra and the resulting force–extension curves are presented and
discussed in section3.

2. Theory

2.1. Energy spectrum

Our first task is to calculate the energy spectrum of oligo(ethylene oxide) as a function of chain
length for a given number of EG units. Most recent studies of hydrogen-bonded systems use the
monoreference formulation of the MP2 method to obtain precise results including correlation
effects. As in our previous work [5] we will use the GAUSSIAN 94 suite of programs at
the MP2/6-31++G**//HF/3-21G level. As such calculations grow in hardware requirements
(memory and CPU time) at least with the fourth (HF) and sixth (MP2) power of the size of the

† Here we have corrected a misprint of the sign in front of∆G in the exponentials of equation (2) in [6].
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Table 1. EnergiesEB, relative to the energy of the helical conformer
(100 meV = 9.65 kJ mol−1 = 2.305 kcal mol−1), dihedral angles and molecular
lengths,L, between the outermost O atoms (with the distance between outermost
C atoms in brackets) of various conformers ofCH3(EG)3OCH3.

Conformation Dihedral angles L(O1–O4) (Å) EB (meV)

1 g+g+(0) 71.9; 73.2; 0.0 7.26(9.03) 394.14
2 g+g+g+ 71.7; 71.6; 71.7 8.27(10.01) 0.0
3 g+g+(120) 71.7; 71.2; 120.0 8.71(10.43) 104.49
4 g+g+t 71.7; 71.2; 179.7 8.52(10.09) 0.52
5 g+g+(240) 72.0; 71.3; 240.0 7.67(9.09) 114.04
6 g+g+g− 72.2; 72.6; 287.8 6.97(8.41) 26.29
7 ttg+ 180.2; 179.5; 71.3 9.56(11.96) 6.69
8 ttt 180.0; 180.0; 180.0 10.56(12.91) 19.21

basis set (number of electrons) we restrict ourselves in this first paper on the subject to a rather
small, but, as we will see, large enough molecule, namelyCH3(EG)nOCH3 with n = 3, where
EG is our abbreviation forOCH2CH2.

We have done MP2 calculations and find that for(EG)3 the helical conformer is the most
stable. Energies (relative to the energy of the stablest helical conformer), molecular lengths
and dihedral angles of various conformers and the energy barriers between the local minima
are listed in table1. The molecular length is the distance between the outermost oxygen atoms
so that a third of it can be interpreted as the (average) length of oneEG subunit; we also list
the distance between the outermost carbons in brackets. In all the conformations listed we
keep all the C–O bonds in the trans configuration and omit this information from our notation,
i.e. the helical conformer(tg+t–tg+t–tg+t) is denoted as(g+g+g+). The conformations 1, 3
and 5 are activation barriers along the dihedral counterclockwise rotation between the adjacent
conformers.

Solid-sphere models of the four most relevant conformers, (g+g+g−), (g+g+g+), (g+tt) and
(ttt), are shown in figure1. It is important to note how close in energy the various conformers
are and how small the barriers are between these local minima. We should add as a cautionary
note that Hartree–Fock calculations without the MP2 corrections yield a different (i.e. wrong)
sequence of stability, making for instance the ‘all-trans’ conformer more stable than the helical
one, and also increasing the barriers considerably.

To find the part of the energy spectrum of an(EG)3 molecule relevant to understanding
the force–extension relation, we calculate the ground state energy and vibrational excitations
of the energetically lowest conformers as a function of their length over such a range that the
different energy curves overlap sufficiently. As the length of a given conformer changes, its
internal structure, i.e. bond lengths and angles, are allowed to adjust self-consistently. As the
length of a given conformer is changed sufficiently so that it is close to the length of another
conformer at its lowest energy, the conformational structure of the former can no longer be
kept in the self-consistent calculations and there is a spontaneous transformation to the latter.
As an example the helical (g+g+g+) conformer changes spontaneously atL ' 9 into the
(g+tt) structure. In a givenab initio calculation we impose the boundary conditions such that
the distance between the first and last carbon atom in the chain is held fixed. This lengthL
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Figure 1. Solid sphere models of the (g+g+g−), (g+g+g+), (g+tt) and (ttt)
conformers of(EG)3.

