
Physiological Measurement
     

TOPICAL REVIEW • OPEN ACCESS

Algorithmic detection of sleep-disordered
breathing using respiratory signals: a systematic
review
To cite this article: Liqing Yang et al 2024 Physiol. Meas. 45 03TR02

 

View the article online for updates and enhancements.

You may also like
Non-invasive machine learning estimation
of effort differentiates sleep-disordered
breathing pathology
Umaer Hanif, Logan D Schneider, Lotte
Trap et al.

-

Estimating sleep parameters using nasal
pressure signals applicable to continuous
positive airway pressure devices
Jong-Uk Park, Urtnasan Erdenebayar,
Eun-Yeon Joo et al.

-

Improvement of High Voltage Cycling
Performances of Li [ Ni1 / 3Co1 / 3Mn1 / 3 ]
O2 at 55 ° C by a ( NH4 ) 3AlF6 Coating
Yang-Kook Sun, Seung-Taek Myung,
Chong Seung Yoon et al.

-

This content was downloaded from IP address 3.144.205.223 on 05/05/2024 at 16:08

https://doi.org/10.1088/1361-6579/ad2c13
/article/10.1088/1361-6579/ab0559
/article/10.1088/1361-6579/ab0559
/article/10.1088/1361-6579/ab0559
/article/10.1088/1361-6579/aa723e
/article/10.1088/1361-6579/aa723e
/article/10.1088/1361-6579/aa723e
/article/10.1149/1.3143914
/article/10.1149/1.3143914
/article/10.1149/1.3143914
/article/10.1149/1.3143914
/article/10.1149/1.3143914
/article/10.1149/1.3143914
/article/10.1149/1.3143914
/article/10.1149/1.3143914
/article/10.1149/1.3143914
/article/10.1149/1.3143914
/article/10.1149/1.3143914
/article/10.1149/1.3143914
/article/10.1149/1.3143914
/article/10.1149/1.3143914
/article/10.1149/1.3143914
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjstgdX7EyqTshOuJcPM3dc_J5FLqYoEpL-1TqXl0E0R1T5iUMqZVn6xVJHTdq32rpbNdZtHoinwR3PhbRUy07bg4g8sZAscZCYIt1rLEfFiUUVt3TvxkJOnkbP0kwKUnU-YBPGIKk9HAQVNMcj_vpzdOcI88S1DOPclH93ADYY5E-p4rLM7Mrqn2bYtIPErc0RwcKYNt2BSwX8PHa8Hl_HQDC2YaTqc4MO6AWl8dnJtS8g54HZ5FNPoKHbvyNQRFXNwFgGmFIKXk061zBVzjPvMTizsTtWmBvpNXQtPMKWF0DD1ujtnj_sZ9pUGmCD52jegNqzsvQ7I33xBeVy7HsVQolIMOJQ&sig=Cg0ArKJSzD2jK7M0rIQ9&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://www.owlstonemedical.com/breath-biopsy-complete-guide/%3Futm_source%3Djbr%26utm_medium%3Dad-b%26utm_campaign%3Dbb-guide-bb-guide%26utm_term%3Djbr


Physiol.Meas. 45 (2024) 03TR02 https://doi.org/10.1088/1361-6579/ad2c13

TOPICAL REVIEW

Algorithmic detection of sleep-disordered breathing using respiratory
signals: a systematic review

LiqingYang1,2 , ZhimeiDing1,2, Jiangjie Zhou2,3, SiyuanZhang1,2, QiWang2,3, Kaige Zheng2,3,
XingWang1,3 and LinChen1,3,∗

1 Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, People’s
Republic of China

2 Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, People’s Republic of
China

3 ChongqingKey Laboratory of Artificial Intelligence and Service RobotControl Technology, Chongqing, People’s Republic of China
∗ Author towhomany correspondence should be addressed.

E-mail: clxyz@cqu.edu.cn

Keywords: sleep-disordered breathing, respiratory signal, threshold rule-based algorithms,machine learning, deep learning

Abstract
Background andObjective. Sleep-disordered breathing (SDB) poses health risks linked to hypertension,
cardiovascular disease, and diabetes. However, the time-consuming and costly standard diagnostic
method, polysomnography (PSG), limits its wide adoption and leads to underdiagnosis. To tackle this,
cost-effective algorithms using single-lead signals (like respiratory, blood oxygen, and electrocardio-
gram) have emerged. Despite respiratory signals being preferred for SDB assessment, a lack of
comprehensive reviews addressing their algorithmic scope and performance persists. This paper
systematically reviews 2012–2022 literature, covering signal sources, processing, feature extraction,
classification, and application, aiming to bridge this gap and provide future research references.
Methods. This systematic review followed the registered PROSPEROprotocol (CRD42022385130),
initially screening 342 papers, with 32 studiesmeeting data extraction criteria.Results. Respiratory
signal sources include nasal airflow (NAF), oronasal airflow (OAF), and respiratorymovement-related
signals such as thoracic respiratory effort (TRE) and abdominal respiratory effort (ARE). Classification
techniques include threshold rule-basedmethods (8), machine learningmodels (13), and deep
learningmodels (11). TheNAF-based algorithm achieved the highest average accuracy at 94.11%,
surpassing 78.19% for other signals. Hypopnea detection sensitivity with single-source respiratory
signals remainedmodest, peaking at 73.34%. TheTRE andARE signals proved to be reliable in
identifying different types of SDBbecause distinct respiratory disorders exhibited different patterns of
chest and abdominalmotion.Conclusions.Multiple detection algorithms have beenwidely applied for
SDBdetection, and their accuracy is closely related to factors such as signal source, signal processing,
feature selection, andmodel selection.

1. Introduction

Sleep-disordered breathing (SDB) is a group of disorders that disrupt normal breathing patterns and quality
during sleep,manifesting as intermittent occurrences of respiratory apnea or hypopnea. According to the
definition provided by the American academy of sleepmedicine (AASM) (Iber C et al 2017), apnea is defined as a
drop ofmore than 90% from the baseline airflow lasting at least 10 s. Hypopnea is defined as a drop ofmore than
30% from the baseline airflow lasting for at least 10 s, accompanied by either a desaturation ofmore than 3%
from the pre-event baseline or an arousal from sleep. SDB can be classified into three types based on the
underlying causes: obstructive sleep apnea (OSA), central sleep apnea (CSA), and complex sleep apnea (MIX),
which is a combination of bothOSA andCSA, eachwith different respiratory symptoms.Overall, SDB can have
severe impacts on physical andmental function, resulting endothelial dysfunction, oxidative stress,
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inflammation, glucose dysregulation, and brain andwhitematter pathological changes (Daulatzai 2015,
Polsek et al 2018, Liguori et al 2021). Furthermore, it has been associatedwith various disorders, including
hypertension, diabetes,metabolic syndrome, osteoporosis, and cardiovascular diseases (Floras 2015, Liguori C
et al 2016, Sharma andCulebras 2016, Reutrakul andMokhlesi 2017, Ryan 2017). Additionally, cognitive
impairment andAlzheimer’s disease (AD) have also been linked to SDB (Ju et al 2013, Polsek et al 2018, Shi et al
2018).Moreover, SDB can increasemortality in patients with heart failure, stroke, or coronary artery disease.

