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D-52425 J̈ulich, Germany
E-mail: everaers@mpip-mainz.mpg.de

New Journal of Physics 1 (1999) 12.1–12.54 (http://www.njp.org/)
Received 22 September 1998; online 28 July 1999

Abstract. The influence of topological constraints on the local dynamics
in crosslinked polymer melts and their contribution to the elastic properties
of rubber elastic systems are long standing problems in statistical mechanics.
Polymer networks with diamond lattice connectivity are idealized model systems
which isolate the effect of topology conservation from other sources of quenched
disorder. By studying their behaviour in molecular dynamics simulations under
elongational strain we are able to measure the microscopic deformations as well
as the purely entropic shear moduli. In our analysis we make extensive use
of the microscopic structural and topological information available in computer
simulations and present quantitative tests of the concepts underlying most
statistical mechanical models of rubber elasticity.
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Overview

Polymer networks [1] are the basic structural element of systems as different as tire rubber and
gels and have a wide range of technical and biological applications. While they have been a
subject of statistical mechanics for more than sixty years, their rigorous treatment still presents
a challenge. Similar to spin glasses [3], the main difficulty is the presence of quenched disorder
over which thermodynamic variables need to be averaged. In the case of polymer networks [7, 2],
the vulcanization process leads not only to a randomly connected solid but freezes (due to the
mutual impenetrability of the polymer backbones) also the topological state of the network.
While for a given connectivity the phantom model Hamiltonian for non-interacting polymer
chains formally takes a simple quadratic form [4]–[6], treating the topological aspects is much
harder for several reasons: (i) Topological constraints do not enter the Hamiltonian as such,
but divide phase space into accessible and inaccessible regions characterized by topological
invariants from mathematical knot theory [9]; (ii) The common topological invariants can be
used to characterize knots formed by individual strands or links between mesh pairs. However,
in principle one requires an infinte set of higher order invariants [8]; (iii) All but the most primitive
invariants are algebraic [9] so that their statistics cannot be calculated analytically for entangled
random walks [87].

So far no rigorous solution of the statistical mechanics of entangled polymer networks exists.
Topological theories of rubber elasticity [2, 7, 8], [10]–[18] represent the most fundamental
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approach, but encounter serious mathematical difficulties already on the level of pairwise
entanglement between meshes. Most theories do, however, omit such a detailed description
in favour of a mean-field ansatz where the different parts of the network are thought to move in a
deformation-dependent elastic matrix which exerts restoring forces towards some rest positions.
The classical theories [1, 19], [20]–[23] assume that such forces only act on the cross-links
or junction points, while the tube models [24]–[28] stress the importance of the topological
constraints acting along the contour of strands exceeding a minimum ‘entanglement length’.

It is the purpose of this paper to quantitatively test the ideas underlying the topological,
classical and tube models in computer simulations of idealized model networks with diamond
lattice connectivity. Being free of defects, these systems allow us to isolate the effects of topology
conservation from those of chemical disorder. In view of the complexity of real networks such
a simplification seems adequate and be it only in order to prepare more comprehensive studies.
In particular, we address the following questions.

(i) In an attempt to give a more precise meaning to the term ‘entanglement’, what is the
topological degree of linking of the network meshes?

(ii) What is the entanglement contribution to the macroscopic shear modulus?

(iii) In what manner (i.e. classical versus tube model) do entanglements affect the microscopic
mean conformations and fluctuations of the networks in the unstrained state?

(iv) How does the confinement change under strain?

(v) Is it possible to calculate the macroscopic restoring forces from the microscopic
deformations? (In particular, are there non-classical contributions to the elastic response?)

(vi) Is it possible to predict the network conformations under strain from an analysis of the
fluctuations in the unstrained state (i.e. based on the knowledge of the actual strength of the
confining potentials)?

(vii) As a complementary question, can one estimate the entanglement contribution to the shear
modulus from a simple model for the topological interactions?

(viii) Is it perhaps even possible toderivethe degree of confinement or the tube model along these
lines?

1. Introduction

From a macroscopic point of view, rubber-like materials have very distinct visco- and
thermoelastic properties [1, 25]. They reversibly sustain elongations of up to 1000% with small
strain elastic moduli which are four or five orders of magnitude smaller than for other solids.
Maybe even more unusual are the thermoelastic properties discovered by Gough and Joule in the
19th century: when heated, a piece of rubber under a constant loadcontracts, and, conversely,
heat isreleasedduring stretching. With the advent of statistical mechanics it became clear that
the stress induced by a deformation had to be almost exclusively due to adecrease in entropy.
The microscopic origin of this entropy change remained, however, obscure until the discovery
of polymeric molecules and their high degree of conformational flexibility in the 1930s. In
a melt of identical chains polymers adopt random coil conformations [29] with mean-square
end-to-end distances proportional to their length,〈r2〉 ∼ N . A simple statistical mechanical
argument, which only takes the connectivity of the chains into account, then suggests that flexible
polymers react to forces on their ends as linear,entropic springs. The spring constant,k = 3kBT

〈r2〉 ,
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is proportional to the temperature. Treating a piece of rubber as a random network of non-
interacting entropic springs (the phantom model [4]–[6], see figure1 (a) and section2.1 for
details) qualitatively explains the observed behaviour, including—to a first approximation—the
shape of the measured stress–strain curves. Within this model, the only remaining problem is
the complicated connectivity of a randomly cross- or end-linked melt of linear precursor chains.
A proper treatment of the frozen chemical disorder is essential in order to understand swollen
networks [30] and the vulcanization transition [31], but seems uncritical for highly cross-linked
networks (i.e. with many cross-links per precursor chain) [6], [32]–[34].

In this paper we are concerned with a different kind of quenched disorder which is not due
to the connectivity but another characteristic property of polymers: their mutual impenetrability
and the resulting entanglements [1, 2, 7, 8], [10]–[28], [36]–[47]. The classical view of the
entanglement problem (see figure1 and Secs.2.3and2.5 for details), often associated with the
name of Flory, is to assume that the main effect is a partial suppression of the junction fluctuations
relative to the predictions of the phantom model [19]–[23]. The oldest model of rubber elasticity,
the junction affine model [1], is recovered in the limit of immobile junction points, whose
instantaneous positions then deform affinely with the sample. The classical theories predict that
entanglements only cause a modest increase (typically up to a factor of two compared to the
phantom model) of the shear modulus. In particular,G ∼ ρstrandkBT = ρ

N
kBT is predicted to

vanish in the limit of infinitely long network strands.
There are, however, good reasons to suspect that the classical theories overlook important

aspects of the physics of an entangled network which influence (i) the fluctuations of the network
strandsbetweenthe junction points and (ii) the absolute value of the shear modulus. The evidence
comes from the study of non-cross-linked polymer melts, which show extremely slow relaxation
as soon as the chain lengthN exceeds a phenomenological ‘entanglement length’,Ne. A simple
and very successful explanation of these effects is provided by the tube model of Edwards [24]
and the reptation theory [48] of de Gennes. The idea is that the presence of the other polymers
restricts a chain to fairly small fluctuations inside a tube-like region with a cross-section of the
order of 〈r2〉 (Ne) along its coarse grained contour (figure2 (a)). A polymer can loose the
memory of its initial conformation only by a one-dimensional, curvilinear diffusion along and
finally out of its original tube (‘reptation’). The geometrical constraint is relatively easy to handle
analytically and on a mean-field level the tube model provides a unified view on networks and
entangled polymer melts [25]–[28]. In particular, one expects that under shear deformations each
chain segment of lengthNe behaves as an independent entropic spring, leading to a chain length
independent (plateau) modulusG ∼ ρ

Ne
kBT . In a melt, this shear stress relaxes over a time

τmax ∼ N3 by reptation, while in a network the chemical cross-links suppress this mechanism.
Thus, in contrast to the classical models, the tube models predict a finite shear modulus in the
limit N → ∞.

Both the constrained junction and the tube model are based on the idea that partially
constrained fluctuations lead to non-trivial microscopic deformations and contribute to the elastic
response. The close relation between the two approaches (of which the tube model is in fact
the older one, even though the constrained junction models completed the classical theories) is
emphasized in two recent models by Rubinstein and Panyukov [41] and the present author [42].
For quantitative comparisons we use in this paper the constrained mode model (CMM) [42]
(section2.3) which is particularly suited for the analysis of simulation data. The CMM is based
on the assumption that deformation dependent linear forces couple to (approximate)eigenmodes
of the phantom network. On the one hand (figure1), we use Einstein modes describing the
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(a)

(b)

(c)

(d)

Figure 1. The classical models of rubber elasticity. (a) The phantom model:
the network strands are replaced by linear, non-interacting, entropic springs. The
grid marks the equilibrium positions for the drawn phantom network with square
lattice connectivity. When the system is deformed, the equilibrium positions
move affinely with the macroscopic strain. The fluctuations are deformation
independent and donot contribute to the elastic response. (b) The same system
using the Einstein approximation of independently fluctuating cross-links. (c) The
constrained junction model: entanglements restrict the motion of the cross-links
to small cavities which are positioned randomly around the equilibrium positions.
The position of the minima and the strength of the constraining potentials have
to be chosen in such a way that snapshots of the system have the same statistics
as in the phantom case. (d) Microscopic versus macroscopic deformations: the
centres of the cavities move as the phantom model equilibrium positions affinely
with the macroscopic deformation of the network. As a consequence, partially
constrained modes become anisotropic and contribute to the elastic response.
The deformation dependence of the constraining potentials leads in general to
non-trivial microscopic deformations. The limit of infinitely strong confining
potential corresponds to the junction affine model, the oldest theory of rubber
elasticity.

motion of the junction points. On the other hand (figure2, for details see section2.6), we
analyse the motion of the network strands in terms of single chain Rouse modes for immobile
endpoints. In this manner one can directly separate the classical and non-classical contributions
to the elastic response and recover the constrained junction and the tube model as limiting
cases. Even more important from a practical point of view is the possibility to obtain within one
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(a)

(b)

(c)

(d)

(e)

Figure 2. The tube model: (a) Entanglements confine a network strand with
Nstrand > Ne to a tube-like region around its coarse-grained contour. (b) The
conformation of the strand can be written as a superposition of independent
Rouse modes for fixed endpoints. The dotted lines and shaded areas indicate
the larger range of thermal excitation of long (blue) than short (red) wavelength
modes. (c) The constrained mode model: entanglements are modeled as acting
independently on each Rouse mode. Short wave length modes are not affected
by the tube-like constraint, while long wave length modes are restricted to
fluctuations around a non-vanishing mean value which are much smaller than
their thermal fluctuations. The formal treatment is identical for the Rouse and
the Einstein modes in figure1 (d) (e) In particular, as the tube deforms with
the sample, partially constrained modes become anisotropic and contribute to
the restoring forces. The deformation-dependence of the constraining potentials
leads to weaker than affine microscopic deformations.

transparent formalism meaningful results for systems with arbitrary strand lengthsN , ranging
from networks withN � Ne, which should be well described by classical rubber elasticity, to
entanglement dominated systems withN � Ne.

Topological theories of rubber elasticity have an even longer history than the tube model and
represent a more fundamental approach, from which it might be possible toderivethe constrained
fluctuation models (including estimates for the parameters characterizing thestrengthof the
confinement such as the entanglement lengthNe). Thirty years ago, Prager and Frisch [10],
Edwards [7], and later Vologodskiiet al [37, 38] argued that forces can be transmitted between
two ring polymers which are not chemically connected but topologically linked. Edwards [2, 7, 8]
suggested calculating the elastic response from quenched averages in which topological invariants
characterizing the degree of linking of all mesh pairs are conserved. This represents already
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(a)

(c1)

>>>  <<<
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(b)

(c2) (c3)

(d1)

(d2)

I=-1 I=-1 I=0

I=3

Figure 3. The topological models of rubber elasticity: (a) The topological state
of a network is a conserved quantity. Often one considers only the pairwise
entanglement of the network meshes, even though in principle an infinite set of
higher order interactions should be taken into account as well. (b) Example of
two multiply entangled meshes in random IPDN withN = 44. (c) The Gauss
linking number,I, is a simple topological invariant. It can either be calculated
from a double integral over the ring contours (Eq.19) or by a method where
all crossing points of the two curves in a projection are indexed by±1/2 [35].
The sign depends on the direction into which the tangent vector of the upper
curve has to be rotated in order to coincide with the one of the bridged curve.
The linking numberI is defined as the sum of the indices and isinvariant under
distorsions of the rings (c2). There are examples of linked curves withI = 0,
so that the classification is not completely reliable (c3). (d1) Approximation of
the topological pair interaction by an entropic attraction (respectively repulsion)
between the centres of mass (CM) of topologically linked (respectively non-
linked) meshes. The origin of this effect lies in the reduction of the number of
accessible states for two linked ring polymers with increasing CM distance. The
precise form of the effective potential follows from the CM distance dependent
linking probability. (d2) In a simple application of these ideas to networks one
can estimate a link contribution to the shear modulus from the assumption that
the mesh centres move affinely with the macroscopic deformation and that the
effective topological interaction is deformation independent.

a drastic simplification as in principle an infinite set of topological invariants is required to
characterize the state of a network [8]. So far even the binary entanglement problem has proven
too complex for a rigorous solution [2],[12]–[18], but the underlying physics is preserved in the
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simple model by Graessley and Pearson [11] (figure3, for details see section2.7). In particular,
its predictions for the entanglement contribution to the shear modulus can be tested quantitatively
in computer simulations [49]. Here we will provide more details, but note already at this point
that even though the results are encouraging for the present systems, a different approach will
be required in order to actually derive the tube model [15, 50].

Not least due to their technical importance, rheological studies on polymer networks have
been an area of active research for more than half a century. It is therefore quite remarkable that
there is no definite experimental answer to the question, if and how much entanglement effects
contribute to the elasticity of such systems [51]–[64]. Most of the experimental data seems to be
well described by the classical models. The constrained junction models [19]–[23] in particular
have been shown to provide an excellent parametrization of the stress–strain curves [58, 63].
However, often the data can be described equally well by expressions derived from tube models
or variants thereof [55]–[57], [65]. In fact, it is even possible to derive formally identical stress–
strain relations from models which have completely opposite views on the effect of topological
constraints [66]. The distinction between the various theoretical approaches can therefore not
be made on the basis of theshapeof stress–strain curves alone.

