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Abstract

Low-frequency drift-wave instabilities play an important role in the radial transport
of present tokamaks, and trapped electron collisions can significantly influence the
instabilities. In this paper, the effects of trapped electron collisions on these instabilities
are investigated based on linear gyro-kinetic simulation. The basic numerical techniques
including dispersion relation integral method and orthogonal basis function expansion
are presented in detail with necessary benchmark work. The results show that in
medium gradients, the increase of trapped electron proportion promotes the growth
rate and radial heat transport largely for quasi-linear TEMs and ITG modes, and
trapped electron collisions have strong stabilizing effects, especially for the TEMs driven
by electron temperature gradient. Two distinctive branches, named as Mode #1 and
#2, are investigated in steep gradients. Both behave varied instability nature during
different range of normalized wave vector k̂θ. Mode #1 mainly induces radial heat
transport during k̂θ < 0.5, and is significantly suppressed by the collisions. Mode #2
mainly induces the radial heat transport during 0.4<k̂θ < 0.8, and is largely enhanced by
the collisions. When the collisionality is large enough, Mode #2 has stronger transport
capacity than the other. Mode #2 at medium wave vector, known as DTEM, may be the
mechanism of the ECM observed in EAST H-mode plasmas, in which the collisionality
plays an important role in the mode excitation.
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1. Introduction

As one of the most attractive alternatives to carbon-dependent energy sources, nuclear
fusion may be utilized peacefully through the tokamak, i.e., a magnetic confinement
fusion device. It is significant for future advanced tokamaks to maintain the high energy
confinement for commercial power generation. Thus, it is necessary to understand
and try to control the radial particle and heat transport in tokamak plasmas, which
directly influence the energy confinement. In different channels of the radial transport,
low-frequency drift-wave instabilities play an important role, including ion temperature
gradient (ITG) modes and trapped electron modes (TEMs) [1,2]. And these instabilities
are believed to be the main reasons for the low-frequency micro-instabilities observed
in tokamak experiments, which is also known as turbulence transport or anomalous
transport [3].

Gyro-kinetic theory is widely used to study low-frequency drift-wave instabilities,
including the linear theory [4] and nonlinear theory [5]. And global gyro-kinetic codes,
such as GTC [6], XGC1 [7] and gKPSP [8–10], achieve great success in studying
these instabilities numerically with complex real geometry. However, large computing
resources are necessary for these codes, since particle-in-cell (PIC) simulation that they
mainly adopt requires tracing massive particles to reduce the intrinsic noise. Some
gyro-kinetic codes with remarkable efficiency are also developed to study the linear
instabilities in simple one-dimensional ballooning space geometry, including HD7 code
[11,12] based on dispersion relation integral or our recent code [13] based on Euler matrix
eigenvalue solution. And these efficient codes have already provided significant evidences
that impurity seeding for detachment operation can stabilize or destabilize drift-wave
instabilities, mainly determined by impurity density gradient scale length [13–18]. In
these works, the density fluctuations due to adiabatic and non-adiabatic responses are
included in the quasi-neutrality condition, but the impact of trapped electron collisions,
also significantly affected by impurities, has not yet been incorporated into the analysis.

Existing experiment and simulation results show that collision effects are important
for trapped electrons and have significant influence in drift-wave instabilities. For
instance, in EAST H-mode experiments, an edge coherent mode (ECM) is often observed
in the steep-gradient pedestal region, and the collisionality plays an essential role in the
ECM’s excitation and amplitude [19–21]. Simulation results from global gyro-kinetic
code GYRO [19] and GTC [22] show that ECM shows the nature of dissipative trapped
electron mode (DTEM), arising from collisional de-trapping of the trapped electrons.
However, another simulation work from global gyro-kinetic code GEM [23] believes that
ECM appears to be collisionless trapped electron mode (CTEM), excited by precessional
resonance of the trapped electrons. The results from GEM [23] show that the instability
linear growth rate decreases with the collisionality, consistent with the TEM simulation
results from the global gyro-kinetic PIC code gKPSP [8], though it seems contradictory
with the ECM experimental features [20, 21].

In this paper, we present the one-dimensional gyro-kinetic code based on dispersion
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relation integral and orthogonal basis function expansion, recently developed for
efficiently studying quasi-linear drift-wave instabilities. Based on this code, simulation
work is conducted to study trapped electron collision effects in medium gradients,
and we find that the collisions have strong stabilizing effects on these instabilities,
especially for the TEMs driven by electron temperature gradient. In steep gradients,
two distinctive instability branches are investigated, and the collision effects on them
are almost opposite. The remainder of this paper is organized as follows. In section 2,
the physical model is presented, including basic linear gyro-kinetic theory, dispersion
relation integral method and two benchmark cases. In section 3, collision effects on
ITG modes and TEMs in medium gradients are investigated separately. In section 4,
collision effects in steep gradients are studied with discussion on the validity of ballooning
representation and instability nature. Finally, section 5 is devoted to a summary and
discussion.