The prevalence of SDBoverall remains uncertain. A recent review of 17 studies from16 countries focusing
onOSA, estimated that approximately 936million adults aged 30–69 years worldwide havemild to severeOSA,
with around 425million adults identified as havingmoderate to severeOSA (Benjafield et al 2019). Despite the
high prevalence, patients and their partners often overlook the symptoms of SDB, such as snoring, gasping, or
choking, without recognizing their associationwith the condition. Consequently, patients typically do not seek
medical attention for these symptoms.Moreover, the diagnosis of SDBpresents challenges as it primarily occurs
during sleep,making traditional clinical evaluationmethods less effective. The gold standardmethod for SDB
diagnosis is polysomnography (PSG) (Graco et al 2018), which involves utilizing specialized equipment in a
dedicated laboratorywith aminimumof 22 electrodes and 11 channels to continuously collect,measure, and
analyze signals such as electroencephalography (EEG), electrocardiography (ECG), respiration, blood oxygen
levels, and other relevant physiological parameters. Therefore, PSG is time-consuming, labor-intensive, and
expensive with limited patient adherence. Overall, the underrecognized symptoms, limited diagnosticmethods,
and the challenges of PSG collectively contribute to underdiagnosis of SDB,with an estimated over 80%of SDB
cases lacking accurate diagnosis and timely treatment (Jin and Sanchez-Sinencio 2015, Jaiswal et al 2017).

To overcome these challenges, researchers have proposed alternativemethods for detecting SDBusing
various single-lead signals, such as respiratory signals (Van Steenkiste et al 2019), blood oxygen (Deviaene et al
2020), snoring (Hu et al 2022), and ECG (Shen et al 2021), etc. Among these, respiratory signals, including nasal
airflow (NAF), oronasal airflow (OAF), and respiratorymovement-related signals such as thoracic respiratory
effort (TRE) and abdominal respiratory effort (ARE), are the preferred signal source for SDBdetection according
to the recommendations of the AASM.Over the past ten years,multiple studies (Nakano et al 2007,Makarie
Rofail L et al 2010,Masa et al 2011, Crowley et al 2013,Morgenstern et al 2013,Masa et al 2014) have consistently
showed the effectiveness and accuracy of single-channel respiratory signal detection in identifying and
accurately diagnosing SDB, of which algorithms based on differentmethods, such as threshold rule,machine
learning (ML) and deep learning (DL), have been developed.While several reviews have been conducted on SDB
algorithms, including ECG-based algorithms (Faust et al 2016), respiratory and blood oxygen fusion-based
algorithms (Alvarez-Estevez andMoret-Bonillo 2015, Uddin et al 2018), andmultiple signals-based algorithms
(Mendonca et al 2019, SerranoAlarcon et al 2021), there is currently a gap in the literature regarding a systematic
review specifically focusing on algorithms for SDB identification using respiratory signals and/or respiratory
movement-related signals. Thus, our review aims tofill this gap by conducting a systematic literature review of
respiratory signal-based algorithms for SDBdetection during the recent decade (2012–2022). The objectives are
to compare the advantages and disadvantages of various algorithms based on respiratory signals andmethods,
and summarize and analyze current research trends in algorithmdevelopment, thus providing a comprehensive
reference guide for new researchers developing SDB recognition algorithms.

2.Methods

This systematic reviewwas conducted according to the protocol registeredwith PROSPERO (International
Prospective Register of Systematic Reviews, CRD42022385130, https://www.crd.york.ac.uk/prospero/
display_record.php?ID=CRD42022385130). The search strategy protocol followed guidelines fromPRISMA
statement (Liberati et al 2009) and its extension PRISMA-S (Rethlefsen et al 2021), and the following eligibility
criteria were applied to define the structure of the current systematic review.

2.1. Search strategy
Weconducted a comprehensive literature review of papers published between 2012 and 2022 via searching
various databases, includingWeb of Science, IEEE explorer, and PubMed, aswell as through the cited literature
in the included articles and related journals. The keywords employed in the searchwere ‘SDBdetection
algorithm’, ‘algorithmAND sleepApnea’, ‘Respiration analysis ANDapnea’, and ‘ApneaANDdeep’. Articles
were selected by 2 reviewers independently (blinded to each other’s assessment) by applying the criteria to each
title and abstract and then assessed fully. Divergent opinionswere resolved through group discussion until
reaching consensus. All processes were performed in Endnote, a bibliographic software used formanaging
references.
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2.2. Selection criteria
The following criteriawere used to select eligible studies in this review: (1) the signalmust be a single-channel
respiratory signal or respiratorymovement-related signal, (2) a complete computer-baseddetection and/or
prediction system for SDBmust have beenproposed, (3)detailed systemevaluation datawith comparisons to the
gold standard (PSD)musthave been included,which can verify systemvalidity, and (4)preliminary or definitive
resultsmust have been formed.Additionally, these criteria also applied to studies obtained fromreference tracking.
Algorithmsbasedonmulti-source combined signals (e.g. respiration, combinedblood oxygen) and indirect signals
(e.g. respiratory variability extracted fromECGsignals)were excluded. In addition, adults and children are two
distinct entities in SDBdetection. Sleep architecture, respiratory physiology, apnea definition, and apnea severity in
adults differ fromchildren/pediatric subjects (Alsubie andBaHammam2017, Kljajić et al2017). Therefore, the
algorithms for SDBdetection inpediatric subjects are quite different andusually need special consideration or
criteria to obtainbetter detection results. Accordingly, this review focuses only on the adult population. Figure 1
presentsflowchart of the systematic reviewdesign and study selection.Overall, a total of 342 studieswere screened,
ofwhich 43 studiesmet the inclusion criteria andwere eligible for data extraction.

2.3.Data extraction
Weconducted detailed data abstraction from a total of 43 studies. The article information (title, author,
publication date, journal), method (database,main decision, classificationmethod) and evaluationmetrics
(accuracy, specificity, etc)were abstracted and recorded in the Excel table. Python packages (Pandas, NumPy,
andMatplotlib)was used for data visualization.We classified and sorted the results in ascending order according
to different algorithms (rule threshold-based,machine learning, deep learning), and further eliminated 11
papers with duplicated content or same approaches from the same author, including preprints or early-stage
conference outcomes. In thefinal analysis, a total of 32 papers were included forfinal discussion.

3. Results and discussion

Based on thefindings of the literature, the algorithms for SDBdetection are varied by signal source, signal
processing technique, feature extractionmethod, and the choice ofmodel. Therefore, we present and discuss the
results from these four aspects.

Figure 1. Flowchart of the systematic review design and study selection.N denotes the number of articles.
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3.1. Respiratory signal acquisition sensors
According to the AASMguidelines (Iber C et al 2017), the primary sensors formeasuring respiratory signals
include oronasal thermal airflow sensors (mainly for detecting apnea) and nasal pressure sensors (mainly for
detecting hypopnea). Another alternative sensor option is the thermal sensor. Thermal airflow sensorsmeasure
the temperature of the airflowing through the nasal and/or oral passages, while thermal sensorsmeasure the
temperature of the skin around the nose andmouth. These sensors are utilized to acquire respiratory signals by
detecting changes in airflow and temperature associatedwith episodes of apnea and hypopnea. Formeasuring
respiratory effort signals, commonly employed sensors include respiratory inductive plethysmography belts
(RIP belts) and polyvinylidene fluoride belts (PVDFbelts). RIP belts are devices worn around the chest and
abdomen tomeasure respiratorymovement-related signals, producing RIPsum (the sumof the chest and
abdomenRIP belt signals) andRIPflow (the rate of airflow into and out of the lungs). Additionally, RIPsum can
replace primary sensors (e.g. oronasal thermal airflowor nasal pressure sensors)when airflow signals are not
available or unreliable (Farre et al 2004, Kaniusas andKaniusas 2012). In addition, chest and abdominal signals
related to respiration can also be acquired by PVDFbelts, called PVDFsum.