A critical test requires a comparison of the absolute values of measured and predicted
moduli or, less specifically, the extrapolation of the measured moduli to the limit of vanishing
cross-link density where the classical contribution to the modulus vanishes. Such investigations
have indicated from early on that the classical theories underestimate the modulus [51, 52].
However, it is quite difficult to prepare model networks with a well defined density of chains in
the elastically active cluster,ρstrand. This holds in particular in the limitN � Ne. A randomly
cross-linked melt of linear polymers has a highly irregular connectivity. Typical defects are
polydispersity, dangling ends and clusters, and self-loops. Efforts have therefore concentrated
on the preparation of model networks by end-linking. While some groups have claimed to
have prepared nearly ideal networks [58]–[60], others have shown that this state is impossible
to reach for large strand lengths [53, 54]. The reason for the imperfect network structures are
the exponentially long times required towards the end of the synthesis to pair the remaining
unsaturated chain ends [67]. Patelet al [62] have used swelling experiments in order to restrict
their analysis to those of their samples with the highest degree of conversion. Their results
indicate indeed a non-vanishing shear modulus in the limit of infinite strand length.

A more detailed test and comparison of the theoretical models requires access to microscopic
information not available in rheological experiments. Much insight can be gained experimentally
in small-angle neutron-scattering experiments [68]–[70]. By these techniques it is, for example,
possible to detect and quantify the tube-like confinement of the chain motion in polymer melts
and networks, to investigate the effect of shear deformations on the tube, and to compare the
results to theoretical predictions.

An alternative, which we shall pursue in this paper, are large scale computer simulations of
suitably coarse-grained polymer models [71]. Bearing in mind the limitations in the accessible
time and length scales, they offer a couple of advantages compared to experiments: a greater
freedom in and control over the formation of the networks, a more direct access to the microscopic
structure and dynamics (e.g. the restriction of the data analysis to elastically active chains),
and the realization of Gedankenexperiments such as the comparison of otherwise identical
systems with and without topology conservation. Simulations of coarse-grained models provided
the first direct evidence for the tube/reptation model in polymer melts [72, 73], gave inside
into the kinetics of end-linking [67, 74] and the structure of the resulting networks [75],
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demonstrated the importance of topological constraints for the relaxation of cross- and end-
linked networks [75, 76], and showed quantitatively the failing of the predictions of the classical
models for the elastic modulus [77, 78]. An important point is the good agreement between
experimental and simulation results for the chain mobilities and the elastic properties when
mapped onto universal curves [71] as it confirms that the simulation methods we employ are
capable of covering the experimentally relevant time and length scales.

In this paper we give a detailed account of molecular dynamics simulations of model
polymer networks with diamond lattice connectivity [49], [78]–[80]. While such systems
cannot be prepared experimentally, they offer some considerable advantages in a numerical
study addressing fundamental aspects of the entanglement problem. First, since there are no
‘chemical’ defects, diamond networks isolate the effects of topology conservation from those
of other types of quenched disorder. Second, in the absence of dangling ends and clusters, the
longest relaxation times in these systems are the Rouse times of single network strands.

The individual diamond networks are spanned across the simulation volume via periodic
boundary conditions. In the spirit of the Flory-Rehner four-chain model [81] we have chosen
an average distance between connected cross-links equal to the root mean square end–to–end
distance of the corresponding chains in a melt. The density of a single diamond net decreases
with the strand length. To reach melt density we place several of these structures in the simulation
box and work with inter-penetrating diamond networks (IPDN). As a consequence, cross-links
which are nearest neighbours in space will usually belong to different diamond nets and will not
be connected by network strands. The same holds true in experimental systems, which can be
said to belocally inter-penetrating [20]. The regular connectivity in our systems affects only
length scales beyond the size of the network strands.

We follow two distinct strategies to isolate the entanglement effects. One is to calculate
quenched averages for otherwise identical systems with different topology. In our simulations
of random and of regular IPDN we employ interaction potentials which ensure the mutual
impenetrability of the chains, thereby preserving the topological state from the end of the
preparation process. The second strategy is to calculate annealed averages over different
topologies. This can either be achieved trivially by simulating non-interacting phantom chains
or by using interaction potentials that allow chains to cut through each other but nevertheless
preserve the monomer packing of the melt [76]. The structure of the chains is almost identical for
all systems and by comparing their behaviour we can directly access the effects of the topological
constraints. The preparation of our most important systems, the random IPDN, is illustrated in
video-sequence 1.

By investigating strained samples we obtained the first reliable measurements of the elastic
properties of model polymer networks in a computer simulation [78, 79]. Since we also have
complete access to the microscopic structure and dynamics in both, the strained and the unstrained
state, we are in a unique position to test statistical mechanical theories of rubber elasticity which
are based on a well-defined microscopic picture. While the quantitative analysis will exclusively
be concerned with moderate deformations of the order of 50%, some qualitative insight into
the importance of entanglements can already be gained by analysing the microscopic stress
distribution in strongly stretched random IPDNs as in figure4and the video sequence 2. Chemical
bonds which carry high tensions are shown with a larger diameter and marked in red. A large part
of the tension is localized on topologically shortest paths through the system. In particular, these
paths are composed of strands as well as meshes with physical entanglements propagating the
tensionin the same manner as chemical cross-links. This stress localization in random IPDNs is
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Figure 4. Conformation of highly strained random IPDN (λ = 3.2) [80]. In the
non-linear regime a large part of the stress is localized on topologically shortest
paths through the system (bonds carrying high tensions are marked by thick radii
and in red). Note that physical entanglements propagate the tension in the same
manner as chemical cross-links. The apparant interruption of the chains is due to
the representation in periodic boundary conditions.

completely unexpected from the point of view of the classical theory, since all network strands
are equivalent. The more artificial regularly IPDN mimic a situation where this equivalence is
preserved for a conserved topology. When these networks are stretched, all strands contribute
equally to the elastic response. Tensions are homogeneous throughout the whole system, and all
strands are stretched to their full contour length at the maximal elongation.

In order to keep the paper in spite of its considerable length accessible to the reader, we
have tried to structure the presented material as much as possible. For a first reading, it should be
possible to pass directly to the discussion in section5. The theoretical background is presented
in section2, a description of the simulation techniques and the detailed presentation of the
simulation results can be found in sections3 and4 respectively. Two key results of this study
have already been published in short notes: the direct proof that the classical explanation of
rubber elasticity which only considers the elongation of the network strands cannot account
for the observed moduli [78] and the interpretation of the topology contribution to the elastic
modulus in terms of mesh entanglements [49]. The graphical illustrations of the preparation of
random IPDN and their behaviour under large strain (including a visualization of the propagation
of internal stresses by entanglements) were first published in [80]. Some preliminary results have
recently been presented at the 11th Max-Born conference [82].
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2. Theory

Most current models of rubber elasticity are based on the phantom model [4]–[6] (section2.1)
combined with the idea that entanglements between the polymer chains reduce the
fluctuations [1], [25]–[28]. Being deformation dependent, the effective constraints then
contribute to the elastic properties of the network. In section2.3 we discuss these effects
in the framework of the constrained mode model (CMM) [42]. The results are then used in
sections2.5 and2.6 to recover the classical theories of rubber elasticity and the tube model.
Finally, we present in section2.7 the simple topological model of Graessley and Pearson [11].
Secs.2.2 and 2.4 discuss phantom diamond networks and systems with a quenched regular
topology.

2.1. The phantom model

The Hamiltonian of the phantom model [4]–[6] is given byHph = k
2
∑

〈i,j<i〉 r2
ij, where〈i, j < i〉

denotes a pair of nodes which are connected by a polymer chain acting as an entropic spring of
strengthk = 3kBT

〈r2〉 and~rij(t) = ~ri(t) − ~rj(t) the distance between them. The problem is most
conveniently studied using periodic boundary conditions, which span the network over a fixed
volume [2].

Due to the linearity of the springs the problem separates in Cartesian co-ordinatesx, y, z.
Furthermore, a conformation of a network of harmonic springs can be analysed in terms of either
the bead positions~ri(t) or the deviations~ui(t) of the nodes from their equilibrium positions~Ri.
The latter are characterized by a force equilibrium

∑
j

~Rij ≡ 0, wherej indexes all nodes which
are connected with nodei. In this representation, the Hamiltonian separates into two independent
contributions from the equilibrium extensions of the springs and the fluctuations, which can be
written as a sum over independent normal modes or phonons~up [83, 84]:

Hph =
k

2
∑

〈i,j<i〉
~R2

ij +
kp

2
∑
p

~u2
p (1)

If a sample is deformed, the equilibrium positions of the junction points change affinely. The
fluctuations, on the other hand, depend only on the connectivity but not on size and shape of
the network. The shear modulus of the phantom model can therefore be calculated without
having to integrate out the dynamic eigenmodes of the network. Structural averages, on the
other hand, do depend on the fluctuations. Consider, for example, the mean-square extension
~R2

ij + [~u2
ij] of a network strand.† It follows from the equipartition theorem that the total thermal

energy in the fluctuations,Ufluc, is given by 3
2kBT times the number of modes and therefore

Ufluc = 3
2kBTNnodes = 2

f
3
2kBTNstrands, whereNnodes andNstrands are the number of junction

points and network strands, which are related byNstrands = f
2Nnodes in anf -functional network.

Equating the thermal energy per strand tok
2

〈
~u2

ij

〉
, one obtains [6, 42, 85]

〈u2
ij〉 =

2
f

〈
r2
〉

. (2)

† We use[. . .] to denote time and〈. . .〉 to denote ensemble averages.
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In this paper we always consider uni-axial elongations

↔
λ=

 λ

1/
√

λ

1/
√

λ

 (3)

This volume-conserving deformation (det(
↔
λ) = 1) is the standard choice [1] for rubber-like

materials, since they can be considered to be incompressible with a Poisson ratio of1
2 .

The shear modulus of the phantom model is given by

Gph =
1
3

1
V

d2Fph

d λ2

∣∣∣∣∣
λ=1

=
〈R2

strand〉
〈r2〉 ρstrand kBT (4)

where〈R2
strand〉 = 〈R2

ij〉 denotes the expectation value of the square of the mean extension of the

network strands. The deformation (3) induces a normal stressσT =
〈
σxx − 1

2(σyy + σzz)
〉

=
λ
V

dF
dλ

, where theσαα are the diagonal elements of the microscopic stress tensor, which can be
written in the form

〈σT 〉 =
∑

〈i,j<i〉
k
(
X2

ij(λ) − 1
2

(
Y 2

ij(λ) + Z2
ij(λ)

) )

+
∑
p

kp

〈
u2

px(λ) − 1
2

(
u2

py(λ) + u2
pz(λ)

)〉
. (5)

Equation (5) is the proper generalization of the usual Doi–Edwards [25] expression for the stress
tensor. In the case of the phantom model the second term is deformation independent and vanishes
for networks with cubic symmetry. In the long-time limit after a step strain, equation (3), the
normal stress converges to

〈σT 〉 (t → ∞) = (λ2 − 1
λ

)G . (6)

2.2. Phantom diamond networks

In this paper we study polymer networks with diamond lattice connectivity. As phantom networks
they show very large fluctuations (see for example video6). In spite of the apparent irregularity
of individual network conformations, theaveragecross-link positions form a crystal lattice given
by the connectivity [4]. Each strand has the same, non-zero mean extension

∣∣∣~R1

∣∣∣ equal to the
bond length the lattice. This length is in principle arbitrary. In our simulations we have chosen∣∣∣~R1

∣∣∣ =
√

〈r2〉. The subscript indicates the extension ratioλ = 1. The distribution of themean

strand end-to-end distances is therefore given bypmean
strand(x) = 1

2 (δ(x − X1) + δ(x + X1)) with

X1 = 1√
3

∣∣∣~R1

∣∣∣. †
† The problem of calculating〈R2

strand〉 for a randomly cross-linked network was solved by Flory [6]. He noted
that the ensemble average of the strand conformations is the same as in a melt, only that for a network it is the result
of a convolution of the distribution ofmeanstrand extensions~Rij with fluctuations of the strands around their mean
extensions~uij . Using equation (2) this leaves〈R2

strand〉 = (1 − f/2)
〈
r2
〉

for a randomly cross-linked network.
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As shown in the previous section, in a diamond phantom network with four-functional cross-
links the strand extensions fluctuate around their mean values by an amount of∆2 = 1

2 〈r2〉
[6, 85]. For our particular choice of the lattice constant we expect for the vector~∆1 of

fluctuation widths in the three spatial dimensions
∣∣∣~∆1

∣∣∣2 = 1
2 |~R1|2. The strand end-to-end distance

distribution at any particular instant in time is given by the convolution ofpmean
strand(x) with the

normally distributed fluctuations, [6] yielding a superposition of two symmetric Gaussian peaks
of width ∆1x = 1√

3

∣∣∣~∆1

∣∣∣ around±X1:

pstrand(x) =
1
2

1√
2π∆λx(

exp(−(x − Xλ)2

2 (∆x
λ)

2 ) + exp(−(x + Xλ)2

2 (∆x
λ)

2 )
)

(7)

with p(x, y, z) = p(x)p(y)p(z), ~Rλ =
↔
λ ~R1, and~∆λ = ~∆1. The shear modulus of our phantom

diamond networks is thus given by

Gph = ρstrandkBT. (8)

2.3. The constrained mode model

The phantom model completely neglects entanglements between network strands due to their
mutual impenetrability. The topological constraints strongly reduce the fluctuations, an effect
which is often visualized using the image of a tube around the coarse grained contour of a long
chain to which its fluctuations are confined. A simple way to account for the confinement of
the strands of a polymer network is provided by the constrained mode model (CMM) [42].
Deformation-dependent constraints are modelled as linear forces which act independently on
the eigenmodes of the phantom model:

Hconstr =
∑
p

1
2
(~up − ~vp(λ))t

↔
lp (λ) (~up − ~vp(λ)) (9)

The constraint forces vanish at randomly chosen excitations~up = ~vp(λ). The usual restoring
forces for a free mode, on the other hand, vanish at~up = 0. Both forces are linear

with spring constants
↔
lp (λ) and kp. As a consequence, thetime averageof the Cartesian

componentα of a particular modeis given by fluctuations around non-zero equilibrium values
[upα] = Upα(λ) = vpα(λ)

kp/lpαα(λ)+1 with a reduced amplitude[δu2
pα] ≡ [(upα−Upα(λ))2] = kBT

kp+lpαα(λ) .
For randomly quenched topologies theensemble average over many equivalent modes

remains unchanged compared to the phantom model. This can be used to express the expectation
values in the unstrained state in terms of a single parameterγp, which measures how strongly
the fluctuations of thepth mode are confined:〈u2

pα〉 = 〈U2
pα〉 + 〈δu2

pα〉 = γp
kBT
kp

+ (1 − γp)kBT
kp

with γp = lp(λ=1)
kp+lp(λ=1) and〈v2

pα〉(λ = 1) = γ−1
p

kBT
kp

. The extreme cases areγp = 0 andγp = 1
corresponding to completely free and completely frozen fluctuations respectively.
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With the choice [42] ~vp(λ) =
↔
λ ~vp and

↔
lp (λ) =

(↔
λ

)−2 ↔
lp of affinely moving and deforming

constraints the model is now completely specified and some general conclusions can be drawn
with respect to the microscopic deformations. The mean excitations,

Upα(λ)
Upα(1)

=
λαα

(1 − γp)λ2
αα + γp

, (10)

of partially frozen modes deformsub-affinely. Only in the limitγp → 1 one findsUp(λ) =
λUp(1). A similar result holds for the width of the fluctuations:

〈δu2
pα(λ)〉

〈δu2
pα(1)〉 =

λ2
αα

(1 − γ)λ2
αα + γ

. (11)

While the fluctuations are deformation-independent for unconstrained modes, their width
increases sub-affinely for0 < γ < 1. For completely frozen modes withγ ≡ 1, 〈δu2

pα(λ)〉 ≡ 0
independent ofλ. Not surprisingly, the predictions concerning the elastic properties are also
modified compared to the phantom model. First, the confined fluctuations contribute to the
small-strain shear modulus:

Gcm = Gph +
kBT

V

∑
p

γ2
p . (12)

Second, they produce corrections to the ideal stress–strain behaviour equation (6), which is
recovered only in the two limiting cases ofγ = 0 and γ = 1. When plotted in the usual
Mooney–Rivlin form [42], the corrections qualitatively resemble those observed in experiments,
which is encouraging but certainly no proof for the correctness of the ansatz.