2. Physical model based on dispersion relation integral

2.1. Basic linear gyro-kinetic theory

Low-frequency drift-wave instabilities can be studied by gyro-kinetic theory with the
assumptions ω/Ωci ∼ ρti/L ∼ k∥/k⊥ ≪ 1 [4, 5], where ω and Ωci are the instability
frequency and main ion cyclotron frequency, ρti and L are main ion cyclotron radius
and typical parameter scale length, and k∥ and k⊥ are parallel and perpendicular wave
vector respectively.

In this paper, we focus on quasi-linear drift-wave instabilities which exhibit
electrostatic nature, and the electromagnetic components are ignored. The main ion
cyclotron radius ρti = υti/Ωci with υti =

√
Ti/mi is used to normalize the wave vector

such as k̂θ = kθρti, and main ion transit frequency υti/R is used to normalize the
frequency such as ω̂ = ω/(υti/R), where R is the major radius.

The dispersion relation of these instabilities is obtained from the quasi-neutrality
condition:

n̂e =
∑
s

zsn̂s (1)

where n̂e and n̂s are electron density fluctuation and ion density fluctuation with charge
number zs, normalized by equilibrium electron density ne.

Ion density fluctuations only include transit components here with adiabatic and non-
adiabatic response, and are described by:

n̂s = −fsτsϕ̂+

∫
ĥsJ0(k̂⊥υ̂⊥αs) d

3υ̂ (2)

where fs = zsns/ne is the charge concentration, τs = Te/Ts is the temperature
ratio and J0 is the Bessel function of zeroth order, originating from the gyro-phase
average. Electrostatic potential fluctuation is normalized by ϕ̂ = eϕ̃/Te. The coefficient
αs =

√
(z2i τims)/(z2sτsmi) originates from the normalized process, which can be seen
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more clearly in the previous work [13] with the same character form. The non-adiabatic
response ĥs is obtained from the following gyro-kinetic equation.

By utilizing ballooning angle coordinate θ, the directional derivative is simplified as
b⃗·∇ = 1

qR
∂
∂θ

where b⃗ is the unit vector of the magnetic field, q is the safety factor. And the
components of wave vector satisfies k̂2

⊥ = k̂2
θ [1 + ŝ2(θ − θk)

2], where ŝ = d ln(q) / d ln(r)

is the magnetic shear and θk originates from the coordinate transform with common
default value θk = 0. By ignoring ion collision terms, the gyro-kinetic equation for ion
non-adiabatic response ĥs is written as [4, 13]:

[(ω̂ − ω̂Ds) + βs · i
υ̂∥
q

∂

∂θ
]ĥs = (ω̂ − ω̂∗sT )J0FMfsτsϕ̂ (3)

where the coefficient βs =
√

(τimi)/(τsms) also originates from the normalized process.
ω̂Ds = εnsω̂∗sf(θ)(υ̂

2
⊥/2 + υ̂2

∥) is the normalized magnetic drift frequency with f(θ) =

cos θ + ŝ(θ − θk) sin θ, and ω̂∗sT = ω̂∗s[1 + ηs(υ̂
2/2 − 3/2)] is the normalized pressure

gradient drift frequency. εns = Lns/R and ηs = Lns/LTs are typical scale length ratio,
with the density gradient scale length Lns = −(d ln(ns) / dr)

−1 and the temperature
gradient scale length LTs = −(d ln(Ts) / dr)

−1. ω̂∗s = ω∗s/(υti/R) is the normalized
density gradient drift frequency with ω∗s = −(ckθTs)/(zseBLns). FM is the particle
velocity distribution function, which is set as the standard Maxwell distribution FM =

exp(−υ̂2/2)/(2π)3/2 in this paper. The derivation of kinetic equation for comprehensive
ion non-adiabatic response can be fully understood by referring to the Ref. [24].

Due to low frequency, the non-adiabatic response of transit electrons is ignored, which
is important for electron temperature gradient (ETG) mode, but less important for
TEMs and ITG modes. However, the non-adiabatic response of trapped electrons
should be retained, since is the main source for TEMs and has significant influence
on ITG modes which will be seen later. Thus, electron density fluctuation is written as:

n̂e = ϕ̂+
√
2ϵ

∫
ĥet d

3υ̂ (4)

where ϕ̂ is electron adiabatic response,
√
2ϵ is trapped electron ratio with inverse aspect

ratio ϵ = r/R, and ĥet is the non-adiabatic response of trapped electrons. Here electron
finite gyroradius effect is neglected, thus the value J0(k⊥ρte) = J0(0) = 1 is applied.