Recent developments in sensor technology have introduced newmethods formeasuring respiratory signal
during sleep, such as radar and imaging techniques. The radarmethod uses eitherDoppler radar or impulse
radio ultra-wideband (IR-UWB) radar. Doppler radar employs theDoppler effect, which is the frequency shift
of a signal due to themotion of the transmitter and receiver, to detect changes in the chest and abdomen (Lee
et al 2014). On the other hand, IR-UWB radar employs wide bandwidth and high-frequency carrier waves to
detectminutemovements in the chest and abdomen (Kang et al 2020). Bothmethods have demonstrated
promising results in the studies.However, Doppler radar is susceptible to interference from randombody
movements and encounters challenges with null-point detection (Sun andMatsui 2015, Park et al 2006).
Similarly, IR-UWB radar indirectly determines the breathing state from chestmovements, whichmay lead to
discrepancies between the recorded data and the actual breathing state.Moreover, even small patient
movements can significantly disrupt themeasured signals, such as respiration rate and heart rate (Park et al
2019). To overcome these limitations, researchers have proposed the use of imaging techniques, such as Infrared
Optical Gas Imaging (IR-OGI) (An et al 2022), which has been demonstrated to have a sensitivity of 96.0%.
Additionally, the three-dimensional (3D) time-of-flight (TOF)Camera (Coronel et al 2019, Coronel et al 2020)
has exhibited similar functionality to RIPsum.

Based on the signals obtained from these sensors, they can be roughly classified intoNAF,OAF, and
respiratorymovement-related signals such as TRE andARE. Among these signals, theNAF signal has been
extensively studied in the literature, with a total of 18 studies (Selvaraj andNarasimhan 2013, Guijarro-Berdiñas
et al 2012, Avci andAkbas 2015, Ciolek et al 2015, Gutierrez-Tobal et al 2012a, 2012b, 2013, 2016, Lee et al 2016,
Haidar et al 2017, Choi et al 2018,McCloskey et al 2018, Gogus andTezel 2019, Chen et al 2020, Gogus et al 2020,
ElMoaqet et al 2020a,Wu et al 2021, Yue et al 2021). Subsequently, a combined total of 10 studies (Van
Steenkiste et al 2019, Bianchi et al 2014, Kagawa et al 2016, Azimi et al 2018, Lin et al 2016, Adha and
Igasaki 2021, Thommandram et al 2013,Hafezi et al 2020, Drzazga andCyganek 2021,Nassi et al 2022) utilized
ARE andTRE signals, whileOAFwasmentioned in 4 studies (Koley andDey 2013a, 2013b, Kim et al 2019,
ElMoaqet et al 2020b). The detailed list of signals and their corresponding literature sources can be found in
table 1. TheNAF signal has receivedwidespread attention in research, potentially due to two primary reasons.
Firstly, compared to theOAF signal, theNAF signal can be obtained using common and easy-to-use sensors
such as oronasal thermal airflow sensors or nasal pressure sensors. In contrast, acquiring theOAF signal requires
simultaneousmeasurement of airflow fromboth the nasal and oral cavities, making sensor selection and
placementmore complex. Additionally, most PSG devices routinely capture theNAF signal. Furthermore,
compared tomeasuring TRE andARE, these signals are susceptible to interference frombodymovements and
other artifacts. This is likely another reasonwhy theNAF signal has received relativelymore attention in
research.

3.2. Signal preprocessing
Respiratory signals are typicallymeasured by airflowormonitoring chest and abdomenmovement.However,
they can be affected by various types of noise, such as baselinewander, power line interference,muscle artifacts,
and electrodemotion artifacts (Sankar et al 2010). This canmask the tiny features of the signal and lead to false
diagnosis. To reduce power line interference, a notchfilter with a bandwidth of 50–60Hzwas used in several
studies (Ziarani andKonrad 2002, Łęski andHenzel 2005,Nassi et al 2022). For other types of noise, various
filters such as Butterworth, finite impulse response (FIR) and infinite impulse response (IIR) have been applied
to different frequency ranges of 0.01–30Hz, as summarized in table 2. In general, there is no standardized
frequency range for these signals in the studies. The potential reason, as stated byVárady et al (2002) could be
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that airflow signals are specific to the applied sensor and they can change duringmeasurements because of
sensor or patientmovements.

In addition to these commonnoises,motion artifacts are themost challenging to deal with in respiratory
signals. These noises are both inevitable and unpredictable, arising from the subject’smovements during sleep,
such as headmovement and body shifting (Liu et al 2013). Therefore, relying solely on simplefiltering
techniqueswith a fixed cutoff frequency proves to be inadequate in effectively addressing this problem.With the
reviewed literature, four articles provided comprehensive explanations ofmotion artifacts processing. Among
them, two articles employed adaptive filteringmethods that dynamically adjust the cutoff frequency based on
specificmovement conditions. Keenan andWilhelmutilized a leastmean square (LMS) adaptive filter with a
triaxial accelerometer (ACC) signal as reference signals (Keenan andWilhelm 2005). Similarly, Fedotov et al
introducedACC as a reference signal and implemented an adaptive filtering based on theWiner-Hopf RLS
algorithm (Fedotov et al 2018). However, thesemethods introduce new reference signals that interfere with
respiratory signals. Subsequently, Liu et al proposed an algorithmbased onmutual information and power
criteria for automatically selecting appropriate intrinsicmode functions (IMFs) to remove tissue artifacts and
reconstruct respiratory signal reconstruction (Liu et al 2013). However, complex algorithms increase computing
power costs and hardware consumption. To address this challenge, Rosa et al proposed an energy-efficientHaar
level 5 (Haar-5)wavelet transform architecture, which can save 38.19%of circuit area and reduce power
dissipation and energy by 38.26% compared to other architectures (daRosa et al 2021).

In conclusion, the different noise sources originating from various sensors and experimental environments
make it difficult to scientifically evaluate the effectiveness of specific preprocessingmethods. Furthermore,
limited literature exists in this domain. In practical applications, researchers should analyze and select
appropriate signal preprocessingmethods based on themeasurement technique, noise sources, and energy
considerations to achieve optimal results.

3.3. Feature extraction
Through the literature review, respiratory signal features can be broadly classified into three categories: time
domain features, frequency domain features, and nonlinear features. Commonly usedmethods for feature

Table 1. Frequency of use of different respiratory signals in literature.