An interesting point for the data analysis is the continued validity [42] of equation (5)
within the CMM (or any other model with affinely deforming constraints) even for partially
confined modes. While the true and the entropic normal tensions can therefore be directly
compared, this is not the case for the elastic free energy, which is partially stored in the
constraints. The time evolution and confinement of the different modes is best characterized by
the ensemble average of their auto-correlation functioncp(t) = 〈~up(t) · ~up(0)〉. The quantities
discussed in the CMM are related to this function by:〈u2

p〉 = cp(0), 〈U2
p 〉 = limt→∞ cp(t), and

〈δu2
p〉 = limt→∞(cp(0) − cp(t)). The auto-correlation functions can also be used for a heuristic

generalization of equation (12) to a time-dependent shear relaxation modulus

Gcm(t) = Gph +
kBT

V

∑
p

〈~up(t) · ~up(0)〉〈
~u2

p

〉
2

. (13)

Equation (13) reduces to the Rouse-model result [25] GRouse(t) = Gph + kBT
V

∑
p e−2t/τp for

γ = 0 and should decay to the asymptotic value (12) on similar time scales as the true shear
relaxation modulus. Equation (13) is slightly different from the expression employed by Duering
et al [72, 75, 77]. For a discussion of this point see [42].
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2.4. Systems with quenched regular topology

A particular situation arises in systems with a conservedregular topology such as our regular
IPDN. In this case, the fluctuations~δup are reduced compared to the phantom model but, due to
symmetry, for each mode centred around zero. For the same reason, the time average for each
individual mode is identical to the ensemble average over all equivalent modes. However, the
latter now differs from the phantom network value. Within the above model,~vp(λ) = ~Up(λ) = 0
and〈δu2

pα〉 = (1 − γpα)〈u2
pα〉ph, whereγ is defined as before. The deformation dependence

is now exclusively described by equation (11). Quite interestingly, there is a contribution to
the shear modulus of the formGcm = Gph + kBT

V

∑
p γp(1 − γp) even though the mode auto-

correlation functions decay to zero. In contrast to the random case, a completely confined mode
has a (deformation independent) zero excitation and does therefore not contribute to the shear
modulus. For asymmetric confinement,γp|| 6= γp⊥, there is a non-vanishing normal stress at
zero strain and it is no longer possible to define a simple shear modulus.

2.5. Classical rubber elasticity: the constrained junction models

The classical theories of rubber elasticity [1], [4]–[6], [19]–[23] date back more than half a
century and can qualitatively explain many aspects of the physics of rubber elasticity. They are
based on the assumption that the elastic response of rubber has its sole origin in the elongation
of the network strands. In this view the main effect of entanglements is a partial suppression of
the junction fluctuations [19]–[23]. The latter are usually treated as independent, i.e. using the
Einstein model for phonons. The parameterγp corresponds toγ = κ

κ+1 in Flory’s first paper on
constrained junction models [20].

Consider a particular junction pointi of anf -functional network. If one assumes that its
topological neighbours are fixed at their equilibrium positions~Rj, a displacementuiα of nodei

in one spatial directionα requires an energyfk
2 u2

iα. Treating these displacements as independent
eigenmodes (‘Einstein modes’) with spring constantkp = fk, one can use the equipartition
theorem to obtain〈u2

iα〉 = kBT
fk

. As a consistency check, we note that this result implies that
the extension of a particular network strand should undergo thermal fluctuations of a width
〈|~uij|2〉 = 2〈|~ui|2〉 = 2 × 3kBT

fk
= 2

f
〈r2〉 in agreement with equation (2). In fact, using this

argument one can simplify the data analysis and follow the fluctuations of the extensions of the
network strands instead of the cross-link motion.

The strength of the confinement can be estimated using arguments from the tube model.
For network strands whose length exceed the melt entanglement lengthNe the fluctuations
of the junction points are restricted to the tube diameter〈r2〉 (Ne). In this case one finds
Ne ∼ 〈δu2

pα〉 = (1 − γp)〈u2
pα〉 ∼ (1 − γp)N or γ = 1 − Ne

N
. Contrary to what one might

expect, the constrained junction model predicts deformations of the mean strand extensions,
which forλ >

√
N/Ne are much weaker than affine. This was already noted by Flory, who did,

however, not make the connection to the tube model.
In the limit of infinitely long chains,N → ∞, one recovers the predictions of the oldest

model of rubber elasticity, the junction affine model. Using the result that there are2
f

modes per
network strand and equation (8) for the shear modulus of the phantom model the CMM predicts:

Gaff =
3
2
ρstrandkBT (14)
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The junction affine model assumes that the surrounding molecules suppress the movements of
the junction points so strongly that the latter’s instantaneous positions (and not only their mean
positions as in the case of the phantom model) change affinely with the shape of the sample. For

the diamond networks this implies~Rλ =
↔
λ ~R1 and~∆λ =

↔
λ ~∆1 and leads directly to equation (14).

Note, that the affine model constitutes anupper limitfor the modulus predicted from a classical
theory.† In a first test [78] of the classical picture we have shown that the shear moduli of
random IPDN exceed the affine limit, providing quantitative proof that one cannot calculate the
elastic moduli from this ansatz. In this paper we present a more detailed comparison between
our simulation results and the predictions of the constrained junction models.

2.6. The tube model

At present, the tube model of Edwards [24] and the reptation theory of de Gennes [48] are the most
successful approach to the problem of entangled polymer systems [25]–[28]. The geometrical
constraint is much easier to handle than the topological constraints discussed in the following
section.

In section2.1we have discussed phantom networks where the strands between the(f > 2)-
functional junction points are replaced by a entropic spring of strengthk. In addition to the
constraints on the motion of the junction points introduced in the previous section, the non-
classical theories of rubber elasticity consider restrictions of the fluctuations of the strands
between the junction pointssuch as tubes or slip-links [11, 43]. It is easy to see that dividing the
network strands into Gaussian sub-strands (i.e. formally introducing additional, two-functional
junction points along the strands) changes nothing for a phantom network. The spring constant
is doubled for a strand of half the original length, i.e. if an entropic spring of spring constant
k is replaced by a linear sequence ofN springs the latter have a spring constant ofN k.
Furthermore, the equilibrium positions of the new (f = 2) functional cross-links are along
the line connecting the equilibrium positions of the original endpoints. Since〈R2

N〉 = 1
N2 〈R2〉,

one findsk N
∑N

i=1〈R2
N〉 = k〈R2〉 and the predicted modulus remains unchanged.†

The fluctuations of the strand conformations between the cross-links are most naturally
analysed in terms of single chain Rouse-modes [25]. Duering et al [72, 75] have used this
method to characterize the relaxation of entangled chains in (un)cross-linked melts [72, 75].
For the present purposes, it turns out to be convenient to regard the chain ends as fixed
at ~r0(t) ≡ ~R0 and~rNstrand(t) ≡ ~RNstrand in contrast to the previously used open boundary
conditions [72, 75]. One can then expand the deviations~ui(t) = ~ri(t)− ~Ri from the equilibrium
positions~Ri = ~R0 + i/Nstrand

(
~RNstrand − ~R0

)
in terms of sin-Rouse-modes:

~up(t) =
1

Nstrand + 1

Nstrand∑
i=0

~ui(t) sin
(

pπi

Nstrand

)
(15)

† The ratioGaff/Gph = 3/2 is an artifact of our choice of
〈
r2
〉1/2

for the bond length of the diamond lattice. In

general, for anf -functional lattice one recovers the standard relationGaff/Gph = f
f−2 by setting~R 2

1 = f−2
f

〈
r2
〉
.

† Gao and Weiner [86] recently analysed the stress relaxation in a sheared melt of long-chain molecules along
these lines from a sub-strand analysis. For many purposes this method is equivalent to the mode analysis. The
latter offers the advantage of being compatible with the CMM and of naturally providing the length scales where
entanglement effects become relevant.
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H =
k

2

(
~R0 − ~RNstrand

)2
+
∑
p

kp

2
~u2

p (16)

kp =
2π2k

Nstrand
p2 (17)

As the Einstein modes describe the fluctuations of thejunction points, the Rouse modes (15)
describe the fluctuations of themonomersaround their respective equilibrium positions. Together
the Einstein and the Rouse modes form a complete and orthogonal basis set. In particular, they
are like the true eigenmodes of the phantom modelindependentof size and shape of the network
and allow a simple distinction between classical and non-classical entanglement effects.

We can again use the CMM to discuss the consequences of a confinement of the Rouse
modes due to entanglements. Consider the limit of long strands ofNstrand → ∞ Gaussian
units, where the classical contribution to the shear modulus becomes negligible:Gclass ≤ Gaff =

ρ
Nstrand

kBT → 0 (ρ here denotes the number density of the Gaussian units). The simplest ansatz

for thep-dependence of the confinement parameter is a step functionγp = Θ
(
p − Nstrand

Ne

)
, so

that all modes with a wavelength larger than the entanglement length,Ne, are completely frozen.
The shear modulus is obtained by multiplying the number of frozen modes per chain,Nstrand/Ne,
with the chain densityρ/Nstrand:

Gtube =
Nstrand

Ne

ρ

Nstrand
kBT =

ρ

Ne
kBT. (18)

As already discussed in section2.3, partially frozen modes with0 < γp < 1 lead to a weaker
than affine deformations of both, the tube axes and the tube diameter, and to the characteristic
Mooney–Rivlin corrections to the ideal stress–strain curves.

2.7. Topological theories of rubber elasticity

Already thirty years ago Edwards had outlined the two essential steps in a rigorous treatment
of the topological constraints [7, 8]. The first step is the characterization of the state of the
network in terms of an—in principle infinite—set of topological invariants. For example, the
Gauss linking number (GLN)

I =
1
4π

∮ ∮ (d~r1 × d~r2) · (~r1 − ~r2)
|~r1 − ~r2|3 = 0, ±1, . . . (19)

could be used to distinguish between entangled (I 6= 0) and non-entangled pairs of loops or
meshes [87]. Although the use of the GLN is only justified for simple link topologies [87], it is the
only topological invariant which can be incorporated into the standard polymer formalism [2, 87]

The second step is the calculation of the elastic response from quenched averages in which
these invariants are conserved. Analytic attempts along these lines are very complex [2, 12, 13]
even though they only take two-loop interactions into account. They require numerous and
often uncontrolled approximations and no satisfactory treatment has been put forward so far.
A principal problem in the development of topological theories is the question how they can
be tested experimentally. At least to our knowledge, there is no experimental technique that
could provide information on the microscopic topological state of a sample and thus help to test
the validity of the underlying concepts. Computer simulations offer the unique possibility to
overcome this difficulty. In fact, we chose the particular geometry of the IPDN with the intention
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to determine the linking states of the meshes of these conveniently regular networks. Our analysis
is based on [49] a theory which is complementary to the single-chain ansatz described above.
The model of Graessley and Pearson [11] defines entanglements as links between closed loops
(meshes) of the network. Their effects are included as additional entropic springs acting between
the mesh centres of mass (CM). The effects on the strand conformations are ignored.

The underlying idea of an entropic interaction between two loops due to the conservation of
their topological state was introduced by Vologodskiiet al [37, 38]. Consider two rings of length
N with CM distance~r. If the rings do not interact, then for all values of~r the accessible phase
space volumeΩ is trivially given by the product of the phase space volumes of the individual
rings. Naturally, there is no restoring force if the distance of the rings changes. The situation is
different if topology conservation is introduced. The phase space becomes divided into disjunct
regions for topologically equivalent conformations. To a first approximation, there are only
two classes, linked and non-linked rings, so thatΩlinked(~r) + Ωnon−linked(~r) = Ω. Consider the
entropy of an ensemble of ring pairs which had a CM distance~r0 when the topology conservation
was introduced†. The probability that the rings are linked is given byf(~r0) = Ωlinked(~r0)/Ω.
The entropy of the ensemble,S = f(~r0)kB log(f(~r)) + (1 − f(~r0))kB log(1 − f(~r)), thus not
only depends on the actual ring distance~r but also on~r0. In fact, for small deviations from the
original distance one can writeS(~r) = S(~r0)− f ′2(~r0)

f(~r0)(1−f(~r0))(r − r0)2. While the individual ring
pairs either attract or repel each other depending on whether or not they are linked, there ison
averagea (linear) restoring force to the state the members of the ensemble were in, when the
topology was quenched.

For the chain length dependence of the linking probability one expectsfN(r) = f(r/N1/2),
even thoughf(~x) is not generally known. There are some rigorous results [88], approximative
analytic treatments [89]–[91], [17], Monte Carlo simulations of pairs of closed random walks on
a lattice [37, 38, 50, 88, 92], and our own results for the meshes of the diamond networks [49].
For finite N it turns out to be useful to define a ‘linking radius’4π

3 R3
L = 1

2

∫
d3r fN(~r) and

to considerfN(r) = f(r/RL(N)) in order to reduce the finite size corrections to the scaled
distribution function.