The non-adiabatic response of trapped electrons ĥet is also obtained from gyro-kinetic
equation with collision term. Normalized process like ion equations is not conducted
here, since the time scale of electron motion is much less than that of ion motion. And
the gyro-kinetic equation for trapped electrons is written as [25, 26]:

[(ω − ωDe + iνei/ϵ) + i
υ∥
qR

∂

∂θ
]ĥet = −(ω − ω∗eT )Feϕ̂ (5)

where Krook collision operator is utilized with the energy-dependent electron-ion
collisional deflection frequency νei. And ωDe = εneω∗ef(θ)(υ

2
⊥/2 + υ2

∥) and ω∗eT =

ω∗e[1+ ηe(υ
2/2− 3/2)] are electron magnetic drift frequency and pressure gradient drift

frequency with ω∗e = (ckθTe)/(eBLne), similar to ion’s definition. Fe is electron velocity
distribution function which is also set as the standard Maxwell distribution here.
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Tao Y. Q., Anhui Normal University, yuqiang.tao@ahnu.edu.cn 5

Though Eq.(3) and Eq.(5) seems similar, the boundary condition varies a lot. The
Eq.(3) describes the transit ions with the boundary ĥs → 0 when θ → ∞. However,
Eq.(5) describes the trapped electrons with banana orbit and is only meaningful when
θ ∈ (−θr, θr), where θr is the turning point in ballooning space and is associated with
the pitch angle of electron velocity. It is convenient to introduce a pitch angle variable κ

such that κ2 = [υ2/2−µB0(1− ϵ)]/(2ϵµB0), where µ = υ2
⊥/2B is the magnetic moment.

Electrons with 0 ≤ κ ≤ 1 are trapped with the turning point θr = 2arcsin κ, and
electrons with κ > 1 can transit through the magnetic field [4, 27].

2.2. Dispersion relation integral

The non-adiabatic response is obtained directly by integrating the gyro-kinetic
equations, which can be found in [28]. Here we introduce the orthogonal basis function
to expand the electrostatic potential as:

ϕ̂(θ) =
∑
m

ϕ̂mhm(θ) (6)

hm(θ) =

√
1

θd2mm!
√
π
exp

{
−(θ/θd)

2

2

}
Hm(θ/θd) (7)

where θd is the width of Gauss function, and Hm(x) is the m-th order Hermite polynomial
with H0(x) = 1, H1(x) = 2x,Hm(x) = 2xHm−1(x) − 2(m − 1)Hm−2(x). The basis
function is orthogonal as

∫∞
−∞ dxhm(x)hn(x) = δmn.

The quasi-neutrality condition, i.e., Eq.(1), can be written as:

Mmnϕ̂m = 0 (8)
Mmn = (1 +

∑
s

zsfsτs)δmn +M et
mn −M i

mn (9)

where M et
mn comes from the non-adiabatic response of the trapped electrons, and M i

mn

comes from the non-adiabatic response of the transit ions.
The contribution M i

mn is easily obtained as:

M i
mn =

∫ ∞

−∞
hn(θ) dθ

∫ ∞

−∞
hm(θ

′) dθ′
∫ ∞

0

dυ̂⊥

∫ ∞

0

dυ̂∥
∑
s

Ks (10)

Ks = 2πυ̂⊥
−iq

βsυ̂∥
FMzsfsτsJ0(θ)(ω̂ − ω̂∗sT )J0(θ

′) exp
(
+iIθθ′

)
(11)

Iθθ′ =
q

βsυ̂∥
· sign(θ − θ′){ω̂(θ − θ′)− εnsω̂∗s(

υ̂2
⊥
2

+ υ̂2
∥)

∫ θ

θ′
f(θ′′) dθ′′} (12)

Above quadruple integral can be further simplified to triple integral when standard
Maxwell distribution is applied, which is used in the gyro-kinetic code HD7 [12, 14].

The contribution M et
mn from the non-adiabatic response of the trapped electrons is

much complex. A widely used technique is expanding Eq.(5) in ω/ωbe [12, 26] with
standard Maxwell distribution assumption, where ωbe = ϵ1/2υthe/qR is the thermal
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Tao Y. Q., Anhui Normal University, yuqiang.tao@ahnu.edu.cn 6

electron bounce frequency, yielding:

M et
mn =−

√
2ϵ

π

∫ ∞

−∞
hn(θ) dθ

∫ ∞

0

dt
√
te−t

×
∫ 1

0

ω̂ − ω̂∗eT

ω̂ − ω̂De + iν̂ei/(ϵt3/2)

dκ2

4K(κ)

×
j=+∞∑
j=−∞

g(θ − 2jπ, κ)×
∫ ∞

−∞
dθ′ g(θ′, κ)hm(θ

′ − 2jπ)