No Signals Frequency of use Author

1 NAF 18 Selvaraj andNarasimhan (2013), Ciolek et al (2015), Lee et al (2016), Guijarro-Berdiñas et al
(2012), Gutierrez-Tobal et al (2012a, 2012b, 2013, 2016), Avci andAkbas (2015), Gogus andTezel
(2019), Gogus et al (2020), Haidar et al (2017),McCloskey et al (2018), Choi et al (2018), ElMoaqet

et al (2020a), Chen et al (2020),Wu et al (2021), Yue et al (2021)
2 OAF 4 ElMoaqet (Kim et al 2019, ElMoaqet et al 2020b), Koley andDey (2013a, 2013b)
3 TRE, ARE 10 Bianchi et al (2014), Kagawa et al (2016), Azimi et al (2018), Adha and Igasaki (2021), Thomman-

dram et al (2013), Lin et al (2016), Van Steenkiste et al (2019), Hafezi et al (2020), Drzazga and
Cyganek (2021), Nassi et al (2022)

NAF: nasal airflow,OAF: oronasal airflow; TRE: thoracic respiratory effort, ARE: abdominal respiratory effort

Table 2. List of cutoff frequencies.

No Author Year Filter Cutoff frequency

1 Koley andDey (2013b) 2013 Sixth-order band pass Butterworth filter Pass band of 0.01–0.8Hz

2 Selvaraj andNarasimhan (2013) 2013 low-passfilter Passband corner frequency of 0.7Hz

3 Gutierrez-Tobal et al (2016) 2015 Anti-aliasing FIR Butterworth low-pass

filter;

Cutoff of 1.2Hz

4 Choi et al (2018) 2018 Fifth-order IIR Butterworthfilter High-pass of 0.01 Hz, Low-pass

of 3 Hz

5 Azimi et al (2018) 2018 FIR linear Phase band passfilter Pass band of 0.07–0.8 Hz

6 Hafezi et al (2020) 2020 Bandpassfilter Pass band of 0.1–25Hz

7 ElMoaqet et al (2020a) 2020 Lowpass FIR filter Cutoff of 0.5Hz

8 Gogus et al (2020) 2020 Third-order Butterworth bandpassfilter Pass band of 0.01–0.7Hz

9 Wu et al (2021) 2021 FIR band-pass filter Pass band of 0.5–30Hz

10 Adha and Igasaki (2021) 2021 Bandpassfilter Pass band of 0.07–0.8 Hz

11 Nassi et al (2022) 2022 Notch filter Cutoff of 60Hz

Low-passfilter Cutoff of 10Hz

FIR:finite impulse response, IIR: infinite impulse response,
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extraction include statistical analysis, Fourier transform, andwavelet transform. Among the reviewed literature,
12 articles presented comprehensive explanations of features and extractionmethods, which are outlined in
table 3. In the subsequent paragraphs, wewill provide a detailed exploration of each category, discussing their
respective advantages and disadvantages.

(1)Time-domain feature
Time-domain analysis typically involves analyzing statistical properties andmorphological features from a

set ofN discrete-time samples within a specified timewindow (Lutus 2008, Prahallad 2011). Time-domain
analysis of respiratory signals and respirator effort signals can yield significant statistical andmorphological
features, which can be obtained by observing thewaveform and performing simple calculations, such as the
mean,median, standard deviation, skewness, and kurtosis of the signal. Additionally,morphological features,
such as zero-crossings, peaks, valleys, signal slope, and signal amplitude, can also be derived from thewaveform.
However, due to the nonlinear and non-stationary nature of the respiratory signal and respiratory effort signal,
their values varywith time, resulting in differences in their statistical properties at different time points (Fong
et al 2013). Consequently, it becomes challenging for time-domain features to fully capture the characteristics of
the signal, evenwhen utilizing a random timewindow. To overcome this limitation, other signal analysis
techniques like frequency domain analysis can be employed to acquiremore detailed and accurate features.

(2) Frequency-domain feature
Frequency-domain analysis offers a comprehensive view into the respiratory system. By decomposing the

signal into its frequency components, various features such as the frequency spectrum, spectral density, power
spectral density (PSD), and spectral peak can be analyzed to identify the presence and characteristics of
respiratory abnormalities, including Apnea andHypopnea. The primarymethods for frequency transformation
include Fourier Transform andWavelet Transform.

Fourier transforms commonly used in extracting frequency domain feature from respiratory signals
encompass discrete fourier transform (DFT) (Gutierrez-Tobal et al 2012a, 2012b, 2013, Javaid et al 2015) and
fast Fourier transform algorithm (FFT) (Koley andDey 2013a,Diaz et al 2014, Ciolek et al 2015), an enhanced
version ofDFT.However, DFT assumes that the analyzed signal is stationary and lacks temporal or frequency
variations (Sundararajan 2001). To capture the changing frequency characteristics of respiratory signals over
time, researchers have started utilizing the short-time Fourier transform (STFT) for time-frequency conversion
of respiratory signals (Wu et al 2021, Yue et al 2021). Additionally, to obtain the PSD feature of the frequency
domain, which reflects the recurrent changes in airflowduring night respiration (Krishnan andAthavale 2018),
researchers such as Tobal et al (Gutierrez-Tobal et al 2016) andKoley et al (Koley andDey 2013a) utilizedDFT

Table 3. List of extractionmethods and features.

No Author Year Feature

1 Gutierrez-Tobal et al (2012a) 2012 Mf3PSD
RRV , PAAF, BPAF

2 Gutierrez-Tobal et al (2013) 2013 CTMRRV,WDAF,MPSD
RRV, SAF,MPSD

AF , SPSD
RRV, ApEnAF, CTMAF, LZCRRV

3 Koley andDey (2013a) 2013 IRAMINI, RPHA, LHP, IRAM, LTP, LEN

4 Thommandram et al (2013) 2013 P2P stability, Peak stability, LP presence, FL

5 Gutierrez-Tobal et al (2016) 2015 BWM, BWMA, BWmA, BWSD, BWSpecEn, BWMF, CTM, LZC, SampEn

6 Avci andAkbas (2015) 2015 Mini,Max, Var, Ave, Energy,Mode, Entropy, S

7 Lin et al (2016) 2016 AR, FR, COVTRE-ARE

8 Kaimakamis et al (2016) 2016 LLE,DFA, ApEn

9 Lakhan et al (2018) 2018 Num, Sum,Ave,Max,Mini,M, SD,Var,Weighted

10 Gogus andTezel (2019) 2019 SF set, AF set, DMF set

11 Hafezi et al (2020) 2020 ATM, BDC, IDC, AUIC, SS, AUB, SD

12 Gogus et al (2020) 2020 GHE,min hq, VDH,KMS, AIdx,MSmin

PSD: Power spectral density; RRV: respiratory rate variability;Mf3PSD
RRV : thirdly statisticalmoments of the amplitude values of PSDs from

RRV;AF: airflow; PA: Peak amplitude; BP: Band power; CTM:Central tendencymeasure;WD:Wootters distance;M:Mean; S: Skewness;

ApEn: approximate entropy; LZC: Lempel–Ziv complexity; IRA: Instantaneous RespirationAmplitude; RPHA: Relative power inHF and

area; LHP: LogarithmofHFpower; IRAM:mean IRA; LTP: Logarithmof total power; LEN: Length; P2P stability: Stability of the peak-to-

peak time; Peak stability: Stability of the heights of the peaks; LP presence: Presence of long pauses; FL: Flat-lining; BWM: spectral band of

interestmean; BWMA: spectral band of interestmaximumamplitude; BWmA: spectral band of interestminimumamplitude; BWSD: spectral

band of interest standard deviation; BWMF: spectral band of interestmedian frequency; BWk: spectral band of interest kurtosis; SampEn:

Sample entropy;Mini:minimum;Max:maximum;Var: variance; Ave: average; AR: Amplitude ratio; FR: Frequency ratio; Cov: covariance;

LLE: Largest Lyapunov Exponent; DFA:Detrended FluctuationAnalysis; SF set: Statistics feature set; AF set: Amplitude feature set; DMF set:

Descriptivemodel feature set; ATM:Amount of trachealmovement; BDC: Breathing duty cycle; IDC: Inspiratory duty cycle; AUIC: Area

under inspiration curve; SS: Signal slope; AUB: Area under breath; GHE:GeneralizedHurst exponent;min hq:Minimum singularity

exponent value; VDH:Vertical distance between hqmin and hqmax; KMS:Kurtosis ofmultifractal spectrum; AIdx: Asymmetric index;

MSmin:Multifractal spectrum corresponding tominimum;
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and FFT, respectively, alongwith the nonparametric estimationWelch’smethod, which is very suitable for non-
stationary signals, to obtain the PSD.

Wavelet transformation is commonly performed usingHaar, Symmlet, andDaubechies wavelets to obtain
coefficient features for classification purposes. For instance, Romero et alused the Symmlet wavelet family
(Symmlet of order: O= 7) to obtained coefficients feature and achieved favorable Apnea classification results
(Fontenla-Romero et al 2005).Maali et al decomposed the data using three levels ofHaarwavelet transformation
to extract wavelet coefficients, whichwere then used as inputs for an SVMclassifier (Maali andAl-Jumaily 2012,
Maali andAl-Jumaily 2011). Berdiñas et al applied discrete wavelet transformation and computed the average
value of 16wavelet coefficients for SDBdetection (Guijarro-Berdiñas et al 2012). Avci et al employed the
Daubechies wavelet to decompose the airflow signal and extract statistical features for classification purposes
(Avci andAkbas 2015).

Although these feature extractionmethods effectively reveal the frequency domain features of respiratory
signals or respiratorymovements, SDB is caused by a combination of anatomical upper airway predisposition
and changes in neural activationmechanisms (Salisbury and Sun 2007), whose nighttime airflow signals contain
rich nonlinear dynamical features which can provide important information for diagnosis and treatment.
Therefore, nonlinear features are also commonly considered in feature extraction.

(3)Nonlinear feature
In the realmof nonlinear features, severalmeasures are commonly employed to extract the nonlinear

characteristics of respiratory signals, includingCentral TendencyMeasure (CTM), Lempel-Ziv complexity, and
Approximate Entropy (ApEn) (Alvarez et al 2010,Marcos et al 2012, Gutierrez-Tobal et al 2012a, 2013, 2016).
CTMquantifies the variability degree within a time series (Cohen et al 1996), Lempel-Ziv complexitymeasures
complexity infinite sequences (Lempel andZiv 1976), andApEn assesses the irregularity of a time series by
assigning higher values to higher irregularity (Pincus 1991). The three nonlinear features can essentially serve as
representatives of the nonlinear characteristics of respiratory signals.

Furthermore, researchers have also explored diverse combinations ofmethods to extract complex nonlinear
features from respiration signals and respirationmovement signals. For example, Kaimakamis et al used the
monofractal scaling features obtained fromdetrendedfluctuation analysis (DFA), combinedwith themaximum
Lyapunov exponent (LLE), and incorporated them intoApEn to construct a comprehensive complexity index
(Kaimakamis et al 2016). However, as Vaquerizo-Villar et al point out (Vaquerizo-Villar et al 2018), apnea and
hypopnea events in patients with SDB can generate random spikes and irregular fluctuations in physiological
signals. These variations and fluctuations alignwith amultifractal structure and cannot be entirely characterized
by a single fractal provided by conventional DFA. Consequently, (Gogus et al 2020). employedmultifractal
detrendedfluctuation analysis (MDFA) as a feature extraction technique on single-channel nasal cannula
airflow signals and evaluated its performance using a random forest (RF) classifier.

In summary, feature extractionmethods for respiratory signal can be categorized into threemain types:
time-domain, frequency-domain, and nonlinear features. Time-domain features involve analyzing statistical
properties andmorphological characteristics within a specific timewindowusing discrete-time samples.
Frequency-domain features are obtained by decomposing the signal into its frequency components. Nonlinear
features are derived through various nonlinear analysismethods, such asCTM, approximate entropy, LLE, and
Lempel-Ziv. It is crucial to emphasize that feature extraction plays a vital role in SDB detection. The extracted
features should accurately capture the signal’s characteristics to enhance performancewith the classification
algorithm. Researchers need to determinewhich feature ismore effective bymatching different threshold rules
or classifiers.

3.4. Classification algorithm
In the systematic review, we found that SDB classification algorithmswere primarily based on threshold rules
(8), machine learning (13), and deep learning (11). As shown infigure 2(a), early algorithmswere predominantly
based on threshold rules andmachine learning, while after 2017, deep learning became the predominant
approach.However, there is no significant difference in the number of points of interest for the recognition
targets among the different algorithms, as shown infigure 2(b). In this section, wewill provide a detailed
overview of the literature survey results focusing on the three algorithms.

(1)Threshold rule-based algorithms
The commonly employedmethods for detecting sleep apnea include peak detection and envelope detection.

The determination of judgment threshold is based on the regulations provided by theAASM (Iber C et al 2017).
For instance, Selvaraj utilized piecewise cubicHermite interpolation to interpolate localmaxima and local
minima points, allowing for the acquisition of upper and lower envelopes (Selvaraj andNarasimhan 2013).
Then, set the threshold by obtaining the envelopewidth (E) and instantaneous amplitude base frequency
variability feature value.MTBianchi developed an adaptive envelope-tracking function that tracks the

7

Physiol.Meas. 45 (2024) 03TR02 LYang et al



amplitude excursions of thoracic signals (Bianchi et al 2014), which adapts to changes in breath size or belt
amplitude by defining a new threshold for each breath based on the height of the previous peak. Azimi proposed
an algorithmbased on an adaptive threshold power transformation of the RIPsum (Azimi et al 2018). This
algorithmdynamically calculates the threshold as 20%of the highest powerwithin each power segment,
considering the 120 s preceding the current power segment. ElMoaqet et al proposed amethod for continuous
monitoring of airflow respiration, which consists of a 600 s baseline window (Wb) and 100 s detectionwindow
(Wm) (Kim et al 2019). InWb, the detected amplitudes and time intervals are sorted in descending order to
calculate the average value, establishing the baseline. InWm, the detected amplitudes and time intervals are
sorted in ascending order, and the average value is comparedwith the baseline to detect the occurrence of sleep
apnea events. However, the presence of artifacts can lead to sudden changes in the respiratory rhythm,making it
challenging to accurately characterize the baselinemorphologically (Redline et al 2007,Otero et al 2011). Thus,
Ciołek et al proposed an improved approach by replacing linear low-pass FIRfilters L(ω)r used inHilbert
transform-based and square-law envelope-based detectors with a cascade of standardmedian (SM) and
recursivemedian (RM)filters (Ciolek et al 2015). This improved approach addresses the issue of envelope
distortion and phase shift caused by artifacts, resulting in amore robust envelope detectionmethod.