will be varied from slightly below the length of theg+g+g− (amorphous) conformer and a
value beyond the length of the ‘all-trans’ conformer. Because various conformers of(EG)n,
for a given length, can be within less than 100 meV in energy we will calculate the energy,
Vi(L), for a few of the lowest such states that are likely to contribute to the elastic response
at room temperature. We will also calculate the normal mode frequencies,ν

(i)
k (L), for each

conformer.
The ground state energy curves for the (g+g+g−), (g+g+g+), (g+tt) and (ttt) conformers are

shown in figure2. We have not included the (g+g+t) conformer because its potential minimum
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Figure 2. Ground state energy curves for the (g+g+g−) (IV), (g+g+g+) (III),
(g+tt) (II) and (ttt) (I) conformers of(EG)3 in vacuum.

is too close to that of (g+g+g+) to make a noticeable contribution to the force–extension curves.
We have also calculated the frequencies of the 84 normal modes and the infrared spectra for each
conformer, obtaining reasonable agreement with experiment where data are available.

Although the energy curves are not symmetric around their minima, we fit an approximate
quadratic dependence onL to extract some average force constants for the four conformers,
getting 2.1, 5, 7.5 and 110 N m−1 for the (g+g+g−), (g+g+g+), (g+tt) and (ttt) conformers,
respectively. Not surprisingly, the planar conformer is considerably stiffer than the conformers
with at least one gauche conformation.

Because we will also look at the influence of water adsorbed on(EG)3 we have calculated
the potential energy curves for the four conformers in the presence of water. In a first calculation
we added only two water molecules along the strand of each conformer to complete the first
hydration shell, in agreement with experimental data that suggest that there is one water molecule
strongly bound per EG unit [7]. The addition of two water molecules hardly affects the ‘all-
trans’ conformer, neither in length nor in the shape of its potential energy curve. This is in stark
contrast to the other three conformers which, because of the presence of gauche conformations,
can bind one or two water molecules by establishing hydrogen bridges to two oxygen atoms
along the molecule. This not only leads to significant energy gains relative to the ‘all-trans’
conformer (typically of the order of 300 meV), but it also shortens these conformers by typically
0.5 Å (or 5–10%), e.g. for theg+g+g+ conformer from 8.27 to 7.68 Å. This double hydrogen
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Figure 3. Ground state energy curves for the (g+g+g−) (IV), (g+g+g+) (III),
(g+tt) (II) and (ttt) (I) conformers of solvated(EG)3.

Table 2. Energies, relative to the energy of the helical conformer (100 meV=
9.65 kJ mol−1 = 2.305 kcal mol−1), dihedral angles and molecular lengths of the
solvated conformers ofCH3(EG)3OCH3.

Conformation Dihedral angles L(O1–O4) (Å) EB (meV)

1 g+g+g+ 63.7; 62.4; 66.2 7.68 0.0
5 g+tt 9.38 60
7 g+g+g− 6.85 –10
9 ttt 180.0; 180.0; 180.0 10.55 110

bonding is particularly efficient for theg+g+g− conformer. However, the restriction to two
water molecules overestimates the effect of solvation because of the neglect of bridge bonding
to the second hydration shell. We have therefore also performed calculations with eight water
molecules at the Hartree–Fock level and estimated the bond lengths and relative energies of
the conformers based on a comparison between the Hartree–Fock and MP2 results of the
calculation with two waters. The results are listed in table2 and the potential energy curves
are given in figure3. Note that all but the ‘all-trans’ conformer are shortened considerably
but that the widths of the curves are only marginally reduced because the stiffening due to the
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two to three water molecules in the first hydration shell is largely compensated by the second
shell.

A full account of our calculations of the interaction of(EG)3 with water will be given
elsewhere when we discuss the conformational changes occurring in the tri(ethylene oxide)-
terminated alkanethiolate self-assembled monolayers exposed to water [8].