(13)

where t = υ2/(2Te/me) and g(θ, κ) =
∫ θr
−θr

dθ′ δ(θ − θ′)/
√
κ2 − sin2(θ′/2). The

normalized frequency ω∗eT = ω̂∗e[1 + ηe(t − 3/2)] is the same as that in Eq.(5) with
ω̂∗e = ω∗e/(υti/R) = ziτik̂θ/εne, whereas electron magnetic drift frequency has been
averaged as ω̂De = ω̂∗eεnet{2E(κ)/K(κ)−1+4ŝ[E(κ)/K(κ)−(1−κ2)]}, where K(κ) and
E(κ) are the full elliptic integrals of the first and second kind. We use a more common
variable, the collisionality ν∗

e = νei/ϵωbe [19, 22], to represent the normalized collision
frequency ν̂ei

∣∣
υ=υthe

= ν∗
e ϵ

3/2
√
2miτi/me/q, in which

√
2 arises from the difference of

thermal velocity definition, i.e., υti =
√

Ti/mi, υthe =
√

2Te/me.
In numerical aspect, the frequency at a fixed wave vector is obtained by setting

the determinant of the square matrix [Mmn] to zero. To promote the efficiency, basic
preparation is conducted firstly for the parameters independent on the wave vector and
frequency. Then it only consumes ∼ 1min to obtain one (k̂θ, ω̂) point for quasi-linear
TEMs and ITG modes.

The radial heat transport coefficient χ̂i induced by drift-wave instabilities can be
further obtained based on quasi-linear mixing length estimation [14], in which the
averaged eigenfunction width ⟨θ2⟩1/2 is a crucial parameter, written as:

⟨θ2⟩1/2 =

√√√√√√
∫
θ2
∣∣∣ϕ̂(θ)∣∣∣2 dθ∫ ∣∣∣ϕ̂(θ)∣∣∣2 dθ (14)

χ̂i ≡ χi/(
2υti
ziR

ρ2ti) =
γ̂

(k̂θŝ)2⟨θ2⟩
(15)

2.3. Benchmark work

The first benchmark case is about the pure ITG modes with ϵ = r/R = 0 in two ion
species condition. The following parameters are used as ŝ = 0.8, q = 1.5, R/Lne =

5, τs = Te/Ts = 1, R/LTs = 25(s = i, z) in hydrogen plasmas, and the impurity species
is fully-ionized carbon with fz = 0.1, R/Lnz = −30. As shown in Fig.1, the calculated
growth rates and real frequencies are almost the same as that from recently developed
matrix eigenvalue method (MAT) [13] in the whole range of wave vectors. And the
results are also highly agreed with that from the gyro-kinetic code HD7 [15], except
that small discrepancies appear in small or large wave vectors
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Tao Y. Q., Anhui Normal University, yuqiang.tao@ahnu.edu.cn 7

Figure 1: (a) Normalized growth rate γkθ
√
2ρti/ω∗e and (b) normalized real frequency

ωrkθ
√
2ρti/ω∗e versus normalized wave vector kθ

√
2ρti for pure ITG modes. The data

for DRI are from the dispersion relation integral developed in this paper. Other data
are from the previous method MAT [13] and gyro-kinetic code HD7 [15].

The second benchmark case is about the coexistence of TEMs and ITG modes by
scanning ηi = Lni/LT i in pure hydrogen plasmas, with the parameters ŝ = 1.5, q =

2, τi = 1, εne = Lne/R = 0.2, ηe = Lne/LTe = 2, ϵ = 0.2, kθρti = 0.5/
√
2, ν∗

e = 0

which is abbreviated as case A later. Previous researches [11, 17] show that in medium
gradient region, strong ion temperature gradient significantly destabilizes ITG modes,
but stabilizes the TEMs. Here constant Lni = Lne is kept, and large ηi means strong
ion temperature gradient. As shown in Fig.2, both growth rates and real frequencies
for TEMs and ITG modes are well consistent with HD7’s results [17], though slight
differences appear at large ηi. The TEM growth rate decreases with ηi, whereas the
ITG growth rate increases with ηi. There is a proper ηi range for the coexistence of the
TEMs and ITG modes. Besides, the TEM real frequencies are positive, indicating that
the TEMs propagate along electron diamagnetic direction. And the real frequencies
of the ITG modes are negative, indicating that the ITG modes propagate along ion
diamagnetic direction.
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Figure 2: (a) Normalized growth rate γ/ω∗e and (b) normalized real frequency ωr/ω∗e

versus ηi for TEMs and ITG modes. The HD7’s results are from the Ref. [17]

The benchmark works above successfully demonstrate the validity of our newly-
developed gyro-kinetic code for quasi-linear TEMs and ITG modes. It is worthy to
mention that the slight differences in Fig.1 and 2 may be due to the singularity problem
of dispersion relation integral method for transit ion non-adiabatic response when υ̂∥ → 0

as seen in Eq.(11), which will be further investigated. Besides, there is no necessity
to conduct the comparisons when collisions are considered, since the trapped electron
collision part ν̂ei is directly combined with precessional resonance part ω̂De, as shown in
Eq.(13).

3. Collision effects in medium gradients

3.1. ITG modes

Further numerical study on the quasi-linear ITG modes with trapped electrons is
conducted based on case A with εne = 0.2, ηi = ηe = 2.