Previous threshold rule-based literaturemainly focuses on the identification of Apnea, even though the
study ofHypopnea ismentioned, theApnea andHypopneawere still combined in thefinal identification
process.Moreover, there has been limited research on specifically classifying the types of SDB. To address this
issue, Lee et al introduced amedianfilter to obtain the AF amplitude and then distinguished A andHbased on
six rules, and the PPVofHypopnea reached 65.7 (Lee et al 2016). Adha et al utilized the obstructive reciprocal
divergence (ORD) algorithm, based onRIPsum signal to identifyHypopnea and the accuracy reached 73.34
(Adha and Igasaki 2021). To classify SDB types, Kagawa et al proposed amethod for classifying SDB types based
on the theory of paradoxical breathingmotion (Lin et al 2016). Thismethod involved using the Pearson
correlationmethod to estimate the phase difference between chest and abdominalmovement signals.
Subsequently, amplitude drop and phase difference thresholds were utilized to classifyOSA, CSA, andMIX
(Kagawa et al 2016).

Threshold rule-based recognition algorithms provide clear explanations for labeling specific signal periods
as containing sleep apnea events or not (Sannino et al 2014). These algorithms have demonstrated good
performance, as shown in table 4. This white-box approach holds great value in themedicalfield.However,
threshold rule-based algorithms, which rely on comparing simple features and experiment-derived thresholds,
overlook the statistical distribution of input features and output categories (ElMoaqet et al 2020b). It becomes
challenging to establish a universal threshold that can be applied to diverse individuals. To address this
limitation, there is a need formore complex algorithms capable of learning from the data and adapting to
individual differences, such asmachine learning and deep learning.

Figure 2. Statistical visualization of the results after data analysis. (a)Comparison of the number of papers published utilizing three
different algorithms over the years. (b)Number statistics of identified SDB types by three different algorithms. A: Apnea,H:
Hypopnea. AH: the combination of apnea and hypopnea. AHI: Apnea hypopnea index.
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Table 4. List of threshold rule-based algorithms and results.

Num Year Author Signal Subjects Algorithm Classification type
Results

ACC (%) SPE (%) SEN (%) PPV (%) AUC CC

1 2013 Selvaraj et al (2013) NAFTRE 100 Hermite interpolation envel-

ope detection

A — 100 83.6 72.3 — —

2 2014 Bianchi et al (2014) TRE 116 Adaptive envelope tracking

function

AHI — — — — 0.92 (cutoff= 5) —

0.85

(cutoff= 15)
3 2015 Ciolek et al (2015) NAF 309 SM-RMcascade envelope

detection

SAH 95.0 90.0 96.0 — — —

AHI — — — — — κ= 0.82

4 2015 Kagawa (Lin et al
2016)

BM fromDoppler

radars;

35 Time-varying amplitude

baselinemethod

OSACSAMIX — — — — — ICC= 0.94

Severity — 96 (cutoff= 15) 100 (cutoff= 15) — — —

90 (cutoff= 30) 79 (cutoff= 30)
5 2016 Lee et al (2016) NAF 50 Medianfilter peak detection AH — — 86.4 84.5 — —

AHI — — — — — PCC= 0.94

6 2018 ElMoaqet (Kim
et al 2019)

OAF 30 AICPV A — 88.7 80.0 — 0.844 —

7 2018 Azimi et al (2018) RIPsum 25 Adaptive threshold Power

transformation

SAHS 59.62 — 72.06 — — —

8 2021 Adha and Iga-

saki (2021)
RIPsum 25 ORDcontinued excursion

model

A 99.83 — — — — —

H 73.34 — — — — —

AHI — — — — — R2= 0.98

NAF:AF fromnasal, OAF:AF fromoronasal, TRE: Thoracic respiratory effort, ARE: Abdominal respiratory effort; OSA:Obstructive sleep apnea; CSA: Central sleep apnea;MSA:Mixed sleep apnea; SM: standardmedian filters; RM:

recursivemedianfilters; AICPV: The abbreviation used in the original text is not explicitly defined. For an explanation of the algorithm employing this abbreviation, please refer to section III, D, lines 20–25 of this paper. Additionally, for a

more detailed algorithm explanation, youmay consult the original paper; ORD: obstructive reciprocal divergence; AHI: Apnea hypopnea index; AI: Apnea index;HI: hypopnea index; A: Apnea; H: hypopnea; SAHS: sleep apnea-hypopnea

syndrome, ACC: Accuracy; SPE: Specificity; SEN: Specificity; PPV: Positive predictive value; AUC: Area under the curve; CC:Correlation coefficient; cutoff: AHI threshold;—: Notmentioned;
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(2)Machine learning algorithms
Machine learning algorithmsemployed inSDBdetectiondiscernpatterns and relationshipswithin thedata for

precise classifications. Initiating this process requires the expertiseofmedical professionals tometiculously annotate
respiratory signals, including categories like apnea, hypopnea, normal,OSA,CSA,MIX, etc. Subsequently, algorithmic
researchers, specializing in thefield, undertake a crucial stepknownas feature engineering.Thismeticulousprocess
involvesmanually extractingpertinent features from labeleddata, detailed in section3.3. In thefinal stage, algorithmic
researchers apply feature selectionalgorithmsmeticulously.These selected features are then strategically integratedwith
machine learning algorithms tooptimize results.Diversemachine learning algorithmsplay apivotal role in recognizing
SDB, includingSupportVectorMachines (SVM) (Koley andDey2013a, 2013b,Lin et al2016), artificial neural
networks (ANN) (Guijarro-Berdiñas et al2012), RandomForest (RF) (Avci andAkbas2015,Gogus andTezel 2019,
Gogus et al2020),Gaussianprocesses (GP) (ElMoaqet et al2020b),K-Nearest-Neighbors (KNN) (Thommandramet al
2013), andLogisticRegression (LR) (Gutierrez-Tobal et al2012a).

Researchers customize feature combinations for different classifiers to attain optimal classification results.
For instance, Berdiñas et al (Guijarro-Berdiñas et al 2012) utilized the SVMrecursive feature elimination (SVM-
REF)method to select thewavelet coefficient features of theDWT-transformedTRE signal and input them into
the error-correction output code (ECOC) (Dietterich andBakiri 1994)model of the ANNexpert to detect SDB
types. Koley et al employed SVM-RFE to select the optimal feature subset from the 36 power features extracted
fromOAF signal and applied it to the three binary SVMclassifier to achieve the offline recognition of Apnea,
Hypopnea, andNormal (Koley andDey 2013a). The results of the three classifiers were evaluated using the ‘one-
against-all strategy’ (Kim et al 2003) and the ‘winner-takes-all rule’ (Kim et al 2003)was used to determine the
final result. Subsequently, online verificationwas carried out on 8 subjects (Koley andDey 2013b). In another
study, Lin utilized an SVMclassifier based on three features of joint signals TRE andARE, namely amplitude
ratio (AR), frequency ratio (FR), and covariance between thoracic and abdominalmovements, to achieve a
classification ofOSA andCSA (Lin et al 2016).

