This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
ACCEPTED MANUSCRIPT

Suppression of radial motion in translated field-reversed configuration plasma via global gyro-effect

, , , and

Accepted Manuscript online 24 April 2024 © 2024 IOP Publishing Ltd

What is an Accepted Manuscript?

DOI 10.1088/1361-6587/ad42d5

10.1088/1361-6587/ad42d5

Abstract

The radial motion of a field-reversed configuration (FRC) during translation at supersonic/Alfvénic speed was effectively suppressed by the global gyro-effect induced by toroidal flow. In magnetohydrodynamic approximation, an FRC is inherently unstable against radial motions such as tilt and wobble. Surprisingly, the magnetic structure of the FRC remained intact even during translation at speeds exceeding the ion sonic and Alfvén speeds, despite the presence of radial motions. Optical observations were conducted on the radial motion and toroidal flow of translated FRCs under various electric boundary conditions at the device end. The implementation of end-shorting led to an increased toroidal flow rate, consequently reducing the radial displacement of the FRC during translation. This control of toroidal flow from the device's end not only suppressed radial motion but also facilitated head-on collisions in the formation of FRCs by the collisional merging technique. The findings emphasize the significance of toroidal flow control in preserving the integrity of FRC's simply connected geometry and enhancing its formation performance.

Export citation and abstract BibTeX RIS

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully protected by copyright and cannot be reused or reposted elsewhere.

As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript will be available for reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.

10.1088/1361-6587/ad42d5