Firstly, the influence of the trapped electron proportion (∼
√
2ϵ) on quasi-linear ITG

modes are studied with kθρti = 0.6/
√
2, ν∗

e = 0, as shown in Fig.3. Since the inverse
aspect ratio ϵ only appears in trapped electron density fluctuations with n̂et ∝

√
2ϵ, as

seen in Eq.(4), it is obvious that the existence of trapped electrons largely enhances the
growth rates of the quasi-linear ITG modes, though it only has slight influence on the

Page 8 of 22AUTHOR SUBMITTED MANUSCRIPT - PPCF-104475.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Tao Y. Q., Anhui Normal University, yuqiang.tao@ahnu.edu.cn 9

real frequency and eigenfunction width. Due to χ̂i ∝ γ̂/⟨θ2⟩, the existence of trapped
electrons also largely enhances the radial heat transport coefficient of the ITG modes.
It is worthy to mention that γ̂ > 0 at ϵ = 0 is a signature to distinguish ITG modes,
whereas γ̂ → 0 when ϵ → 0 for TEMs as seen later, aside from the propagation direction.

Figure 3: Normalized growth rate γ̂, negative real frequency −ωr and eigenfunction
width ⟨θ2⟩1/2 of the quasi-linear ITG modes versus the inverse aspect ratio ϵ.

Figure 4: Normalized growth rate γ̂, negative real frequency −ωr and eigenfunction
width ⟨θ2⟩1/2 of the quasi-linear ITG modes versus the collisionality ν∗

e .

Then, we scan the collisionality ν∗
e for quasi-linear ITG modes with kθρti =

0.6/
√
2, ϵ = 0.2, as shown in Fig.4. The growth rate largely decreases with ν∗

e except at
extremely small collionality, indicating that trapped electron collisions help to stabilize
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the ITG modes. The amplitude of instability real frequency increases with ν∗
e when

ν∗
e < 0.1, and is less affected by the collisions when ν∗

e > 0.1. The influence of trapped
electron collisions on eigenfunction width is also slight. Therefore, trapped electron
collisions help to damp the radial heat transport largely induced by quasi-linear ITG
modes.

The spectra of quasi-linear ITG modes are also presented in three cases: ϵ = ν∗
e = 0,

ϵ = 0.2, ν∗
e = 0 and ϵ = 0.2, ν∗

e = 0.5, as shown in Fig.5. The growth rates and
radial heat transport coefficients for ϵ = 0.2, ν∗

e = 0 are much larger than that for
ϵ = ν∗

e = 0, indicating that the existence of the trapped electrons can destabilize the
quasi-linear ITG modes. However, the growth rates and radial heat transport coefficients
for ϵ = 0.2, ν∗

e = 0.5 are much lower than that for ϵ = 0.2, ν∗
e = 0, indicating that the

trapped electron collisions can stabilize the quasi-linear ITG modes. The peak location
of the growth rates are similar for three cases, whereas the peak location of radial heat
transport coefficients differs slightly.

Figure 5: (a) Normalized growth rate γ̂ and (b) normalized radial heat transport
coefficient χ̂i versus normalized wave vector k̂θ for quasi-linear ITG modes.

3.2. TEMs

To study the effects of trapped electron collisions on TEMs in medium gradients, we set
plane ion temperature profile ηi = Lne/LT i = 0 based on case A, due to the damping
effects of ion temperature gradients on TEMs, as seen in Fig.2(a). Here these TEMs
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should mainly be classified into CTEM, driven by precessional resonance of trapped
electrons.

The driven sources have significant influence on the properties of quasi-linear TEMs.
Here three cases are considered: driven source from denisty gradients and temperature
gradients with R/Lne = 10, R/LTe = 10, driven source mainly from density gradients
with R/Lne = 10, R/LTe = 1, and driven source mainly from temperature gradients
with R/Lne = 1, R/LTe = 10.

Figure 6: (a) Normalized growth rate γ̂, (b) normalized real frequency ω̂r and (c)
normalized radial heat transport coefficient χ̂i versus inverse aspect ratio ϵ for

quasi-linear TEMs in medium gradients.

As shown in Fig.6, both growth rates and radial heat transport coefficients increase
with inverse aspect ratio ϵ, and reaches to zeros when ϵ → 0 which is much different from
quasi-linear ITG modes, as seen in Fig.3. And the relation γ̂ ∝

√
ϵ is almost satisfied,

consistent with the analytic results [29]. Real frequencies for R/Lne = 10, R/LTe = 10

and R/Lne = 10, R/LTe = 1 decrease with ϵ except at small ϵ, whereas real frequencies
for temperature driven TEMs (R/Lne = 1, R/LTe) increase with ϵ. The driven strength
is strongest for R/Lne = 10, R/Lne = 10 compared to the others, therefore, it has largest
growth rates and radial heat transport coefficients, and has smallest ϵ threshold to excite
the instabilities.
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The trapped electron collision effects on quasi-linear TEMs also are sensitive to
the driven force. As shown in Fig.7(a,c), the temperature gradient driven TEMs
(R/Lne = 1, R/LTe = 10) are quickly and completely stabilized by the modest increase of
collisionality ν∗

e . However, the density gradient driven TEMs (R/Lne = 10, R/LTe = 1)
are slowly stabilized by increased ν∗

e and still remain unstable even at large ν∗
e value.