Other researchers have also employed different feature selection techniques and classifiers to improve the
performance ofmachine learning algorithms in SDBdetection. Avci et al andGogus et al utilized feature subset
selectionmethods such asCorrelation-based Feature Subset Selection (CfsSubsetEval) (Avci andAkbas 2015),
OneRAttribute Eval Feature Selection (OneRAttributeEval) (Gogus andTezel 2019), andwrapper subset
evaluation (WSE) (Gogus et al 2020) to select optimal feature sets. These selected features were then utilized in a
RF classificationmodel for the detection of Apnea. Thommandram et al developed aKNNmodel for Apnea
identification (Thommandram et al 2013), based on four clinically observable features: peak-to-peak time
stability, peak heights stability, presence of long pauses, andflat lining indication. The best performancewas
achievedwith a k value of 44. Furthermore, ElMoaqet et al proposed a novel feature, which is the relative changes
between the baseline window and the detectionwindowused as feature input, and aGaussianmodel was used to
recognize the apnea (ElMoaqet et al 2020b). Thismodel outperformed the threshold breath pause recognition
algorithmproposed by the author in 2018 (Kim et al 2019).

Additionally, between 2012 and 2015, Tobal et al conducted extensive research onmachine learning
algorithms for sleep apnea-hypopnea syndrome (SAHS) recognition and apnea-hypopnea index (AHI)
estimation based onAF andRRV (respiratory rate variability derived fromAF) signal. To achieve optimal
results, the researchers selected various feature combinations, including statistical features, spectral features, and
nonlinear features, with particularly emphasis on the ‘spectral bands of interest’ feature. These feature
combinationswere chosen using techniques such as Forward stepwise logistic regression (FLSR) (Gutierrez-
Tobal et al 2012a) and Fast correlation-based filter (FCBF) (Gutierrez-Tobal et al 2013, 2016). The selected
feature combinationswere then applied to different classifiers, including LR (Gutierrez-Tobal et al 2012a),
multiple linear regression (MLR) (Gutierrez-Tobal et al 2012b), multi-layer perceptron (MLP) (Gutierrez-Tobal
et al 2013), as well as adaptive boosting with linear discriminant analysis (AB-LDA) and adaptive boostingwith
classification and regression trees (AB-CART) (Gutierrez-Tobal et al 2016). Through continuous
experimentation, the authors achieved an improvement in the recognition rate of SAHS, reaching an 91.5%
accuracy, as reported in reference (Gutierrez-Tobal et al 2013).

These studies’ resultsmentioned above have demonstrated promising results in thefield of SDB algorithms
based onmachine learning recognition, as presented in table 5. However,machine learning techniques require
manual engineering of features and can potentiallymiss interesting sleep apneamarkers in the biometric signals
due to humanmisinterpretations. To address this issue, researchers have increasingly turned to deep learning
techniques, which are capable of relying on patterns and inferences to automatically learn the complex
relationships between features and labels fromdata (LeCun et al 2015). Such techniques have been applied
widely in the analysis of complexmedical data (Ravi et al 2017).

(3)Deep learning algorithms
The commonly used deep learning technologies in SDB recognition algorithms include convolutional

neural networks (CNN) (Haidar et al 2017, Choi et al 2018,McCloskey et al 2018,Wu et al 2021, Yue et al 2021),
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Table 5. List ofmachine learning algorithms and results.

Num Year Author Signal Subjects Algorithm Feature selection Classification type
Results

ACC (%) SPE (%) SEN (%) AROC CC

1 2012 Guijarro-Berdiñas et al (2012) NAFTRE 6 ANN+ECOC SVM-RFE OSA 94.62 — — — —

CSA 95.47 — — — —

MSA 90.45 — — — —

2 2012 Gutierrez-Tobal et al (2012a) NAFRRV 148 LR FLSR SAHS 82.43 — — 0.90 —

3 2012 Gutierrez-Tobal et al (2012b) NAF 148 MLR — AHI — — — — PCC= 0.809

SAHS 69.7 (cutoff= 5) 75.39(cutoff= 10) — — — —

80.9 (cutoff= 15)
87.6 (cutoff= 30)

4 2013 Gutierrez-Tobal et al (2013) NAFRRV 148 MLP FCBF SAHS 91.5 89.5 92.5 — —

AHI — — — — ICC= 0.849

5 2013 Koley andDey (2013a) OAF 56 SVM SVM-RFE AI — — — — PCC= 0.986

HI — — — — PCC= 0.970

AHI — — — — PCC= 0.982

6 2013 Koley andDey (2013b) OAF 8(Online) SVM SVM-RFE A — 91.8 — — —

H — 94.9 — — —

AH — 96.5 — — —

7 2013 Thommandram et al (2013) TRE 8 kNN — A — 88.1 95.7 0.9604 —

8 2015 Gutierrez-Tobal et al (2016) NAF 317 AB-LDA, AB-CART FCBF SAHS 86.5 (cutoff= 5) 86.5 (cutoff= 10) — — — —

81.0 (cutoff= 15)
83.3 (cutoff= 30)

9 2015 Avci andAkbas (2015) NAF 8 RF CfsSubsetEval A 98.68 — — — —

10 2016 Lin et al (2016) TREARE 34 SVM — OSACSA 81.8± 9.4 — — — —

11 2019 Gogus andTezel (2019) NAF 5- Apnea-ECG RF OneRAttributeEval A 96.21 — — — κ= 0.92

MIT-BIH 92.23 — — — κ= 0.82

12 2020 Gogus et al (2020) NAF 120 RF WSE OSASH 95.83 93.75 96.88 — —

AHI 93.75 — — — κ= 0.91

13 2020 ElMoaqet et al (2020b) OAF 96 GMM — A 83.4 — — — —

NAF:AF fromnasal, OAF:AF fromoronasal, TRE: Thoracic respiratory effort, ARE: Abdominal respiratory effort, ANN:Artificial neural networks; ECOC: Error correcting output code; LR: Logistic Regression;MLR:Multivariate linear

regression;MLP:Multilayer perceptron; SVM: Support VectorMachines; kNN:K-Nearest-Neighbors; AB-LDA:(AdaBoost-linear discriminant); AB-CART:(AdaBoost-classification and regression trees); GMM:GaussianMixtureModels;

FLSR: Forward stepwise logistic regression; FCBF: Fast correlation-based filter; SVM-RFE: SVM-Recursive Feature Elimination; CfsSubsetEval: Correlation based feature subset selection; OneRAttributeEval: OneRAttribute Eval Feature

Selection;WSE:Wrapper Subset Evaluation ;OSA:Obstructive sleep apnea; CSA: Central sleep apnea;MSA:Mixed sleep apnea; AHI: Apnea hypopnea index; AI: Apnea index;HI: hypopnea index; A: Apnea;H: hypopnea; SAHS: sleep

apnea-hypopnea syndrome;OSASH: obstructive sleep apnea hypopnea syndrome; ACC: Accuracy; SPE: Specificity; SEN: Specificity; AROC: The area under the receiver operating characteristic curve; CC: Correlation coefficient; cutoff:

AHI threshold;—: Notmentioned;
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WaveformNeural Network (WaveNet) (Nassi et al 2022), Residual network (ResNet) (Wu et al 2021, Yue et al
2021), residual networkswith extremely sparse factorized convolutions (ResNeXt) (Chen et al 2020), long short-
termmemory (LSTM) (Van Steenkiste et al 2019,Drzazga andCyganek 2021), and their related combinations
(Hafezi et al 2020) or variants (ElMoaqet et al 2020a).