For loops which are randomly distributed in space with a densityρloop and a spherically
symmetric linking probability one can define an entanglement (link) density:

ρlink = 2πρ2
loopR

3
L

∫ ∞

0
x2 f(x) dx . (20)

In their attempt to estimate the topology contribution to the shear modulus of polymer networks
Graessley and Pearson (GP) [11] assumed (1) thatf(~x) remains unchanged under deformations
of the sample, i.e. they ignored distortions of the loop shapes, (2) that the contributions of the
different loop pairs are independent and additive, and (3) that the positions of the loop CM

change affinely with the deformation
↔
λ of the sample. The loop contributionGlink to the shear

modulus can be written in the form:

Glink = a[f(x)] ρlink (21)

a[f(x)] =
kBT

15

∫∞
0

x4f ′2(x)
f(x)(1−f(x)) dx∫∞

0 x2 f(x) dx
. (22)

† In an experiment this is the moment when the second ring is closed; in our simulations it is the time we introduce
the excluded volume interaction between all monomers (see section3.5).
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Under the assumption that—up to a prefactora0 of order one—the effect of topology conservation
can be identified withGlink, the total shear modulusG is given by:

G = Gph + a0 a[f(x)] ρlink . (23)

In this paper we provide more details of a quantitative test [49] of the model of Graessley and
Pearson for random IPDN and discuss its applicability to the case of regular IPDN.

3. The simulation model

We use the same coarse-grained model as in earlier investigations of polymer melts and networks
by Kremer and Grest [72, 75]. The polymers are modeled as freely jointed bead spring
chains of uniform lengthN and are cross-linked into several, inter-penetrating networks with
the connectivity of a diamond lattice. The systems are weakly coupled to a heat bath and
relaxed in molecular dynamics simulations by integrating a Langevin equation. By varying the
interaction potentials between the monomers we can simulate ensembles with or without topology
conservation. They are characterized by the energy barrierUcross for the mutual penetration of
two chains. The networks reside in a cubic simulation box with periodic boundary conditions.
Strain is introduced by stretching the simulation box in one direction with appropriate rescaling
of the other two dimensions in order to conserve the volume. The latter is no serious restriction,
since rubber typically has a Poisson ratio close to1

2 .

3.1. Systems with conserved topology

For the excluded volume interaction between the monomers we usually use a Lennard–Jones
(LJ) potential which is truncated in the potential minimum at21/6σ:

ULJ(r) =

 4ε
{(

σ
r

)12 −
(

σ
r

)6
+ 1

4

}
r < 21/6σ,

0 r ≥ 21/6σ.
(24)

σ and ε are the LJ units of length and energy. Time is measured in units ofτ = σ
√

m
ε

.
Monomers additionally interact with their two (or, if they are cross-links, with their four) chemical
neighbours via the an-harmonic FENE (‘finite extendable non-linear elastic’ [93]) potential:

UFENE(r) =

 −30
2

εR2
0

σ2 ln
(
1 −

(
r

R0

)2
)

if r < R0,

∞ otherwise,
(25)

with R0 = 1.5σ. The energy barrierUCross for the mutual penetration of two chains can be
estimated by considering two pairs of bonded monomers oriented perpendicular to each other
and with a distanced between the centres of the bonds. Ford → 0 the bonds stretch. However,
the energy barrier ofUCross ≈ 70kBT is sufficiently high to ensure topology conservation in our
simulations. We worked at a temperaturekBT = 1ε and at a densityρ = 0.85σ−3. The average
bond length wasl = 0.97σ. The relevant length and time scales for chains in a melt are the
mean-square end-to-end distance〈R2〉(N) ≈ 1.7l2N , the melt entanglement lengthNe ≈ 35
monomers, and the Rouse time [25] τRouse ≈ 1.5N2τ [72].
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3.2. Phantom chains

For comparison we also investigate two different ensembles without topology conservation but
very similar static properties of the chains. To simulate phantom chains we restrict the LJ
interaction to nearest and next nearest neighbour monomers along the chains. The chains can
cross each other freely withUCross = 0 and have a certain stiffness due to the next-nearest-
neighbour interaction. The expectation value for the bond angleθ is given by:

〈cos(θ)〉 =
∫ π
0 dθ sin(θ) cos(θ)e−ULJ(r(θ))/kBT∫ π

0 dθ sin(θ)e−ULJ(r(θ))/kBT
≈ 0.274 , (26)

wherer(θ) = 2l sin((π − θ)/2) is the distance between next-nearest-neighbour monomers.
Since we do not count cross-links as next-nearest neighbours there are no restrictions on

the first and last bond of each network strand. The mean-square end-to-end distance of two
cross-links connected by aN monomer strand is given by

〈r2〉(N) = 2l2 + (N − 1)l2×(
1 + 〈cos(θ)〉
1 − 〈cos(θ)〉 − 1

N − 1
2〈cos(θ)〉(1 − 〈cos(θ)〉N−1)

(1 − 〈cos(θ)〉)2

)

= cN(N + 1) =


1.56l2(N + 1) for N = 12
1.66l2(N + 1) for N = 26
1.70l2(N + 1) for N = 44

(27)

Characteristic for the dynamics is the Rouse time

τ
(ph)
R =

ΓN2cN l2

3π2kBT
= 0.054N2τ . (28)

For a friction constantΓ = 1.0τ−1 the monomer friction in the true melt is more than twenty
times larger than the friction due to the coupling to the heat bath.

3.3. Systems with annealed topology

In order to calculate averages over an ensemble with annealed topology where polymer chains
are able to cross each other [76], we replace the LJ-interaction with a ‘soft-core’ potential:

USC(r) =


4.44ε if r < σ,
2.22ε

{
cos

(
π(r−σ)

(21/6−1)σ

)
+ 1

}
if σ ≤ r ≤ 21/6σ,

0 otherwise.
(29)

R0 in equation (25) is increased to1.75σ. In contrast to the original investigations we here
only reducedUFENE and not the total interactions between neighbouring bonds by a factor
0.175. The energy barrierUCross ≈ 4kBT is still low enough to allow the chains to penetrate
each other so that an ensemble with variable or annealed topology is simulated. However, this
involuntary modification may have contributed to the very long relaxation times we observed in
the corresponding simulations. Even with this slight modification properties such as monomer
packing, Rouse friction, pressure or strand persistence length remain practically unchanged
compared to the simulations with the Lennard-Jones potential.
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3.4. Diamond networks

We investigate model polymer networks with the connectivity of a diamond lattice. The regular
structure was chosen to isolate the effects of topology conservation from other forms of quenched
disorder, while we selected the diamond lattice for its four-functionality. In each diamond net
polymer chains consisting ofN monomers are initially arranged along the bond vectors of a
diamond lattice. The cross-links are placed on the lattice sites and connected to end monomers
of four chains. During the simulation the networks including the cross-links can move freely and
the lattice structure is preserved only in the connectivity. The simulation box contains several,
mutually inter-penetrating diamond nets, which arenot chemically connected, but permanently
entangled. The regular and defect free connectivity of the networks is especially suited for a
comparison to topological theories of rubber elasticity. The following vector notation, while
giving the initial spatial positions, is predominantly used in order tolabel the cross-links and
chains in such a way that it becomes possible to identify the monomers forming an elementary
mesh of the network.

The diamond lattice is a fcc lattice with a two-atom basis. Each unit cell contains 8 atoms
and 16 bonds. The primitive cell is spanned by the three basis vectors~a1 = a

2(1, 0, 1), ~a2 =
a
2(1, 1, 0), ~a3 = a

2(0, 1, 1), wherea is the edge length of the unit cell. The two atoms of the
basis are located at(0, 0, 0) and a

4(1, 1, 1). Atoms connected by covalent bonds are located on
different sub-lattices. From each atom on the first sub-lattice there originate four bond vectors:
~b1 = a

4(1, 1, 1), ~b2 = a
4(1, 1, −1), ~b3 = a

4(1, −1, 1), ~b4 = a
4(−1, 1, 1) . For atoms on the second

sub-lattice the bond vectors have the opposite sign:−~b1, −~b2, −~b3, −~b4.
The meshes of the diamond lattice consist of six atoms and six bonds. A mesh can

unambiguously be identified by choosing one atom on the first sub-lattice as the origin and
a triple of pairwise different bond vectors for the first three bonds, e.g.(~b1, −~b2,~b3). In order to
return to the origin, the same three bonds have to be used in the same order for the next three
steps. The signs are inverted automatically, because the starting point for the second half is
on the second sub-lattice. Thus, there are 24 possibilities per fcc lattice site. However, for a
given mesh, one has the choice between three different atoms for the origin and a clockwise
and counter-clockwise listing of the bonds. Eliminating the permutations in the order of bond
vectors leaves four different meshes per fcc lattice site:(~b1, −~b2,~b3), (~b1, −~b2,~b4), (~b1, −~b3,~b4)
and(~b2, −~b3,~b4). The number of meshes equals therefore the number of bonds and each bond
is part of six meshes. Note, that it is not possible to partition the 16m3 bonds contained inm3

fcc cells into a set of meshes without using some bonds more than once.
Polymer networks with diamond lattice connectivity are a straightforward extension of the

Flory–Rehner tetraeder model. In this spirit we choose the edge lengtha(N) so that the bond
length equals the root-mean-square end-to-end distance of free chains of length(N + 2) (i.e.
strand plus cross-links) in a melt:

a(N) =
4√
3

√
1.7(N + 1) 0.97 σ . (30)

The monomer density of the diamond nets

ρNet(N) = 8
2N + 1
a3(N)

∼ N−1/2 , (31)

is smaller than the melt density0.85σ−3, so that a superposition ofn independent diamond nets
is required in order to reach this value. We refer to these structures as inter-penetrating diamond
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Figure 5. Strand lengthN dependence of the density ofn inter-penetrating
diamond nets under the condition equation (30).

Table 1. Investigated systems.

Strand length Diamond nets fcc cells Strands Monomers
N n m × m × m Nch Ntot

12 5 2 × 2 × 2 640 8000
12 5 3 × 3 × 3 2160 27000
26 7 2 × 2 × 2 896 23744
44 9 2 × 2 × 2 1152 51264

networks (IPDN). We use only systems which fulfil the conditionnρNet(N) ≈ 0.85σ−3. Figure5
shows that the investigated chain lengths ofN = 12, 26, 44 correspond ton = 5, 7, 9 diamond
nets. The total system size depends on the number of fcc cells in the simulation box. We used
systems consisting of2 × 2 × 2 (3 × 3 × 3) cells, which corresponds to 64 (216) cross-links and
128 (432) strands per diamond net. Table1 lists the investigated systems.

3.5. Regular and random inter-penetration

The topology of the systems depends on the preparation. We have investigated regular and
random IPDN as examples for systems which are identical except for the topological constraints.
As in experimental systems, spatial neighbour cross-links are usually not connected by a network
strand. In our case they belong to different diamond nets. Their numbern corresponds to the
Flory number, which is defined as the number of cross-links in the volume of a network chain.

Simulations of regular IPDN start from intercalating conformations of strongly swollen
networks with completely stretched strands. In MD runs the conformations are slowly
compressed to melt density. The important point is that the topology conserving LJ interaction
between all monomers is used right from the beginning.

The initial conformations for the random IPDN are set up at melt density. Between the
cross-links on the diamond lattice sites we place phantom chains with the proper end-to-end
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Table 2. Simulation times in units ofτ of the investigated systems.

Phantom Annealed Random Regular
N IPDN IPDN IPDN IPDN

12 λ = 1.0 500 4500 3000 3000
λ = 1.6 500 6000 4500 4500

12 λ = 1.0 500 — 3000 3000
λ = 1.5 — — 4500 —

26 λ = 1.0 2000 15000 12000 12000
λ = 1.5 — 15000 15000 15000

44 λ = 1.0 8000 15000 12000 12000
λ = 1.5 8000 15000 15000 40000

distance. These phantom chains are generated in Monte Carlo simulations using the potentials
defined above. After the relaxation of the lattice structure in MD runs for phantom chains,
we introduce the repulsive excluded volume interaction between the monomers. This is done
by slowly building up a cosine potential up to a point where the monomer distances are large
enough for the LJ potential. From that point onwards the random topology is quenched [80].
The procedure is illustrated in video-sequence 1.

3.6. Simulation runs

The systems are weakly coupled to a heat bath and relaxed in molecular dynamics simulations
by integrating a Langevin equation:

m
d2~ri

dt2
= −~∇Ui − Γ

d~ri

dt
+ ~Wi(t) . (32)

~ri is the position of theith monomer with massm, Ui its potential energy and~Wi a random
force with〈 ~Wi(t)〉 = 0 and whose strength is related by the fluctuation-dissipation theorem to
the friction constantΓ and the temperatureT : 〈 ~Wi(t) · ~Wj(t′)〉 = 6kBTΓδij δ(t − t′). The time
step for the integration was0.01τ . The program was vectorized for the Cray YMP using the grid
search algorithm [94] for the excluded volume interactions. The performance was about3× 106

particle updates per second.
To facilitate the deformation of the simulation box we internally represent the coordinates

as reduced vectors in a unit cube[−1/2, 1/2]3. The true distances are calculated using a metric

L2↔
λ

t ↔
λ, whereL is the edge length of the unstrained simulation box. In our simulations we

consider volume-conserving uni-axial elongations by a factor ofλalong thex-axis (equation (3) ),
the standard deformation treated in theories of rubber elasticity. In runs withλ 6= 1 the strain
is introduced at the beginning as a sequence of small deformations. Subsequently we perform
relaxation runs of the order10τRouse(N) (table2). Particle coordinates are stored on tape every
30–50τ depending on the strand length.
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Table 3. Internal energies in units ofε in the strained and unstrained state.

Phantom Annealed Random Regular
N IPDN IPDN IPDN IPDN

12 λ = 1.0 16703 27123 19760 19784
λ = 1.6 16726 27117 19763 19787

12 λ = 1.0 56358 — 66736 66766
λ = 1.5 — — 66714 —

26 λ = 1.0 49443 80729 58590 58634
λ = 1.5 — 80722 58582 58634

44 λ = 1.0 106629 174468 126426 126520
λ = 1.5 106628 174454 126416 126511

4. Results

4.1. Entropic origin of the network elasticity

Of immediate interest in the analysis of computer simulations of strained model polymer networks
is the behaviour of the internal energy. The values listed in table3demonstrate that for elongations
of the samples of the order of 50% the internal energy is virtually identical to the unstrained
state. This holds for phantom IPDN† as well as for IPDN with conserved and annealed topology.
The strain invariance of the internal energy implies that our model systems show ideal rubber
elasticity with restoring forces exclusively due to a change of entropy. While this agrees with
most experiments, we note that the absence of enthalpic contributions is not built into the model.
In principle, elastic energy can be stored in the springs connecting the beads. However, this
effect only comes into play for large deformations (see figure4 and the second video sequence
6) when the chains are nearly stretched to their full contour lengths.