These results are consistent with the results from the gKPSP code with Lorentz collision
operator [8]. The trapped electron collisions also tend to reduce the real frequencies of
temperature gradient driven TEMs, but promote the real frequencies of density gradient
driven TEMs, as shown in Fig.7(b). Combined with ϵ and ν∗

e scanning work, the
instabilities for case R/Lne = 10, R/LTe = 10 behave more like density gradient driven
type than temperature gradient driven type.

Figure 7: (a) Normalized growth rate γ̂, (b) normalized real frequency ω̂r and (c)
normalized radial heat transport coefficient χ̂i versus collisionality ν∗

e for quasi-linear
TEMs in medium gradients.

Typical spectra for the three cases with or without collisions are also presented in
Fig.8. It is clear that trapped electron collisions damp the quasi-linear TEMs in the
whole range of wave vectors. On the other hand, the TEM growth rates increase with
wave vector, and the outlines are much different from ITG modes, as shown in Fig.5.
The radial heat transport induced by TEMs mainly occurs at small wave vector, i.e.,
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long wavelength, whereas the transport induced by ITG modes mainly occurs at medium
wave vector, i.e., medium wavelength. Besides, though the growth rates differs a lot for
R/Lne = 10, R/LTe = 1 and R/Lne = 1, R/LTe = 10 without collisions, their radial
transport coefficients are similar. And the instabilities for R/Lne = 10, R/LTe = 10

have strongest driven force among the three cases, thus, they have largest growth rates
and radial heat transport coefficients.

Figure 8: (a) Normalized growth rate γ̂ and (b) normalized radial heat transport
coefficient χ̂i versus normalized wave vector k̂θ for quasi-linear TEMs in medium
gradients. The collisionality ν∗

e = 0.5 is set for the cases with collisions, except for
R/Lne = 1, R/LTe = 10 with ν∗

e = 0.01.

4. Collision effects in steep gradients

4.1. Validity of ballooning representation

Drift-wave instabilities in steep gradients are much more complex that that in medium
gradients. If the plasma gradients are too strong, the ballooning representation may
have trouble in describing the mode structure [30, 31]. A dimensionless parameter
δ = kθ

√
2ρtiŝ(

√
2ρti/L)

−1/2 is proposed in the Ref. [30] to verify the validity of ballooning
representation with δ > 1, where L is the typical gradient scale length and

√
2 originates

from the velocity definition difference.
In this section, the typical tokamak edge parameters are utilized as ŝ = 1, q = 2.8, τi =
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1, Lne = LTe = LT i = R/69.2 in pure hydrogen plasmas, which is the same as the
Ref. [22] and similar to the Ref. [23]. With major radius R = 1.6m, magnetic field
Bt = 2T and ion temperature Ti ∼ 500eV in typical EAST pedestal, the value δ is
around 2 when kθ

√
2ρti = 0.5.The ballooning representation is still applicable, i.e.,

δ > 1, during the credible range k̂θ = kθρti > 0.18 under these parameters. Further
argument for the validity of ballooning representation is that the mode behaves mainly
like ballooning structure under above parameters from the GTC [22] and GEM [23]
simulation.

Figure 9: The real part (Re) and imaginary part (Im) of normalized electrostatic
potential ϕ̂ for (a) Mode #1 and (b) Mode #2 versus ballooning angle θ with

k̂θ = 0.70, ϵ = 0.3, ν∗
e = 2.

4.2. Instability nature

Two important branches with maximum growth rates are investigated among various
kinds of eigenfunctions in steep gradients, marked as Mode #1 and Mode #2. Here,
further-simplified zero-dimensional models are also used to help to find the relatively
important branches, including Sandberg’s model [32] and Cornor’s model [27], which
have similar results to Mode #1 and Mode #2 respectively. Besides, the two branches
also properly correspond to the mode found in the GEM [23] and GTC [22] simulation
respectively for the explanation of the ECM oberved in EAST under similar parameters.
The typical mode structures are shown in Fig.9 with k̂θ = 0.70, ϵ = 0.3, ν∗

e = 2, and
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the eigenfunction widths vary a lot. In the rest of this section, the interval of scanning
parameters is small enough to obtain smooth growth rate and real frequency curves with
continuously changed eigenfunction outlines, aiming to ensure the accuracy of numerical
results.
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Figure 10: Normalized growth rate γ̂, real frequency ω̂r and radial heat transport
coefficient χ̂i versus normalized wave vector k̂θ with ϵ = 0.15, ν∗

e = 0 (blue dashed),
ϵ = 0.30, ν∗

e = 0 (black solid) and ϵ = 0.30, ν∗
e = 2 (red solid with dots). (a1-3) are for

Mode #1, and (b1-3) are for Mode #2. The vertical yellow dashed lines represents the
k̂θ locations for the scanning works later.