2.2. Statistical mechanics

The force–extension relation can be measured under different boundary conditions: (i) one can
fix the length of the chain molecule and measure the force necessary to maintain this length; this
suggests doing the statistical mechanics in the isothermal–isochoric or Helmholtz ensemble. (ii)
One can apply a given force and measure the resultant extension of the molecule [9]. The second
boundary condition is maintained in the AFM experiment. This suggests doing the statistical
mechanics in the isothermal–isobaric or Gibbs ensemble†.

Beginning with the isothermal–isochoric ensemble (fixed length) we get the Helmholtz
free-energy molecule in the ensemble as

f(T, L) = −kBT ln
∑
i

Zi

= −kBT ln
{∑

i

exp[−βVi(L)]
∏
k

z
(i)
k (L)

}
(3)

whereβ = 1/kBT , i labels the different conformers andz(i)
k (L) is the partition function for the

kth vibrational/rotational (intramolecular) mode of theith conformer at lengthL. the frequencies
of these modes are in the range from 1000 to 3000 cm−1 so that they are barely excited at room
temperature and a harmonic approximation to account for their zero-point motion is acceptable,
namely

z
(i)
k (L) =

exp[βhν(i)
k (L)/2]

exp[βhν(i)
k (L)]− 1

. (4)

We then obtain the average force (taking thez-direction alongL)

〈Fz(L)〉 = −∂f(T, L)
∂L

∣∣∣∣
T

=
(∑

i′
Zi′
)−1∑

i

Zi
(
−∂Vi
∂L

+ kBT
∑
k

∂

∂L
ln(z(i)

k )
)

=
(∑

i′
Zi′
)−1∑

i

Zi
(
−∂Vi
∂L
− 1

2
∑
k

coth(βhν(i)
k /2)

∂(hν(i)
k )

∂L

)

' −
(∑

i′
Zi′
)−1∑

i

Zi
∂

∂L

(
Vi +

1
2
∑
k

hν(i)
k

)
(5)

where the last line is valid whenhν(i)
k � kBT as for the present system. It turns out that the

sum over all frequencies does not change very much, i.e. by less than 1%, from one conformer
to the other or for different lengths, so that their derivatives contribute negligibly to the average

† In the case of a one-dimensional chain isochoric and isobaric imply constant or fixed length and force, respectively.
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force. Neglecting the internal modes and all conformers but the lowest energy one, we recover
the simple resultFz(L) = −∂〈Vi〉/∂L.

In the isothermal–isobaric or Gibbs ensemble (fixed force) we bring the molecules in contact
not only with a thermal reservoir at constant temperature but also with a volume reservoir at
constant pressure. For our one-dimensional situation the volume reduces to a length and the
pressure to a force. The Gibbs free energy per molecule is then given by

exp[−βg(T, Fz)] =
∑
i

exp[−βgi(T, Fz)] =
∑
i

∑
L

exp[−β[Vi(L) + FzL]]
∏
k

z
(i)
k (L). (6)

From this we find the average length of a molecule as a function of the applied force as

〈L(Fz)〉 =
∂g(T, Fz)
∂Fz

∣∣∣∣
T

=
∑
i

∫∞
0 l dl exp[−β[Vi(l) + Fzl]]

∏
k z

(i)
k (l)∑

i

∫∞
0 dl exp[−β[Vi(l) + Fzl]]

∏
k z

(i)
k (l)

'
∑
i

∫∞
0 l dl exp[−β[Vi(l) + Fzl + 1

2
∑
k hν(i)

k (l)]]∑
i

∫∞
0 dl exp[−β[Vi(l) + Fzl + 1

2
∑
k hν(i)

k (l)]]
(7)

where the last line is, again, valid whenhν(i)
k � kBT as for the present system. We have also,

for numerical expedience, changed the discrete summation over the volumina (lengths) into an
integration.