4.2. Stress relaxation in deformed networks

To follow the relaxation of the normal stresses we calculate the pressure tensor using a formulation
of the virial theorem where only the relative particle positions enter [95]:

↔
σ V =

∑
i

mi~vi ⊗ ~vi

+
∑

〈i<j〉

~rij ⊗ ~rij

rij

(
d UFENE(r)

dr

)
r=rij

† The only system which displays a small increase in the internal energy under strain is the phantom IPDN with
N = 12. This might be related to the comparatively strong finite chain length effects we observed for this systems
in general. In all other cases the energy differences, when converted into an estimate for the energetic contribution
to the shear modulus, are of the order of|GU | < 0.001ε/σ3, which is less than our error estimate for the measured
shear moduli.
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Figure 6. Stress relaxation for random IPDN withN = 12 after an elongation
of 60%: (a) the original data; (b) after averaging over blocks of a width of600τ .
The Rouse time for the strands is about220τ .

+
∑
i<j

~rij ⊗ ~rij

rij

(
d ULJ(r)

dr

)
r=rij

. (33)

Figure6 shows a typical result for the relaxation of the normal stress

σT = σxx − 1
2(σyy + σzz) , (34)

to an asymptotic value. We find that even for a deformation of 60% the induced normal stress
of 0.2ε/σ3 is smaller than the width of the thermal fluctuations, so that a very long averaging is
required. In particular, it is not possible to determine normal stresses for strains that are small
enough to allow the application of linear elasticity theory. For the simulation times listed in
table2 the stress relaxation is completed after the first quarter of the runs. Conformations stored
during this period were discarded for the analysis of equilibrium properties in the strained state.

Experimental stress–strain curves usually follow the classical prediction [1] σT = G(λ2 −
1/λ) for elongations up to between 50 and 100%. Figure7 shows that this is also the case for our
model systems, at least for the case ofN = 12. We also note the good agreement between the
results for large and the small random IPDN withN = 12, which indicate that neither the system
size nor the disorder average is critical. Due to the long simulation times we restricted ourselves
for the larger systems toλ = 1.5. The elongation is sufficiently strong to provoke a measurable
response outside the statistical noise and should still be inside the neo-Hookean regime. The
shear moduliG listed in table8 were determined with good accuracy from the slope of a straight
line neglecting possible corrections of the Mooney–Rivlin type to the ideal stress–strain relation.
Note that this approximation tends tounderestimatethe small-strain shear moduli. Finally we
mention a peculiarity of the regular IPDN. These systems have a small negative normal stress in
the unstrained state, but the observed stresses for finite strain still fall onto a straight line when
plotted as in figure7.

The values found for the shear moduli of phantom, annealed, and—quite interestingly— of
regular IPDN show a remarkable agreement and display the1/N -behaviour expected from the
classical theories (figure8). Slightly increased values are found for the short phantom chains
and the regular IPDN withN = 44. In the first case, the deviations are a little higher than
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Figure 7. Stress–strain curves for random IPDN:N = 44 (squares),N = 26
(+), (N = 12) (�). The filled symbol represents a measurement for the large
system withN = 12.
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Figure 8. Strand length dependence of the shear moduli of IPDN: random IPDN
(�), regular IPDN (4) and IPDN with annealed topology (squares). The solid line
shows the prediction of the phantom model, the dashed line a rough extrapolation
of the results for random IPDN to infinite strand length. For comparison we have
included results of the mode analysis for end-linked melts [77, 75] (×).

expected from the stiffness equation (27) of the phantom chains. The good agreement between
the results for phantom and annealed IPDN confirms theoretical considerations that excluded
volume interactions as such do not contribute to the elastic response [96].

That the conserved topology in regular IPDN has such a small effect on the shear modulus
is an interesting effect in itself. The deviations from the phantom model for the largest strand
length,N = 44 > Ne are just outside our estimated margins of error. No reliable extrapolation
is possible to the limitN → ∞.
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Figure 9. Probability distribution for one Cartesian coordinate of the strand end-
to-end distances in IPDN withN = 44: random (squares), regular (4), annealed
(∗) and phantom (�) IPDN. The lines are fits to equation (7). The parameters are
listed in table4. For clarity, we included only thex-component for regular IPDN.

For the random IPDN we find significantly higher shear moduli than for the other systems.
The entanglement contribution to the modulus

Grand. IPDN − Gph

Grand. IPDN
=


0.30 ± 0.03 for N = 12
0.42 ± 0.04 for N = 26
0.49 ± 0.05 for N = 44

(35)

is very high even forN < Ne. In contrast to the predictions of the classical models, the
shear moduli of the random IPDN donot extrapolate to zero (figure8) but to a finite value
G(N → ∞) = 0.018 ± 0.03 ε/σ3. This value is higher, but comparable to the mode analysis
result for end-linked melts [77, 75] (figure 8). The close relation to the viscoelasticity of
long chain polymer melts becomes clear from an estimate of the plateau modulus from the
entanglement lengthNe = 35 found in the corresponding melt simulations [72]. In a crude
approximation one could map the entangled melt onto a network with four-functional cross-
links and strands of lengthNe and estimate the modulus from the classical models of rubber
elasticity, obtaining predictions betweenGph(Ne) = 0.012 ε/σ3 andGaff(Ne) = 0.024 ε/σ3

respectively.

4.3. End-to-end distance distributions of the network strands

The classical theories of rubber elasticity calculate the elastic response from the entropy change
of the network strands, i.e. from the change of the strand end-to-end distance distribution in
the deformed sample. In contrast to experiments these distributions are directly observable in a
computer simulation.

Due to the discrete symmetry of the diamond lattice we always consider the probability
distributionsp(x), p(y) andp(z) for one Cartesian coordinate. For linear chains the spatial
distribution is given byp(~r) = p(x)p(y)p(z). Since the orientation of the chains and hence
the sign ofx is irrelevant, we measurep(|x|) etc. Figure9 demonstrates the agreement of the
network structure for the phantom, annealed and random IPDN, indicating that our preparation
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Figure 10. Scaled probability distribution for one Cartesian coordinate of the
strand end-to-end distances in random IPDN:N = 44 (×), N = 26 (squares),
N = 12, 2 × 2 × 2 fcc cells (�), 3 × 3 × 3 fcc cells (+). The scaling lengthX1

was set to1/
√

3 times the bond length in the original diamond lattice.

methods generate well relaxed conformations. In the case of regular IPDN the distributions are
narrower with smaller fluctuations in thex- than in they- andz-directions. The reason for this
asymmetry is the packing along thex-axis of the individual diamond nets.

It is important to note that the distributions are not peaked aroundx = 0 as would be
the case in a (randomly cross- or end-linked) melt. To an excellent approximation they have
the form equation (7) of a superposition of two Gaussian distributions of width∆x

λ around
some peak position±Xλ. The suitably normalized fit parameters are listed in table4. In the
unstrained state the peak positionsX1 are in all systems given by the preset bond length of the
diamond lattice equation (30) with X1 ≈ ±a(N)/4 ∼ N0.5 (figure 10). The phantom model
prediction for the width of the distributions in a network withf = 4 functional cross-links
is [6] (∆x

λ)
2 = 1

3
2
f

〈r2〉. For N = 44 this relation is indeed observed for phantom, annealed,
and random IPDN. For shorter strands the distributions are slightly narrower than expected.
There are two likely reasons: (1) deviations of the stiffness of the phantom chainsduring the
preparation of the networks(equation (27)) from the uniform valuecN = 1.7 that we assumed for
the construction of the networks and (2) deviations from the ideal behaviourin the cross-linked
meltdue to the finite strand length. ForN = 12 the second aspect seems to play a role. The
comparison of two systems composed of2 × 2 × 2 and3 × 3 × 3 fcc cells shows that the finite
systemsize has no major effects.

Figure11 shows one example for the distributions in the strained networks. In agreement
with the predictions of all classical models the peak positions transform affinely, i.e. toXλ = λX1

and Yλ = Y1/
√

λ respectively. More interesting is the behaviour of the widths~∆λ. For
regular and random IPDN we find the expected crossover from phantom (~∆λ = ~∆1) to affine

( ~∆λ =
↔
λ ~∆1) behaviour. The phantom and annealed IPDN show again some artifacts. Only for

the phantom IPDN withN = 44 ~∆λ remains unchanged as expected from the phantom model.
The reduction of the fluctuations parallel to the elongation in the case of the phantom IPDN with
N = 12 is additional evidence for non-Gaussian behaviour of the short strands. The deviations
in the case of annealed IPDN indicate that due to the extremely long relaxation times it is not
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Table 4. Fit results for the peak positionsXλ, Yλ, Zλ of the end-to-end distance
distributions (equation (7)) normalized to the preset bond lengtha(N)/4 of the
diamond lattice. The secondN = 12 systems consists of3 × 3 × 3 fcc unit cells.
Results marked with∗ refer to runs withλ = 1.6. For comparison:1.5−1/2 ≈ 0.82
and1.6−1/2 ≈ 0.80.

Phantom Annealed Random Regular
IPDN IPDN IPDN IPDN

N λ = 1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.5

x 1.01 1.63∗ 1.01 1.52 1.03 1.65∗ 1.00 1.61∗

12 y 1.01 0.80∗ 1.02 0.83 1.03 0.80∗ 1.01 0.80∗

z 1.01 0.80∗ 1.02 0.83 1.02 0.80∗ 1.00 0.80∗

x 1.01 — — — 1.02 1.53 1.01 —
12 y 1.01 — — — 1.02 0.83 1.01 —

z 1.01 — — — 1.02 0.83 1.01 —

x 1.00 — 1.01 1.51 1.02 1.54 1.01 1.51
26 y 1.00 — 1.01 0.82 1.01 0.82 1.00 0.82

z 1.00 — 1.01 0.82 1.00 0.82 1.01 0.82

x 1.00 1.51 1.00 1.51 1.00 1.51 1.00 1.51
44 y 1.00 0.82 1.00 0.82 1.00 0.83 1.00 0.82

z 1.00 0.82 1.00 0.82 1.00 0.82 1.00 0.82

possible to fully equilibrate these systems.
Constrained junction models (see section2.5) try to predict the distributions plotted

in figure 11 from an analysis of the Einstein modes in the unstrained state. Since these
modes describe the displacement of the cross-links from their mean positionsin the absence
of topological constraints(i.e. in the corresponding phantom network), the analysis is not
completely straightforward. To avoid ambiguities with the centre of mass degree of freedom of
the whole network, it might be advantageous to instead consider the fluctuations in the end-to-
end distances of the network strands around their equilibrium extensions in the corresponding
phantom network. As the Einstein modes for the two endpoints of a strand are supposed to
be independent, there is just a factor of two between the two results. For the present diamond
networks this trick is especially convenient, because we know the equilibrium extensions of the
strands (the bond vectors(x1, y1, z1) in the underlying diamond lattice) from the construction of
the networks.

Figure12 shows the auto-correlation functionsc(t) of the Einstein modes for the different
types of diamond networks under investigation. For phantom, annealed and regular IPDNc(t)
decays to zero: the mean cross-link positions are lattice sites of the original diamond lattice. As
a consequence the systems are ergodic, i.e. sampling the end-to-end distance distributions for
individual strands from a long time trajectory would yield the ensemble averages in tables4 and
5. For phantom and annealed IPDN this is almost trivial to note, except that one has to be aware
of the extremely long relaxation times in the latter case, which exceed our simulation times.
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Table 5. Fit results for the width of the end-to-end distance distributions
(∆{x,y,z}

λ )2 (equation (7)) normalized to the expectation value1
3

2
f

〈r2〉. The second
N = 12 systems consists of3 × 3 × 3 fcc unit cells. Results marked with∗ refer
to runs withλ = 1.6.

Phantom Annealed Random Regular
IPDN IPDN IPDN IPDN

N λ = 1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.5

x 0.75 0.63∗ 0.72 0.56 0.78 0.92∗ 0.36 0.40∗

12 y 0.79 0.75∗ 0.70 0.56 0.83 0.77∗ 0.47 0.36∗

z 0.78 0.81∗ 0.65 0.62 0.83 0.65∗ 0.48 0.36∗

x 0.77 — — — 0.77 0.85 0.37 —
12 y 0.75 — — — 0.79 0.67 0.47 —

z 0.76 — — — 0.76 0.63 0.48 —

x 0.87 — 0.83 0.74 0.96 1.49 0.35 0.42
26 y 0.88 — 0.82 0.67 0.91 0.73 0.51 0.39

z 0.89 — 0.85 0.73 1.03 0.78 0.51 0.39

x 0.94 0.93 0.97 1.12 0.97 1.75 0.31 0.40
44 y 0.91 0.93 0.93 0.77 0.97 0.73 0.46 0.39

z 0.94 0.95 0.87 0.71 0.93 0.77 0.48 0.38
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Figure 11. Probability distribution for one Cartesian coordinate of the strand
end-to-end distances in random IPDN withN = 44 after an elongation of the
sample by a factor ofλ = 1.5 in x-direction: p(x) (�), p(y) (+) andp(z) (×).
The lines mark the distribution in the unstrained state (——) and the predictions
of the phantom (· · ·) and of the affine (– – –) model.

For regular IPDN the mean cross-link positions remain unchanged due to symmetry, since the
conserved topology is identical for all strands. In this case, the effect of the constraints is to
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Figure 12. Auto-correlation function of the Einstein modes in IPDN with
N = 26: phantom (squares), annealed (+), regular (×) and random (�) IPDN.

decrease the fluctuations compared to the phantom networks:

γ|| = 1 − fk
〈
δu2

x

〉
=


0.52 ± 0.05 for N = 12
0.61 ± 0.05 for N = 26
0.67 ± 0.05 for N = 44

γ⊥ = 1 − fk
〈
δu2

y,z

〉
=


0.38 ± 0.05 for N = 12
0.42 ± 0.05 for N = 26
0.49 ± 0.05 for N = 44

where〈δu2〉 = 1
2(∆

{x,y,z}
1 )2.

In contrast, the auto-correlation functions of the Einstein modes in random IPDN do not
decay to zero. The topological constraints cause a limitation of the movement of the individual
junction points which is stronger, but comparable to the case of regular IPDN. With increasing
strand length, the systems show a crossover from phantom model (γ = 0) to the limit of the
affine model with (γ = 1):

γ = lim
t→∞

〈u(t)u(0)〉
〈u2〉 =


0.63 ± 0.05 for N = 12
0.71 ± 0.05 for N = 26
0.77 ± 0.05 for N = 44.

(36)

As a consequence, the mean extension of the individual chains is no longer given byx1. Rather,
there is a distribution of mean extensions with a maximum at this position and a finite width
2γ kBT

fk
.