As shown in Fig.10, the spectra and radial heat transport coefficients are obtained for
Mode #1 and Mode #2 in three cases: ϵ = 0.15, ν∗

e = 0 (blue dashed); ϵ = 0.30, ν∗
e = 0

(black solid); ϵ = 0.30, ν∗
e = 2 (red solid with dots). The proportion of trapped electrons

largely influences the spectra of Mode #1, whereas only has modest effects on Mode
#2, by comparing the case ϵ = 0.15, ν∗

e = 0 and ϵ = 0.30, ν∗
e = 0. For Mode #1, larger

ϵ induces larger growth rates γ̂ and larger radial heat transport coefficients χ̂i at small
wave vector (k̂θ < 0.5), but induces smaller γ̂ and χ̂i at large wave vector (k̂θ > 0.5),
which can also be demonstrated by Sandberg’s model [32]. The real frequencies of Mode
#1 are positive and less affected by ϵ at small wave vector, but they become negative
with larger amplitude with increased ϵ at large wave vector. For Mode #2, larger ϵ
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induces obvious increase of γ̂ and χ̂i when 0.4 < k̂θ < 0.8, whereas the increase is
almost negligible when k̂θ > 0.8. The real frequencies of Mode #2 decrease with k̂θ
and are almost positive, which are slightly reduced by larger ϵ. Note that the sigh of
real frequencies in steep gradients can not be used to distinguish the instability type,
which is much different from that in medium gradients and has also been mentioned in
the Ref. [28]. Therefore, unlike conditions in medium gradients, these modes cannot be
simply classified into pure TEM or ITG mode in the whole k̂θ range, properly due to
that each gradient force is strong in steep gradients.

Figure 11: (a1, b1) Scanning inverse aspect ratio ϵ with ν∗
e = 0 and (a2, b2) scanning

collisionality ν∗
e with ϵ = 0.3 for Mode #1 at k̂θ = 0.20, 0.45, 0.70, 0.95 and Mode #2

at k̂θ = 0.50, 0.70, 0.90.

4.3. Collision effects

Scanning ϵ without collisions at different wave vectors, including k̂θ =

0.20, 0.45, 0.70, 0.95 for Mode #1 and k̂θ = 0.50, 0.70, 0.90 for Mode #2, can also reveal
the nature difference of two branches. The scanning works start from the point of the
lines with ϵ = 0.30, ν∗

e = 0 in Fig.10, marked with vertical yellow dashed lines. As shown
in Fig.11(a1), Mode #1 at small wave vector tends to be pure TEM since γ̂ increases
with ϵ at k̂θ = 0.20 and reaches to zeros when ϵ → 0. However, Mode #1 at large wave
vector tends to be coupled ITG and TEM, since γ̂ increases at first and then decreases
with increased ϵ, and the ϵ turning point is much smaller at larger wave vector. As
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shown in Fig.11(b1), Mode #2 at medium wave vector k̂θ = 0.50 also tends to be pure
TEM. However, Mode #2 at large wave vector behaves mainly like ITG mode, since γ̂

increases with ϵ but is still large when ϵ → 0.
The difference of these instability nature at varied wave vector can also be shown

by studying the collision effects. Scanning the collisionality ν∗
e with ϵ = 0.3 is

conducted at different wave vectors, including k̂θ = 0.20, 0.45, 0.70, 0.95 for Mode #1
and k̂θ = 0.50, 0.70, 0.90 for Mode #2. The scanning works start from the point of
the lines with ϵ = 0.30, ν∗

e = 2 in Fig.10. For Mode #1, trapped electron collisions
have stabilizing effects at small wave vector, but have destabilizing effects at large wave
vector, as shown in Fig.11(a2). For Mode #2, trapped electron collisions have strong
destabilizing effects at medium wave vector which is consistent with Cornor’s model [27],
but have weak stabilizing effects at large wave vector, as shown in Fig.11(b2). In fact,
at medium wave vector like k̂θ = 0.45, Mode #2 tends to be mainly driven by collisional
de-trapping of the trapped electron, known as DTEM, with strong capacity of radial
heat transport, as shown in Fig.10(b3).

Figure 12: Radial heat transport coefficient χ̂i versus the collisionality ν∗
e at

k̂θ = 0.32, 0.45 for Mode #1 and k̂θ = 0.45, 0.58 for Mode #2 with ϵ = 0.3.

Mode #1 mainly induces radial heat transport at relatively small wave vector
(k̂θ < 0.5), and the transport capacity is severely suppressed by the collisions, as shown
in Fig.10(a3) by comparing the case ϵ = 0.30, ν∗

e = 0 and case ϵ = 0.30, ν∗
e = 2.