To make the connection with the model used by Oesterheltet al [6] we keep only two
energy surfaces, namely those for the ‘all-trans’ planar and for the helical conformations. In the
integrals in the numerator of (7) we then writel = l− Li + Li and find after re-arranging terms

〈L(Fz)〉 =
1

exp[β∆g(Fz)] + 1
[Lp + Ip(Fz) exp[−β(FzLp − gp(Fz))]]

+
1

exp[−β∆g(Fz)] + 1
[Lh + Ih(Fz) exp[−β(FzLh − gh(Fz))]] (8)

where, fori = h, p,

Ii(Fz) = L−1
0

∫ ∞
0

(l − Li) dl exp[−β[Vi(l) + Fz(l − Li)]]
∏
k

z
(i)
k (9)

whereL0 is an arbitrary length scale to convert the ensemble summation overL in (6) into an
integral;L0 will drop out of the calculation at the end. We have also introduced

∆g(Fz) = gp(Fz)− gh(Fz) (10)

as the difference in the Gibbs free energies per molecule between the planar and helical states,
also defined in (2).

Around the equilibrium length of the conformers we can approximate the energy surfaces
by harmonic oscillators, i.e. we can write fori = p, h

Vi(l) = Ei + (ki/2)(l − li)2. (11)
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If, in addition, we neglect the contributions from the internal modes of the molecules, we
can evaluate the Gibbs free energies and the integrals in equation (8) to get

exp[−βgi(T, Fz)] = L−1
0

√
πkBT

4ki
exp[−β(Ei + Fzli − F 2

z /4ki)]

×
[
1 + erf

[√
βki |−li + Fz/2ki|

]]
(12)

Ii(T, Fz) = (li − Fz/2ki) exp[−βgi(T, Fz)] +
kBT

2ki
exp[−β(Ei + kil

2
i )]. (13)

Hereerf(x) is the error function. Inserted in (8) we get

〈L(Fz)〉 =
Lp − Fz/2kp

exp[β∆g(Fz)] + 1

[
1− 1

Lo

√
kBT

kP
exp[−β(Ep + kpL

2
p − gp(Fz))]

]

+
Lh − Fz/2kh

exp[−β∆g(Fz)] + 1

[
1− 1

Lo

√
kBT

kh
exp[−β(Eh + khL

2
h − gh(Fz))]

]
. (14)

Although this expression is similar in structure to the phenomenological formula used by
Oesterheltet al [6] it is considerably more detailed as more microscopic information is contained
in it.

Finally, we give the entropy as a function of temperature and extension

s(T, L) = −∂f(T, L)
∂T

∣∣∣∣
L

= −kB
f(T, L)
kBT

+ kB

(∑
i′

Zi′
)−1∑

i

Zi
(
Vi
kBT

+ T
∂

∂T

∑
k

ln z(i)
k

)
. (15)

3. Results

We have evaluated the force–extension relation for(EG)3 in vacuum and also solvated in water,
both under isothermal–isochoric and under isothermal–isobaric conditions.

We begin with(EG)3 in vacuum and base the calculations in equation (7) on the potential
energy curves of figure2. Under isothermal–isobaric conditions, as implemented in the
experiment, the force–extension curve at 300 K is shown as a full curve in figure4. Starting
at the shortest extension the force is negative as one descends into the energy minimum of
the buckled (g+g+g−) conformer. One then needs a positive force to stretch this conformer to
the point where the helical (g+g+g+) conformer is energetically more favourable. This low-
force response continues as long as further conformers with larger extension are energetically
within kBT , for our system this is the case for the (g+tt) conformer. Once the transformation
to the planar (ttt) conformer has happened we leave the low-force regime, characteristic of
transformations between different conformers. Much larger forces, given by the slope of the
narrow (ttt) potential energy curve, are required to further stretch the bonding angles in the
‘all-trans’ conformer.