4.4. Mode analysis

In order to go beyond the classical theories of rubber elasticity one needs to take the limited
fluctuations along the entire strand contour into account. We try to quantify this effect by
analysing the conformations of network strands and of long, random paths (Npath = 200)
through the network in terms of single-chain Rouse modes. At this point we concentrate on
the asymptotic limit of the mode auto-correlation functions and on the distributions of mode
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Table 6. Excitation of the first ten strand modes for IPDN withN = 44. γp

is the degree of confinement with an uncertainty of the order of up to 10% for
the longest mode. The fluctuations width are normalized to the theoretical values
for Gaussian chains:kp〈u2

p〉. The ratioα = 1/2(〈y2
p〉 + 〈z2

p〉)/〈x2
p〉 measures the

increase in the effective spring constant for fluctuations parallel to the elongation.

λ = 1.0 λ = 1.5

Mode p γp x y z x y z α

1 0.0 0.89 0.89 0.90 0.85 0.90 0.91 1.06
2 0.0 0.90 0.90 0.89 0.86 0.88 0.89 1.02
3 0.0 0.89 0.88 0.88 0.85 0.86 0.87 1.01
4 0.0 0.87 0.87 0.88 0.85 0.86 0.87 1.01

Phantom 5 0.0 0.86 0.87 0.86 0.83 0.87 0.87 1.05
IPDN 6 0.0 0.85 0.86 0.84 0.80 0.86 0.87 1.08

7 0.0 0.83 0.84 0.83 0.81 0.83 0.84 1.03
8 0.0 0.81 0.82 0.81 0.78 0.81 0.80 1.03
9 0.0 0.81 0.80 0.79 0.77 0.80 0.80 1.04

10 0.0 0.79 0.79 0.79 0.76 0.78 0.79 1.04

1 0.0 0.90 0.90 0.93 0.86 0.85 0.84 0.99
2 0.0 0.87 0.88 0.88 0.82 0.89 0.86 1.06
3 0.0 0.84 0.85 0.86 0.79 0.84 0.84 1.07
4 0.0 0.82 0.82 0.82 0.77 0.82 0.82 1.06

Annealed 5 0.0 0.79 0.79 0.79 0.76 0.80 0.80 1.05
IPDN 6 0.0 0.78 0.77 0.77 0.74 0.78 0.78 1.05

7 0.0 0.75 0.75 0.75 0.72 0.76 0.76 1.05
8 0.0 0.73 0.73 0.73 0.71 0.74 0.74 1.04
9 0.0 0.72 0.72 0.71 0.69 0.72 0.72 1.04

10 0.0 0.70 0.70 0.70 0.68 0.71 0.70 1.04

1 0.64 1.16 1.18 1.09 1.49 0.99 0.96 0.66
2 0.39 1.14 1.18 1.13 1.21 1.06 1.07 0.88
3 0.20 1.04 1.05 1.05 1.01 1.02 1.00 1.00
4 0.09 0.95 0.95 0.95 0.89 0.95 0.93 1.05

Random 5 0.04 0.86 0.86 0.87 0.81 0.86 0.87 1.06
IPDN 6 0.02 0.81 0.81 0.81 0.75 0.80 0.81 1.07

7 0.01 0.75 0.76 0.76 0.71 0.76 0.76 1.07
8 0.005 0.72 0.72 0.72 0.68 0.73 0.73 1.07
9 0.001 0.69 0.69 0.69 0.65 0.70 0.69 1.07

10 0.002 0.67 0.67 0.67 0.63 0.67 0.67 1.06

1 0.2 0.77 0.68 0.68 0.85 0.63 0.61 0.73
2 0.01 0.87 0.90 0.90 0.85 0.86 0.85 1.00
3 0.0 0.88 0.87 0.87 0.84 0.85 0.85 1.01
4 0.0 0.88 0.88 0.87 0.83 0.87 0.87 1.04

Regular 5 0.0 0.86 0.85 0.86 0.82 0.85 0.86 1.04
IPDN 6 0.0 0.84 0.84 0.84 0.80 0.84 0.84 1.05

7 0.0 0.82 0.82 0.81 0.78 0.82 0.82 1.05
8 0.0 0.79 0.79 0.80 0.76 0.80 0.80 1.05
9 0.0 0.77 0.77 0.77 0.74 0.77 0.78 1.05

10 0.0 0.75 0.75 0.75 0.72 0.75 0.76 1.05
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Figure 13. Scaled probability distribution for the first strand and path mode in
random IPDN withN = 44. (� for λ = 1.0 and + forλ = 1.5). The dashed line
indicates a standard Gaussian distribution.
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Figure 14. Scaled probability distribution for the first strand and path mode in
regular IPDN withN = 44. (� for λ = 1.0 and + forλ = 1.5).

excitations in strained and unstrained networks. An explicit comparison to the CMM will be
presented in Section5.2.

Figures13and14show why, for diamond networks in particular, the strand modes are much
more useful than the path modes (Npath = 200) which were employed for randomly cross- and
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Figure 16. Comparison of the shear relaxation moduli as obtained from the path
(– – –) and the strand (——) mode analysis forN = 44. The three pairs (!) of
curves were obtained for (from top to bottom) random, annealed, and phantom
IPDN.

end-linked melts [75, 76]. As we pointed out in section2.6, the excitations of the strand modes for
a Gaussian chain are independent of the chain’s end-to-end distance. The strand modes therefore
avoid artifacts due to the lattice connectivity and the pre-stretching of the strands (see figure10).
In contrast, for the path modes the lower modes with a wavelength exceeding the strand length
are not normally distributed. Moreover, and in contrast to the strand modes, the path modes
are strain dependent even in systems without topological constraints where they just provide
a complicated way of measuring the phantom network modulus. In systems with conserved
topology their analysis introduces unnecessary complications and below we shall concentrate
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the normal stress in elongated random IPDN:N = 44 (squares),N = 26 (+),
(N = 12) (�). The dashed lines show the apparent normal stresses in strained
phantom networks withN = 12 for λ = 1.1 and withN = 44 for λ = 1.5.

on the strand modes. It seems, however, worthwhile to mention that one obtains identical (but
incorrect, see figure22c) predictions for the shear relaxation modulus using the strand and the
path modes in the mode analysis suggested by Dueringet al [75] (Figure16).

Figure15 and table6 show a comparison between the observed ensemble averages for the
distribution widths and the Rouse model prediction equation (16) for the strand modes.† The
general agreement is very good in all four cases with the deviations for the higher modes being
due to the non-Gaussian character of our chains (modes withp2N

Ne
= 5 correspond to excitations

where every 3rd or 4th monomer is moved in opposite directions). The only interesting exception
are the longest wavelength modes of the regular IPDN, which are suppressed and anisotropic.
The interpretation is the same as for the fluctuations of the end-to-end distances discussed in the
previous section. Note that here the fluctuations inx-direction areenhanced.

The CMM suggest a close relation between the confined fluctuations in the unstrained state
and the mode excitations in a strained sample. While one expects the case of phantom and
annealed IPDN to be trivial, some complications arise due to the non-Gaussian character of the
model polymers which are also relevant to the other cases.

For phantom and annealed IPDN the auto-correlation functions,cp(t), of the Rouse modes
decay to zero. Thus, as expected, the strands are not permanently constrained and the modes
do not have finite mean excitations (figure20 documents this indirectly by the vanishing of the
CMM expression equation (13) for the shear relaxation modulus, which is the sum of the squared,
normalized mode auto-correlation functions). What is unexpected, at least for Gaussian chains,
is the slight anisotropy of the modes in stretched networks (table6) due to a reduction of the
fluctuations parallel to the elongation. As a consequence, one formally finds ap-independent

† In this and the following figures we have rescaled the mode numbers in such a way thatp2N
Ne

= 1 corresponds to
a mode with a wavelength equal to the melt entanglement lengthNe = 35 monomer. In this manner the results for
different strand lengthsN can be conveniently compared.
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negative contributions from all modes to the normal stress (equation (5), figure17), which is
clearly unphysical. The effect is more pronounced for short than for long chains. Its origin lies
in the anisotropy of the fluctuations of stretched polymers with a well-defined contour length.
The simplest case is the freely jointed chain, where the reduction of the fluctuations parallel to
the elongation scales with the ratio of the mean chain extension to the chain contour length. In
the present case of a chain of connected Lennard-Jones particles (with next-nearest-neighbour
interactions to model the stiffness of phantom chains, see section 3.2) one can think of Rouse
modes parallel to the elongation as having an increased likelihood of violating the excluded
volume constraint between neighbouring monomers. Note that this is a finite-contour length
effect and that fluctuations iny- andz-direction are not affected directly. In order to correct
for this effect when calculating normal stresses, we determine an effective spring constant
α(λ)kp in x-direction. The ratio

〈
y2

p

〉
/
〈
x2

p

〉
is to a good approximation independent of the

mode numberp and we determine the correction factorα(λ) by averaging this expression over
the different modes. Typically,α(1.5) ≈ 1.1. The normal stresses are then calculated from
σT = kp(α

〈
x2

p

〉
− 1

2(
〈
y2

p

〉
+
〈
z2

p

〉
)). The same effects also appear for random and regular IPDN,

where we calculate the correction factorα(λ) from averages over the modes whose wave lengths
are too short to be affected by the tube constraint. In the following, we discuss the long wave
length modes in the framework of the CMM.

In agreement with the arguments presented in section2.4all mode auto-correlation functions
decay to zero for regular IPDN (see Figure21). For symmetry reasons topological constraints
cannot cause finite mean excitations of individual modes. The anticipated reduction of the
fluctuations which we have already seen for the Einstein modes is also manifest in the first
Rouse mode (table6). Furthermore, its strain dependence is in qualitative agreement with the
CMM: parallel to the elongation the fluctuations are enhanced, while they are reduced in the
perpendicular directions.

For random IPDN (table6, figure 22) the auto-correlation functions of the longest
wavelength modes decay to a non-zeroγp = limt→∞ cp(t)/cp(0), which is clear evidence for the
existence of permanent constraints acting on the chain contours between the cross-links. Closer
inspection (figure17) reveals the existence of a single characteristic length scale beyond which
ergodicity is broken by the topological constraints. Our observations agree well with the tube
model, which suggests that modes withp2N

Ne
> 1 can fully relax, while those with longer wave

lengths have non-vanishing mean excitations in which elastic energy can be stored. Note that
we use a value for the melt entanglement lengthNe that was determined from the confinement of
the monomer motion in simulations of polymer melts [72]. Under strain, the constrained modes
become anisotropic. A quantitative comparison to the CMM (figure23) will be presented in the
discussion.

4.5. Entanglement analysis

In our analysis of the topological constraints we consider only entangled pairs of loops as
identified by the Gauß linking number (GLN)I 6= 0 (equation (19)). As pointed out by Iwata [12],
it is sufficient to consider the smallest loops in the system, since the GLN for larger loops can be
written as the sum over contributions from GLNs between the elementary loops. We prepared
a list of entanglements by evaluating equation (19) for all pairs of elementary meshes (see
section3.4). Note that the GLN is not defined for pairs of meshes with common monomers
and that by considering allNloop = Nstrand different meshes, each bond is used six times. We
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Table 7. Linking statistics for meshes in random IPDN. Listed are the number
of loopsNloop, the total number of linked pairs of loopsNlink, the number of
links with a GLN larger than oneN |I|>1

link , the number of links between meshes
on identical subnetsN intra

link , the radius of gyration of the meshes and the linking
radius defined in equation (37).

Nlink

N Nloop regular random N
|I|>1
link N intra

link Rg RL

12 640 7680 11120 124 32 4.57±0.03 4.22±0.03
26 896 16128 28508 1478 146 6.74±0.04 6.50±0.03
44 1152 27648 54701 4511 254 8.79±0.06 8.69±0.04

therefore setρloop = 1
6Nloop/V andρlink = 1

36Nlink/V .
The GLN equation (19) is a double integral along the contours of two rings and can be

written as a double sum over their bond vectors. The contributions of bond pairs have to be
evaluated numerically, possibly using a multi-pol expansion [97]. The direct evaluation of
the GLN (equation (19)) for a pair of loops is an order(6(N + 1))2 operation and quite time
consuming. Instead we first apply a simple reduction operation to the rings [98]: if the triangle
defined by any three sequential beads is not crossed by any bond, the middle bead is removed
and the outer beads are directly connected. The operation properly maintains the topological
state of the two rings but significantly shortens them before equation (19) is evaluated. We have
implemented two versions of this operation: one where the criterion is checked exactly using
analytical geometry and a faster but cruder method where the loops are projected onto a grid.
The latter method has the advantage to be local, i.e. the operations required for on attempted
removal of one bead are independent of the ring size. Only in the final phase of the elimination
process, when the rings consist of few, relatively long bonds, the geometrical method is more
efficient, because the grid algorithm discards too many allowed eliminations. Typically, we were
able to reduce the270 × 270 bead rings of theN = 44 system to5 × 5 bead rings before we
evaluated the GLN.

Table7contains the results of the topological analysis for the regular and the random IPDN.
Of the1

2Nloop(Nloop−1)mesh pairs the GLN identifiedNlink as entangled. The regular IPDN are a
convenient test case: In each system we identified the expected number of3(n−1) entanglements
per mesh. This confirms, firstly, that during our MD simulations no chain crossings occurred;
secondly, that the systems were set up correctly and, thirdly, that our identification of the meshes
and of the entanglements between them works correctly.

For the random IPDN the average numberNlink/Nloop of links per loop is higher than
the valuen − 1 for regular inter-penetration by a factor of 1.4 (N = 12) to 2.0 (N = 44).
Only N

|I|>1
link /Nlink < 10% of the links have a GLN of 2 or more, demonstrating that for the

strand lengths considered simple link topologies dominate and justifyinga posteriorithe use of
the Gauss invariant. WithN intra

link /Nlink < 0.5% the number of links between distant neighbour
meshes on identical subnets is negligible.† These links are excluded from the subsequent analysis,

† Immediate neighbour meshes are not considered, since the GLN is not defined for pairs of loops that share
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since their linking statistics is distorted due to additional interactions within the subnets.

4.6. Linking probabilities

For the analysis of the CM distance dependent linking probabilitiesfN(r) we use the data for
random IPDN. Thus, we calculate a time average over all mesh pairs that were identified as linked
for a quenchedtopology. In principle, the results could be different from an ensemble average
over a annealed topology and will be so, for example, in the case of the regular IPDN. However,
this procedure should be unproblematic for the quenchedrandomtopology we consider. Figure9
illustrates that this is indeed the case for the strand statistics. The reason why we prefer to analyse
the data for the quenched system is the great amount of computer time necessary to determine
the topology of a single conformation of the networks. In the cases of the phantom or annealed
IPDN the topology has to be analysed not just once but for each recorded conformation.