On the contrary, Mode #2 mainly induces radial heat transport at medium wave vector
(0.4<k̂θ < 0.8), and the transport capacity is largely enhanced by the collisions, as shown
in Fig.10(b3). To further compare the transport capacity, the radial heat transport
coefficient χ̂i versus the collisionality ν∗

e with ϵ = 0.3 for Mode #1 and Mode #2
is shown in Fig.12. The scanning works also start from the point of the lines with
ϵ = 0.30, ν∗

e = 2 in Fig.10 at k̂θ = 0.32 for Mode #1 and k̂θ = 0.58 for Mode #2,
where the radial heat transport mainly occurs. When ν∗

e > 1.5, the heat transport
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coefficient χ̂i induced by Mode #2 at k̂θ = 0.58 is larger than that induced by Mode
#1 at k̂θ = 0.32. Even at the same wave vector, i.e., k̂θ = 0.45, as shown in Fig.12,
Mode #2 induces larger radial heat transport than the other when ν∗

e > 2.8. Thus, it
is convincing that Mode #2 has stronger capacity of radial heat transport than Mode
#1 when the collisionality χ̂i is large enough.

5. Summary and discussion

In this paper, the basic theory and numerical techniques based on dispersion relation
integral and orthogonal basis function expansion are presented in detail, aiming to
study the low-frequency drift-wave instabilities efficiently. And a gyro-kinetic code
based on one-dimensional ballooning space is developed, and benchmark works have
been conducted in two ion species and for the existence of TEMs and ITG modes,
which demonstrate the code’s validity for studying these instabilities. Though different
forms of the collision operator could give varied scaling with the collisonality [27, 33],
the Krook collision operator is utilized in this work, which is applicable to study the
influencing tendency of trapped electron collisions on the instabilities.

The effects of trapped electron collisions in medium gradients on low-frequency drift-
wave instabilities are studied numerically. For quasi-linear ITG modes or TEMs, the
increase of trapped electron proportion promotes the growth rates and radial heat
transport. However, the collisions have stabilizing effects on these modes. Compared
to the TEMs driven by density gradients, the stabilizing effects of trapped electron
collisions are much stronger for the TEMs driven by temperature gradients, and only
very small collisionality can completely suppress these modes, which is consistent with
the gKPSP code’s results with Lorentz collision operator [8]. Some experiments on the
tokamak such as EAST [34, 35], HL-2A [36], JET [37] and ASDEX-Upgrade [38], show
that impurity seeding can suppress the turbulent transport, induce the increase of ion
temperature and promote the plasma confinement. And these phenomena may be partly
explained by the stabilizing effects from the collisionality, which are usually promoted
after impurity seeding. The results may promote the credibility of the compatibility
between detachment operation and high confinement for future advanced tokamaks.

Two distinctive branches, named as Mode #1 and #2, are also investigated in steep
gradients. Note that the gradient is not too strong, and the ballooning representation
is still applicable here. Scanning inverse aspect ratio ϵ and the collisionality ν∗

e are
conducted, and both branches behave varied instability nature at different normalized
wave vector k̂θ. Mode #1 at small k̂θ behaves as pure TEMs and is strongly stabilized
by trapped electron collisions, but it tends to be coupled ITG and TEM at large k̂θ and
is weakly destabilized by the collisions. Mode #2 tends to be pure TEMs at medium
k̂θ and is strongly destabilized by trapped electron collisions, but it behaves mainly like
ITG modes at large k̂θ and is weakly stabilized by the collisions. Mode #1 mainly
induces radial heat transport during k̂θ < 0.5, and is significantly suppressed by the
collisions. Mode #2 mainly induces the radial heat transport during 0.4<k̂θ < 0.8, and
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is largely enhanced by the collisions. When the collisionality is large enough, Mode #2
has stronger capacity of the radial heat transport than Mode #1.

The mode found in GEM code’s simulation [23] properly corresponds to Mode #1 at
small wave vector, but it may not be the reasons for the ECM observed in EAST H-mode
plasmas [19–21] since the collision stabilizing effects contradict the ECM’s experimental
feature. The mode found in GTC code’s simulation [22] properly corresponds to Mode
#2 at medium wave vector, known as DTEM, and is properly the mechanism of the
ECMs since the dependence on the collisionality and the real frequency are consistent
with experimental results. However, only poloidal wave vector kp of the ECM is
measured in experiments at present without the radial component kr [19–21], whereas
the perpendicular wave vector satisfies k⊥ =

√
k2
p + k2

r [39]. Though the typical tokamak
edge parameter used in section 3.4 of this paper and the Ref. [22] are almost consistent
with EAST H-mode conditions, the edge safety factor q95 ∼ 5 in EAST [19–21] is
usually much higher than the value we set. Besides, limited to measurement resolution,
the value of temperature gradient scale length in EAST pedestal has relatively large
uncertainty. In the near future, further researches will be conducted by combining the
two key factors, i.e., collisionality ν∗

e and impurity density gradient scale length Lnz,
to obtain comprehensive understanding of the impurity seeding effects, especially in
extreme strong gradient regions where the ballooning representation is not applicable
any more.
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