Only the positive part of the force–extension curve is relevant for comparison with
experiment for two reasons: (i) only stretching forces are applied in the experiment, and (ii)
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Figure 4. Force–extension curves under isothermal–isobaric conditions for
(EG)3 in vacuum, calculated from (7) based on the potential energy curves of
figure2. Thick curve at 300 K, thin curve at 100 K, dotted curve at 300K, but
with only the helical and ‘all-trans’ conformers.

a long polymer strand (of 750EG units as used in the experiment) would avoid a compressive
force by large-scale buckling or folding. This is not possible for our short(EG)3 strands.
Indeed, if we eliminate the (buckled)g+g+g− energy curve from the calculations the force drops
to negative values much faster as one climbs the short-distance wall of theg+g+g+ curve. This
effect is demonstrated by the broken curve in figure4 for which we have also eliminated the
ttg+ curve to make contact with the two-state model of Oesterheltet al [6]. It is clear that the
low-force regime is extended over a larger range of lengths if more conformers (potential energy
curves) with minima withinkBT participate. The number of such conformers (only four or five
for (EG)3) increases rapidly with the length of the (EG)n molecule. As for temperature effects
the thin curve in figure4 shows the response at 100 K; it is flatter and more abrupt as one would
expect. In particular, the stepwise increase in the force at a length of 8.3 Å is indicative of the
transition from theg+g+g+ to theg+tt conformer.

As we discussed above, the experiment is performed under isothermal–isobaric conditions
as were the calculations shown in figure4. To shed more light on the problem we next show the
response under isothermal–isochoric conditions, using the expression (5), in figure5. Clearly,
by fixing the length of the molecule both negative and positive forces will be measured as the
extension is increased, the changes from positive to negative forces occurring as one crosses the
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Figure 5. Isothermal–isochoric conditions: (a) force–extension curves for the
potential energy curves of figure2: thick curve at 300 K, thin curve at 10 K
and dotted curve with only the helical and ‘all-trans’ conformers. (b) Helmholtz
free energy in vacuum (thick curve atT = 300 K and thin curve atT = 1 K)
and solvated (broken curve). (c) Entropy in vacuum (thick curve) and solvated
(broken curve) atT = 300 K.

intersection of two of the energy curves (given in figure2). The changeover from an attractive
to a repulsive force is discontinuous at zero temperature, where it is simply the derivative of the
lowest (at a given extension) potential curve; this is shown as the thin curve in figure5. We also
show the situation where we (artificially) eliminate all but theg+g+g+ andttt potential energy
curves in which case only one crossover occurs (broken curve). This case is suited to extracting
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the isothermal stretching modulus for the two conformers,

Ks = Ns
∂F

∂L

∣∣∣∣
T
. (16)

For the helical and ‘all-trans’ conformers we find 5 and 102 N m−1, respectively, in
agreement with the force constants given in the text below table1. Although the latter (theoretical)
value is only two thirds of what the fit of the experimental data to the phenomenological model
produces (150 N m−1) this is not in contradiction with experiment. Indeed, the interpretation of
the parameters of the freely joined chain model is rather tenuous, if not completely impossible†.

In figure 5 we also show in the centre panel the Helmholtz free energy and, in the lower
panel, the entropy as a function of length for fixed temperature. The temperature dependence
is rather weak up to room temperature implying (i) that the internal energy is quite close to
the T = 0 K Helmholtz free energy. These curves more or less trace the potential energy
curves of figure2 with the crossovers between two conformers rounded. In the lower panel
of figure 5 we show the entropy which, not surprisingly, is only substantially different from
zero at room temperature at the crossover points, i.e. at the maxima of the free-energy curve,
because only there is there some disorder associated with the choice of the system being in
either one of the two crossing conformers. Extending the calculations to high temperatures (so
much higher than room temperature that the maxima in the (low-temperature) free energy can be
easily overcome) we find that the (room-temperature) maxima in the free energy and the entropy
wash out, and the entropy eventually reaches a value ofkB ln 4 because, for a fixed length, our
model is one involving four states. We note that any configurational entropy (e.g. as modelled
by the freely jointed chain model) has been reduced to zero at the late stages of stretching the
polymer.