We first determine the characteristic length scale for the entanglement of two loops.
Consider an effective linking volume defined as the ratio of the number of entanglements per

loop Nlink−N intra
link

Nloop
and the density of loops belonging to other subnetsn−1

n

Nloop
V

in the volume

V = Nmon
ρ

. In this case the linking radius is given by

RL = 3

√√√√ 3
4π

Nmon

ρ

n

n − 1
Nlink − N intra

link

N2
loop

(37)

and of the same order as the mesh radius of gyration. In turn, the latter is almost identical to the
bond length of the diamond lattice (table7). Thus, similarly to the network strands, the extension
of the meshes is determined by the lattice structure of the networks and larger than that of free
rings withR2

g = 1
2cN l2(N + 1).

On closer inspection, we observe a small tendency ofRg andRL to grow faster than the
pre-set bond length leading to effective exponents ofνg = 0.526 andνL = 0.58. In the case of
Rg they can be understood as artifacts due to the chain length dependent stiffness equation (27)
of the phantom chains used in the preparation process (for free rings one would observe an
exponent ofν = 0.534). We will come back to the strong finite-size corrections for the linking
radii below.

To obtain the CM distance dependent linking probabilityf(r) we have calculated pair
correlation functionsgloop(r) for all loops andglinkedloop(r) for linked loops (figure18a). To a
good approximation the positions of the loops are uncorrelated withgloop(r) ≈ (n − 1)/n due
to the exclusion of loop pairs on identical subnets. The ratiogloop(r)/glinkedloop(r) is the CM
distance dependent linking probabilityf(r).

For regular IPDN (figure18b)gloop(r)shows strong correlations between the mesh positions.
Note, that the typical distance between linked meshes is comparatively small.

Figure19 shows that the linking probabilities for different chain lengths scale quite well
with the linking radiusRL (equation (37)) and approximately follow the functional form

fN(~r) ≈ α exp
(
−α

2
r3

R3
L

)
, (38)

with α = 0.6. This ansatz follows from a similar form proposed by Vologodskiiet al [37, 38].
There is, of course, some uncertainty due to the limited precision of our data for smallr where

common strands or cross-links.
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Figure 19. Scaling of the linking probabilityf(r) for meshes in random IPDN
with the linking radiusRL defined in equation (37): N = 44 (squares),N = 26
(+), (N = 12) (�). The solid line shows the approximate form equation (38).
The insert demonstrates that the data do not scale as well with the mesh radius of
gyrationRg.

we find only a very week mesh size dependence withfN(0) ≈ 0.6. It seems plausible to assume
that limN→∞ f(0) = 1.0.

These findings can be compared to results of lattice Monte Carlo investigations of the linking
properties of closed random walks. Vologodskiiet al [37, 38] used the Alexander polynomial
instead of the GLN and came to very similar conclusions. They observed the weak chain length
dependence off(0) and found—in our notation—an effective exponentνL = 1.7/3. The data
of Iwata [92] show a more pronouncedN -dependence off(0). When plotted in the manner of
figure (19), scaling can also be improved by using an effective exponent larger than 0.5. The
existence of pronounced finite-size effects in the linking probabilities of ring polymers is also
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Figure 20. Stress relaxation in phantom (grey) and annealed (black) IPDN after
a step strain. The figure shows three different types of data: (i) the suitably
normalized measured normal stressesσT /(λ2 − 1/λ) in strained systems for
λ = 1.1 (�) andλ = 1.5 (squares); (ii) normal stresses calculated by applying
the Doi-Edwards formula to the stored network conformations for the strained
systems (∗) and the separation of this result into a classical (+) and a tube (×)
contribution; (iii) estimates for the shear relaxation modulusG(t) from the CMM
equation (13) and an analysis of the fluctuations in theunstrainednetworks (——),
again split into a classical (– – –) and a tube contribution (· · ·).

confirmed in a recent study for walks on a lattice with better statistics [50]. All in all, our findings
are good agreement with studies of ring polymers and we observe no serious artifacts due to the
investigation of mesh pairs in spanned networks.

5. Discussion

After having shown that our model networks display a purely entropic elasticity and equipped
with the detailed microscopic information presented in the previous section we are now in
a position to quantitatively test the theoretical approaches to the physics of rubber elasticity
presented in section2. In principle, we can directly compare theirparameter-freepredictions for
the shear modulus and the deformation of the network strands to our observations. In particular,
we do not rely on an extrapolation of our results to the limit of infinite strand length, but quantify
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Figure 21. Shear relaxation modulus for regular IPDN. For an explanation see
figure20.

the effects directly for the systems under consideration.
In practice, we are somewhat limited by the quality of our data even though the total

numerical effort corresponds to some 1000 hours on a Cray Y/MP. Our limited resources of
computer time did, for example, preclude the calculation of many data points on the stress–
strain curves and the investigation of several random IPDN withdifferentquenched disorder. A
comparison of the two random IPDN withN = 12 indicates, however, that self-averaging is not
critical.

Polymer networks are very soft systems and in order to provoke measurable effects we had
to introduce strains of the order of 50%. While such deformations are also typically used in
experiments, they exceed by far the validity range of linear response. Instead, we extract the
shear moduli by assuming the neo-Hookean behaviour,σT = G(λ2−1/λ). Typically, this ansatz
tends tounderestimatethe shear moduli, even though a rough,a posterioriconsistency check
based on the CMM suggests that the deviations are smaller than the margins of error cited in
table8. For future investigations it would be interesting to reconsider the fluctuations formalism
employed by Barskyet al [99, 100], which might give better results for networks beyond the
vulcanization threshold.

In some cases, one can avoid the problems associated with the extrapolation of data to zero
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Figure 22. Shear relaxation modulus for random IPDN. For an explanation see
figure20.

strain by comparing measured and theoretically expected normal tensions for a given system
at finite strain. The latter are obtained within a model from the stored conformations of the
network. For example, one can test the classical models by calculating the normal stresses
for an appropriate ensemble of independent entropic springs which have the observed strand
elongations. Unfortunately, this approach raises a different kind of problem when extended to
the Rouse modes as our model polymers are (as real polymers) not truly Gaussian chains. Such
finite chain length effects may be cumbersome for a test of theories which treat the polymers
as Gaussian, but they also give a hint to what kind of complications may arise in experimental
systems.

5.1. Classical rubber elasticity

The classical theories (section2.5) are based on the assumption that the elastic response of rubber
has its sole origin in the elongation of the network strands. Two question are of principal interest:

(i) In a strainedsample, do the measured normal stresses agree with those calculated within
the classical approximation from the elongation of the network strands?
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Figure 23. Excitation of partially confined modes in strained networks and the
predictions of the CMM parallel (�, ——) and perpendicular (+,squares,– – –)
to the elongation. (a) Flory–Einstein modes in random IPDN forN = 12, 26, 44
from left to right; (b) Flory–Einstein modes in regular IPDN forN = 12, 26, 44
from left to right; (c) Rouse modes in random IPDN forN = 12; (d) Rouse modes
in random IPDN forN = 26; (e) Rouse modes in random IPDN forN = 44.

(ii) Can the latter be predicted from a constrained junction model and an analysis of the
fluctuations in theunstrainedstate?

In short, the answers to these two questions are no and yes respectively. In Figures20 to 22we
compare the normal stresses measured during the relaxation of the strained networks (squares,
diamonds) to the classical normal stresses in the corresponding system of entropic springs using
the stored cross-link positions (+) and the predictions of the CMM based on the analysis of the
fluctuations and average extensions of the network strands in theunstrainedsamples. While the
agreement is excellent for the phantom and annealed IPDN, there is a clear discrepancy between
the actual and the classical normal stress in the case of the random IPDN which increases with
the strand length. Nevertheless, the classical contribution to the normal stress is well predicted
by the CMM.

We are primarily interested in the asymptotic normal stresses for long times. They can
be obtained from the strand end-to-end distance distributions in the strained networks using
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equation (7), the values listed in tables4 and5 and

σclass
T (~Rλ, ~∆λ) =
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R2 ρstrand
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(
(∆y
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2 + (∆z

λ)
2
))

(39)

Gclass ≈ σclass
T (λ)

λ2 − λ−1 . (40)

The resulting estimate for the classical modulus has therefore two terms corresponding to the
changes in the mean extensions,~Rλ, and in the width of the fluctuation,~∆λ. The value for
Gclass obtained in this way contains a small approximation as we assume the validity of the ideal
stress–strain relation. This ansatz has, however, the advantage of being consistent with the way
we estimated the true moduli. For the results listed in table8 we used the calculated stiffness
equation (27) for the phantom IPDN andcN = 1.7 in all other cases.

For phantom and annealed IPDN calculated and measured values are in excellent agreement.
The small fluctuation contribution for phantom IPDN withN = 12 is probably a finite strand
length effect similar to those discussed in section4.4 and should be ignored. In the case of
the annealed IPDN the remaining fluctuation contributions reflect the long relaxation times (see
figure12) and explain why the measured moduli slightly exceed the phantom network values.

The deviation of the classical from the observed normal stresses in the random IPDN
is illustrated in figure24. The shear moduli from table8 are normalized to the predictions
of the phantom model and the horizontal line atGaff/Gph = 3/2 indicates the upper limit
for the classical theories of rubber elasticity.† The true moduli are beyond the predictions
of the affine model and increasingly exceed the classical predictions. This shows thatit is not

† Please recall that this unusual ratio is due to the pre-stretching of the strands in the diamond nets. For a randomly
cross-linked melt with four-functional cross-links the predictions of the affine and the phantom model differ by a
factor of 2.
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Table 8. Measured (G), classical (Gclass) and tube (Gtube) shear moduli for IPDN
and the ration(G − Gph)/ρlink of the entanglement contribution to the shear
modulus and the density of topological links between meshes. The measured
values,G, were derived from the normal stresses observed in simulations of
strained networks. The classical shear moduli were calculated from equation (40)
and the contributions due to the changes in the peak positions and the widths of
the end-to-end distance distributions are listed separately. We estimate the errors
in the estimates forGclass to be of the order of±0.001ε/σ3 and about twice that
value forGtube.

System G Gclass Gtube
G−Gph

ρlink

N [ε/σ3] [ε/σ3] [ε/σ3] [ε]

12 0.083 ± 0.002 0.080(−0.003)
Phantom 26 — —
IPDN 44 0.020 ± 0.002 0.019

12 0.071 ± 0.003 0.071
Annealed 26 0.035 ± 0.003 0.032
IPDN 44 0.021 ± 0.003 0.019(+0.002)

12 0.100 ± 0.003 0.075 + 0.005 0.004 0.85
Random 26 0.060 ± 0.003 0.034 + 0.007 0.009 0.88
IPDN 44 0.041 ± 0.002 0.019 + 0.006 0.009 0.83

12 0.071 ± 0.003 0.072 + 0.003 0.000 0.0
Regular 26 0.034 ± 0.003 0.032 + 0.002 0.002 0.0
IPDN 44 0.025 ± 0.003 0.019 + 0.001 0.003 0.31

possible to calculate the topology contribution to the modulus from the constraints on the junction
fluctuations alone.

Nevertheless, the comparison in figure22 shows that the constrained junction model does
very well in predicting the classical contribution to the normal stress. This contribution is,
however, dominated by the (trivial) phantom model stress and a more detailed test has to address
the deformation dependence of the fluctuations of strand extensions. In figure23(a) we plot
the observed values for the parallel and perpendicular fluctuations in strained systems versus
the degree of confinement,γ, in comparison to the predictions of the CMM. Measuring these
quantities with high precision requires much longer simulations than we were able to perform.
Incomplete relaxation of the network conformations would tend to increase the values, so that
we consider the agreement with the theoretical curves as satisfactory.

The case of the regular IPDN is quite difficult to handle as the observed effects are of the
order of our margins of error. In the strained system the measured normal stresses are very
similar to those for phantom networks, which comes as a surprise for systems with permanent
topological constraints. Regarding a test of the CMM one has to take into account that fluctuations
are confined in different ways in systems with quenchedregularand quenchedrandomtopology
(section2.4). For example, the CMM shear relaxation moduli in figure21have to be taken with
a grain of salt, since we calculated them for comparison with the other cases from the mode
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auto-correlation functions and equation (13). Nevertheless, some observations can be made
which confirm, at least qualitatively, the picture suggested by the CMM. We note first that the
anisotropy of the fluctuations of the strand elongations forλ = 1.0 (tables5) explains the small
negative normal stresses we observed in these systems (the estimates for the moduli are always
calculated from the differenceσT (λ) − σT (1.0)). Another curiosity is that the Einstein modes
do not contribute to the normal tensions in figure21, since they happen to becomeisotropicfor
elongations aroundλ = 1.5 (table5). The classical normal tensions are therefore just those
expected for a phantom network.

5.2. The tube model

The results presented in the preceding section indicate that the constrained junction models
are capable of predicting the classical contribution to the normal stresses in a strained polymer
network, but that they miss important contributions to the elastic response. The question then
arises whether this deficiency can be remedied within a single-chain theory. The tube model
suggests that the classical approach fails to account for constraints acting on the network strands
betweenthe cross-links. Even though there is convincing evidence from simulations [72, 75] as
well as from SANS experiments [70] for the existence of the tube, it is less clear that these effects
can account for the total elastic response. The situation could be analogous to the case of the
constrained junction models, which we had to reject even though we confirmed the underlying
microscopic picture. Thus, the idea that an entangled network can be represented as an ensemble
of effectively constrained, single chains can (and must) be tested independently of the tube model.
We will nevertheless be somewhat relaxed in our terminology and refer to the part of the shear
modulus due to the constraints along the strand contours as the ‘tube contribution’,Gtube.

Again the problem separates into several independent parts:

(i) Is there an effect of topological constraints on the fluctuations of the network strandsbetween
the cross-links?

(ii) Is this effect of the form predicted by the tube model?

(iii) In a strained sample, do the measured normal stresses agree with those obtained by applying
the Doi–Edwards formula to the observedconformations(and not justelongations) of the
network strands?

(iv) Can the latter be predicted from, for example, the constrained mode model and an analysis
of the fluctuations in the unstrained state?

Concerning the first point, our analysis of the single chain Rouse modes in section4.4
confirms the existence of such an effect in our model networks. In regular IPDN the topological
constraints suppress the fluctuations compared to the other cases, in random IPDN the non-
decaying mode auto-correlation functions indicate the finite mean-excitations of individual
modes. Figure17shows that independent of strand length only modes with a wavelength larger
than a certain characteristic length are affected. Furthermore, the extrapolation of the measured
moduli to infinite strand length (section4.2, figure8) agrees well with an estimate of the plateau
modulus based on the chain dynamics in entangled polymer melts. While this supports the tube
model, we emphasize that the second point is more suitably addressed in simulations of randomly
end-linked melts with strand lengthN � Ne [75].

Similarly to Gao and Weiner [86], who investigated the relaxation of stress in simulations of
entangled polymer melts, we find reasonable agreement between the measured normal stresses
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and the single chain tensions calculated from the stored conformations of the relaxing, strained
random IPDN. Figure22 shows the sum (marked by∗) of the tube contribution (×) and the
classical contribution discussed in the previous section. Considering that this comparison is (i)
based on an enormous simplification (an ensemble of single chains at the place of an entangled
network) and (ii) contains only a single,not adjustable parameter (the size〈r2〉 of the free
strand in a melt), the agreement is remarkable. On the other hand, the agreement is not perfect.
The entropic normal stresses underestimate the true values by an amount comparable to our
estimates of the entanglement contributions. What complicates the comparison are the finite
strand length effects discussed in section4.4which lead to anisotropic fluctuations in elongated
network strands. While we have tried to correct for this effect, there remains some uncertainty in
the value of the tube contribution to the normal stress for the shorter strand length. The negative
values in figures20to22give an impression of the magnitude of the problem. We have, however,
deliberately not pushed the analysis any further as this risks over-interpreting the data. In view
of the considerable theoretical implications [42], it would be very interesting to repeat the test
of the exactness of the Doi–Edwards stress formula with better data for longer chains.

Regarding the fourth point, Figure22 shows that there is nice agreement between the
prediction of the CMM and (with the reservations just made) the observed stresses in strained
random IPDN.† Quite interestingly, the mode analysis yields an almost strand length independent
value forGtube, reminiscent of the experimentally observed plateau modulus. The deformation
dependence of the excitation of the strand modes constitutes a more detailed test of the CMM.
In figure 23c-e we plot the observed values for the parallel and perpendicular fluctuations,〈
u2

p

〉
(λ = 1.5), in strained systems normalized to

〈
u2

p

〉
(λ = 1)versus the degree of confinement,

γ. The fact that these ratios hardly deviate from one even for modes experiencing a considerable
confinement is a clear indication for the deformation dependence of the confining potentials.
Again the results are affected by the deviations from the Gaussian behaviour. Correcting the
theoretical predictions of the CMM for this, the agreement is quite good.

In the case of the regular IPDN the difficulties mentioned in the previous section apply even
more to the analysis of the confinement of the strands between the cross-links. What seems to
be clear is that (i) for the range of strand lengths studied only the first strand mode is affected
by topological constraints, that (ii) there is at least forN = 44 a small contribution of this first
mode to the normal stresses in the strained system, and that (iii) this can at least be understood
qualitatively by taking into account the different ways in which fluctuations are confined in
systems with quenchedregularand quenchedrandomtopology.

5.3. The topological approach

In the previous sections we have shown that the combined effect of many entanglements can be
well understood from an analysis of the reduced fluctuations of the network strands. However,
the strengthof this effect is characterized purely phenomenologically by the entanglement
length,Ne. In the present section we address the complementary topological theories of rubber

† Note that the shear moduli calculated from the formula used by Dueringet al [75] clearly overestimate the effect.
For example, this analysis yields for the case ofN = 44 a tube contribution to the shear modulus equal to the
classical contribution, while figure22 shows that the strand modes account only for one third of the normal stress.
Nevertheless, even if the results obtained for randomly cross- and end-linked melts are too high by 30%, the error
should becomeindependentof strand length forN � Ne and does not invalidate qualitatively the conclusions
drawn by the authors.
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elasticity and the question, whether it is possible to estimate the entanglement contribution to
the shear modulus from an entropic interaction between pairs of entangled loops. The model of
Graessley and Pearson (GP) [11] is particularly transparent; other, mathematically more involved
theories [12, 13] are based on the same physical ideas.

A key prediction, which can be derived from the GP theory, is the proportionality of the
entanglement contribution to the shear modulus,G − Gph, and the density of topological links,
ρlinks, between mesh pairs (equation (21) ). The details of the topological interactions only
enter the prefactor (equation (22) ). Clearly, there is no point in elaborating this approach if the
proposed proportionality between cause and effect does not hold. While it is difficult to envision
an experimental test, we can directly compare our results for the shear moduli and and the linking
density (table8).

Figure25 shows that for the strand lengths investigated (the mesh size6(N + 1) varies
between 2 and 8Ne) one indeed observesG − Gph = 0.85 ρlinks kBT for the random IPDN.
This is a strong hint that (i) loop entanglements contribute to the elastic response in the manner
suggested by Vologodskiiet al [37, 38] and Graessley and Pearson [11] and (ii) that they do so
dominantly compared to higher order topological interactions.

The second step in the analysis is to check that the GP estimate of the proportionality
factora[f(r)] is consistent with the observed value0.85kBT . Using our result for the linking
probability f(r) from section4.6 and evaluating equation(22) numerically, we obtain the
absolute,parameter-freeprediction of the GP modelGlink

ρlink
= a[f(x)] = 1.3 kBT , which agrees

with the measured value up to a numerical constanta0 = (G − Gph)/Glink ≈ 2/3 of order
one. Considering the crudeness of the GP model this is a remarkable success. Asymptotically,
however, this simple entanglement definition has to break down:Glink ∼ ρlink ∼ ρ2

loopR
3
L ∼

N−0.5 vanishes and cannot explain an asymptotic shear modulus of the order of the melt plateau
modulus. Since we have first indications that a refined analysis of more complicated two loop
interactions does not fundamentally alter this picture [50], it might be necessary to study higher-
order interactions between three or more rings.

While the GP theory thus seems to work quite well for random IPDN, it cannot provide a
quantitative explanation for the apparent ineffectiveness of the entanglements in regular IPDN.
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The link densities are at most a factor of two smaller than in the random case (section4.5), while
there are no significant entanglement contributions to the shear modulus (table8). Within the
GP model, one can argue [97] that the smaller average CM distance of the linked meshes in
regular IPDN makes them less effective for the modulus. The calculated reduction is, however,
too small to explain the observed effect. This failure is not too surprising, since one of the major
assumptions of the GP model is not valid in these systems: the entanglements between different
diamond networks are not random but highly correlated. Some insight can be gained by noting
that the comparable entanglement densities in random and regular IPDNs lead to comparable
degrees of confinementfor the fluctuations. Why the resulting entanglement contributions to the
shear modulus are so different, is then explained by the CMM.

5.4. Outlook

While diamond networks are a useful model system for some fundamental aspects of the
entanglement problem, it would be very interesting to extend the present analysis to more realistic
network architectures such as end-linked melts and, in particular, to systems with strand lengths
N � Ne. Also, while the CMM has some merits for a test of the ideas underlying the constrained
fluctuation theories of rubber elasticity and the analysis of simulation data, other theories might
be more useful in the absence of such detailed information. For example, it is difficult to predict
the macroscopic behaviour of a network without a better understanding of how the crossover
of the confinement parametersγp from zero to one occurs for modes of different wavelength.
Moreover, the CMM makes a fairly drastic approximation in treating the Einstein and Rouse
modes as eigenmodes of the entangled network. It would therefore be interesting to test other
theories, which are based on slightly different (but equally drastic) approximations. Obvious
candidates are the tube model of Straubeet al [27], which has recently been used with great
success to explain SANS data for strained, entangled networks [70], and the model by Rubinstein
and Panyukov [41] which, as the CMM, attempts a synthesis of the constrained junction and the
tube model. An important criterion should be the simultaneous prediction of the conformations
(as they are indirectly seen in SANS experiments) and the elastic response. In view of the
profound implications for the modeling of the confinement [42], some attention should be given
to possible deviations from the Doi–Edwards formula for the normal stress.

6. Summary

In this paper we have presented a detailed account of molecular dynamics simulations of
interpenetrating polymer networks with diamond lattice connectivity (IPDN). The idea was
to test the predictions of different statistical mechanical models of rubber elasticity by making
extensive use of the microscopic structural, dynamic and topological information available in
computer simulations.

The IPDN were designed as highly idealized model systems which isolate the effect of
topology conservation from other sources of quenched disorder. By varying the interaction
potentials and the mode of preparation we have studied four different types of IPDN: (i)
(almost) trivial phantomIPDN as a reference case and for the preparation of equilibrated
initial conformations for the other types, (ii)annealedIPDN where softened excluded volume
interactions lead to the typical monomer packing in a meltwithoutrendering the chains mutually
impenetrable, (iii)random IPDN of the usual Kremer–Grest polymer model with quenched
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random topology, and (iv)regular IPDN with the conserved regular topology of intercalating
diamond lattices. The investigated strand lengths wereN = 12, 26, 44 compared toNe = 35 in
the Kremer–Grest model. All systems were studied in the unstrained state of preparation as well
as after a volume conserving, uni-directional elongation of typically 50%.

By measuring normal stresses and internal energies under strain we were able to measure the
macroscopic shear moduli of all systems and to show that they exhibit a purely entropic elasticity.
For annealed IPDN the shear moduli agree with the predictions of the phantom model, showing
that excluded volume interactions as such do not contribute to the elastic response. For random
IPDN the observed values were up to twice as large, thus we quantitatively observe a significant
entanglement contribution to the shear modulus. The measured values support the tube model
and are in contradiction to the classical theories, because they (i) exceed the prediction of the
junction affine model and (ii) extrapolate to a finite value of the orderρkBT/Ne in the limit of
infinite strand length.

We have analysed the entanglement effects on the microscopic dynamics and deformations
in the framework of the constrained mode model [42]. The CMM casts the ideas of Flory [20]
and Edwards [24] into a form which is particularly suited for the analysis of simulation data.
Treating the motion of cross-links and networks strands as independent Einstein and Rouse
modes respectively, one can directly distinguish the two types of entanglement effects discussed
in the constrained junction and the tube model.

The Einstein modes are most strongly affected by the entanglements and clearly show the
behaviour anticipated by the constrained junction models: (i) Individual modes exhibit reduced
fluctuations around non-vanishing mean values. (ii) The ensemble averages are nevertheless
identical for unstrained phantom, annealed, and random IPDN, since in systems withrandomly
quenched topology entanglements do not affect the statics in the state of preparation.† (iii) In
stretched samples, constrained modes become anisotropic and the strength of the confinement is
reduced parallel and increased perpendicular to the axes of elongation. (iv) The strength of the
confinement increases with the strand length.

However, contrary to the assumptions of the classical models, we clearly observe tube
effects even for our comparatively short network strands. For long wavelength Rouse modes
we find qualitatively the same behaviour as for the Einstein modes and comparable degrees
of confinement. Only Rouse modes with wavelengths significantly shorter than the melt
entanglement length,Ne, are not affected by the topological constraints.

The quantitative success of the CMM inpredicting the chain conformations under strain
from an analysis of the confined fluctuations in the unstrained networks strongly supports the
idea underlying all constrained fluctuation theories of rubber elasticity. Given the microscopic
conformations under strain, the evaluation of the Doi–Edwards expression yields reasonable
normal stresses,providedthe tube contribution from the partially constrained Rouse modes is
taken into account. Our results immediately prove that the omission of this term in the classical
theories leads to a systematic error which doesnot have the form of a more or less uncritical
prefactor as it was suggested in the long debates on the front-factor problem. The observed
tube contribution is independent of strand length and, in agreement with the extrapolation of the
macroscopic shear moduli, is bound to dominate the elastic response for systems withN � Ne.
We therefore strongly reject conclusions drawn, for example, by Erman and Flory [58] from

† In regular IPDN, on the other hand, the confinement is identical for all strands leading to reduced fluctuations
which, for symmetry reasons, are centred around zero.
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successful fitting of stress–strain curves that the constraints on the chain contours make no
‘appreciable contribution’ to the elastic properties of polymer networks.

Finally, we have presented a first quantitative test of atopologicaltheory of rubber elasticity,
the second theoretical approach initiated by Edwards almost thirty years ago [7, 8]. We find that
for the comparatively short strand lengths in our simulations the topology contribution to the
elastic response is proportional to the density of entangled mesh pairs with non-zero Gauss
linking number. Moreover, the prefactor can be estimated consistently within a rather simple
model developed by Vologodskiiet al [37, 38] and by Graessley and Pearson [11], which is
based on the definition of an entropic interaction between the centres of mass of two loops in a
conserved topological state. Although encouraging, it is far from obvious how this result could
be generalized to an explanation of the tube model. However, whatever the possible answers,
we are convinced that their test requires investigations along the lines of this paper.
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Video sequences

Video sequence 1
Preparation of random IPDNs [80]. Individual diamond networks are spanned across the simu-
lation volume via periodic boundary conditions. We have chosen an average distance between
connected cross-links of the order of the typical extension of corresponding chains in a melt. The
network strands are modeled as bead-spring chains of uniform length. The extra beads, which
serve as cross-linkers, are originally placed on the sites of a diamond lattice. Between them, we
arrange random coil conformations of the network strands and randomize the initial conforma-
tion in MD runs for phantom chains. Since the density of a single diamond net decreases with
the strand length, we superimpose several of these structures in the simulation box to reach melt
density. The topology is conserved after building up the repulsive excluded volume interaction
between the monomers. Different chains can no longer cut through each other and the random
entanglements between meshes of the different networks become permanent.

Video sequence 2
While our main efforts were directed at measuring and understanding the significant entangle-
ment contribution to the elastic modulus at small elongations, we also found that entanglements
can be visualized by analysing the local stress distribution in strongly stretched networks [80].
The video compares regular and random IPDNs withN = 12. Particles which make large
contributions to the virial expression for the stress tensor are shown with a larger diameter and
marked in red. The apparent interruption of the chains is due to the representation in periodic
boundary conditions. The stress localization in diamond networks is completely unexpected
from the point of view of the classical theory, since all network strands are equivalent. The
highly artificial regular IPDN mimic a situation where this equivalence is preserved for a con-
served topology. When these networks are stretched, all strands contribute equally to the elastic
response. Tensions are homogeneous throughout the whole system, and all strands are stretched
to their full contour length at the maximal elongation. In random IPDN, on the other hand,
completely stretched chains occur at much smaller elongations. A large part of the tension is
localized on topologically shortest paths through the system. In particular, these paths are com-
posed of strands as well as meshes with physical entanglements propagating the tension in the
same manner as chemical cross-links. The way the chains fail and release entanglements is an
artifact of our model. At too large stresses the connected beads at the contact points are driven
so far apart that the chains can slip through each other. Since the energy threshold is of the order
of 70kBT such events do not occur at small elongations.
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