To understand the important factors that control the shape of the force–extension relation
under isobaric conditions we have performed a series of model calculations varying the number,
relative energies and widths of the potential energy curves. For two potential energy curves with
minima withinkBT we find a low-force regime over the distance between the minima of the two
potential energy curves (see figures6(a) and (b)). The high-force regime at larger extensions is
then controlled by the steepness of the longer conformer. The effect of the width of the lower
energy curve is then minimal; likewise, one can lower the minimum of the potential energy curve
of the longer conformer without significant changes. A third potential energy curve, again with
a minimum withinkBT of the other two does not alter the picture (figures6(c) and (d)), neither
does a series of potential energy curves with monotonically rising minima, (figures6(e) and
( f )). Lastly, if in a series of overlapping curves, such as the three in figure6(g), the minima of
the curves first decrease, followed by a last potential with a considerably higher minimum, then
the low-force plateau is followed by a short rise of intermediate slope followed by the familiar
high-force regime (see figure6(h)). This is very much akin to what is seen experimentally when
the EG moities are dissolved in water.

We have calculated the force–extension relation for solvated(EG)3 based on the potential
energy curves in figure3 and get the broken curve in figure7, where, for comparison with
the experiment, we only show the response for positive forces (pull). Also note that for a

† This point is discussed at length by Flory in the introduction to his book where among other things he says ‘Thus no
matter how faithfully such a model (the freely jointed chain) may represent experimental observations, interpretations
carried out in its terms are cast in a framework of unreality. The properties deduced for the hypothetical segment
defy transcription to the real chain.’
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Figure 6. Model potential energy curves and resulting force–extension curves.

direct comparison with the data by Oesterheltet al, one must divide the length axis by 3 to
get the length perEG unit†. Clearly the qualitative difference in the force–extension curves
for PEG in hexadecane and in PBS are reproduced by our theory and can be traced to the
energetic differences in the attachment of water to the ‘all-trans’ conformer as opposed to the

† In a detailed comparison with the data of Oesterheltet alwe found a discrepancy in the length scale. It turned out
that the scale of figure5 of Oesterheltet al is not quite right and should be reduced by a factor 0.94 (P Oesterhelt,
private communication) which then gives excellent agreement between theory and experiment. This comparison,
together with an extension of the present work, will be reported elsewhere.

New Journal of Physics 1 (1999) 21.1–21.16 (http://www.njp.org/)

http://www.njp.org/


21.15

Figure 7. Force–extension curves for pure (full curve) and solvated (broken
curve)(EG)3. The length scale must be divided by 3 to get the length perEG
unit for a direct comparison with the data of figure5 by Oesterheltet al. (The
length scale in figure5 of Oesterheltet al must be reduced by a factor 0.94, see
the previous footnote.)

other conformers containing at least one gauche segment.
We repeat a statement made above in connection with the model calculations of figure6,

namely that the width of the shorter conformers does not affect the shape of the force–extension
curve significantly, for instance, halving the width of the potential energy curve of the shortest
conformer only shifts the onset of the positive part of the force–extension curve by 0.1 Å.

To shed more light on the physics of solvation we have also calculated the Helmholtz free
energy and the entropy, shown as dotted curves in the central and lower panels of figure5,
respectively. As expected the peaks in both functions are shifted with the respect to those of
(EG)3 in vacuum and the effect of solvation is largest in the intermediate-force regime before
the transition to the ‘all-trans’ conformer occurs.

Our calculations also confirm that the low- and high-force regimes can be satisfactorily
modelled by a two-state model including the helical and ‘all-trans’ conformers as the most
extreme. However, to understand the intermediate-force regime of the hydrated moities at least
three conformers should be included. This point also strongly suggests that the theory should be
extended to longer molecules, such as(EG)7, which automatically will have more, energetically
close, conformers.
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To compare our results in more detail to the phenomenological two-state model of Oesterhelt
et al we note that ourab initio calculations give an energy difference between the helical and
planar conformers of 19.2 meV increasing to 110 meV when water is present. The trend is, at
least qualitatively, close to what they find, i.e. energy differences ofkBT and 3kBT , respectively,
atT = 300 K.
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