ACNNcommonly consists of convolutional, pooling, and fully connected layers (LeCun et al 2015). The
structure for SDB recognition inCNN is conventionally structured into three stages: (1) signal preprocessing,
where respiratory signals or respiratorymovement-related signals are initially normalized and segmented. (2)
Feature extraction, involving the automatic extraction of pertinent features in the convolutional andmax-
pooling layers of the network. (3)Event classification, wherein SDB events are classified by the fully connected
layers. Researchers consistently achieve optimal results by refining the signal preprocessingmethod and
adjusting critical parameters, including the number of convolutional layers, kernel size, number offilters, stride,
activation function, and optimizer. For instance,Haidar et alutilized 30filters with a [5× 1] kernel size, 5 strides,
and aRectified LinearUnit (ReLU) activation function, concurrently employing theAdamoptimizer. This
configuration resulted in an accuracy of 74.7%with a 1DCNNon a 30 s non-overlappingNAF signal, surpassing
the SVMmodel’s accuracy of 72.0% (Haidar et al 2017). In contrast,McCloskey et al transformed original
respiratory waveform images intowavelet spectrograms, implementing a 2DCNNarchitecture. This approach
yielded an average precision of 79.8% (McCloskey et al 2018), marking a 5.3% improvement over the 1DCNN’s
accuracy of 74.5% (Haidar et al 2017). Choi et al utilized three convolutional layers and introduced overlapping
slidingwindows, enhancing the accuracy of SHAS recognition to 94.9% and enabling the estimation of AHI
(Choi et al 2018).

Differing from conventional CNNs,WaveNet is a fully convolutional neural network that lacks fully
connected layers (Oord et al 2016). Originally designed for generating audiowaveforms,WaveNet utilizes a deep
convolutional structure to capture long-termdependencies within audio signals. Given the resemblance
between respiratory signal waveforms and audiowaveforms, some researchers have leveragedWaveNet for SDB
recognition. For example, Nassi enhancedWaveNe’s feature extraction capabilities by utilizing its residual
blocks to enlarge the receptive field. The architecture ofWaveNet was furthermodified by incorporating non-
causal convolutions, allowing the output nodes to depend on both past and future time steps, thereby improving
recognition accuracy. Nassi’s work demonstrated the effectiveness ofWaveNet in recognizing respiratory
Apnea-Hypopnea events using a single-effort belt and inmulti-classification tasks, includingOSA, CSA, and
arousal-hypopnea (Nassi et al 2022).

There is another type based on the deep convolutional structure, ResNeXt, which adopts the concept of
residual learning by introducing residual blocks to tackle issues such as gradient vanishing and exploding during
the training of deep neural networks. Researchers have also improved theResNeXt structure to enhance image
feature extraction capabilities for improving SDB recognition rates. For example, Chen et al proposed an
improved ResNeXt network calledMulti-resolution ResNeXt (Mr-ResNeXt), which decomposes images into
low-frequency and high-frequency features using octave convolution. Additionally, they upgraded the 3× 3
filter in ResNeXt with a new block ofmulti-level group convolution. This enhancement led to an increase in the
recognition accuracy ofOSAby nearly 3% (from91.02% to 94.23%) (Chen et al 2020).Wu et al introduced
octave convolution and attentionmechanisms based on the residual network to detect Apnea-Hypopnea,
achieving an accuracy of 91.23% (Wu et al 2021). Subsequently, Yue et al verified the effectiveness of themulti-
resolution residual network (Mr-ResNet) on two databases, obtaining satisfactory results (Yue et al 2021).

However,most of the neural network architectures based on convolutional structuresmentioned above are
commonly employed for image recognition, requiring substantial computational power (Urtnasan et al 2018).
Recent developments in deep learning have introduced an alternativemodel: long short-termmemory (LSTM)
neural networks, known for their proficiency in capturing both long-term and short-termdependencies in
temporal data. This capabilitymakes LSTMeffective in detecting patterns without relying on handcrafted
features. In contrast to image-centric architectures, LSTMcan significantly reduce the volume of data
processing. The typical structure of an LSTM includes a cell (cell state), forget gate, input gate, and an output
layer (commonly employing the Softmax or sigmoid function, depending on the functional requirement)
(LeCun et al 2015). In the SDB recognition process, respiratory signals andmovement-related signals undergo
normalization and segmentation to obtain the input sequence initially. Subsequently, the cell, input gate, and
forget gate play crucial roles in capturing and storing relevant features from the input sequence. The final step
involves the output layer, which computes the probability distribution for each SDB event. To enhance
recognition rates, researchers often explore adjustments such as varying the number of LSTM layers, activation
functions, loss functions, or employing different combinations of LSTMs. For example, Steenkiste et al
pioneered the application of LSTM to validate the ability to identify apnea based on single-channel respiratory
signals—an important step towards a fully automated sleep apnea detectionmethod (Van Steenkiste et al 2019),
employing the adadelta optimizer. Drzazga et al proposed a structure consisting of two LSTMnetworks neural
connected in series, combinedwith signal preprocessing andfiltering, to demonstrate the ability of LSTM to
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Table 6. List of deep learning algorithms and results.

Num Year Author Signal Subjects Algorithm

Classification

type
Results

ACC (%)
PRE

(%) SPE (%) SEN (%) NPV RECALL

F1-

score

(%) CC

1 2017 Haidar et al

(2017)
NAF 100 1DCNN AH 74.70± 1.43 74.50

± 1.49

— — — 74.70± 3.75 74.60

± 2.38

—

2 2018 McCloskey

et al (2018)
NAF 1507 2DCNN N — 80.4 — — — 76.2 78.3 —

H — 68.8 — — — 73.6 71.1 —

A — 90.2 — — — 89.2 89.7 —

3 2018 Choi et al

(2018)
NAF 179 CNN AH 96.6 98.5 — 81.1 — — — κ= 0.82

SAHS 94.9 — — — — — — —

AHI — — — — — — — PCC= 0.99

4 2018 Van Steen-

kiste et al

(2019)

ARE 2100 LSTM A 77.2± 1.4 — — — 91.1

± 0.4

— — —

TRE 75.0± 1.4 — — — 91.9

± 0.4

— — —

5 2019 Hafezi et al

(2020)
TM 69 CNN+LSTM A 78.0 (cutoff= 5)

84.0 (cut-
off= 15) 88.0
(cutoff= 30)

— 36.0 (cutoff= 5)
87.0 (cut-

off= 15) 94.0
(cutoff= 30)

98.0 (cutoff= 5)
81.0 (cut-

off= 15) 67.0
(cutoff= 30)

— — — —

6 2020 ElMoaqet

et al (2020a)
NAF 17 Bi-LSTM A — — 83.7 90.3 — — — —

7 2020 Chen et al

(2020)
NAF — Mr-ResNeXt AH 94.23 92.02 — — — 0.95 91.91 —

8 2021 Yue et al

(2021)
NAF 17 Mr-ResNet AH 91.2 — 90.50 90.80 — — —

9 2021 Wu et al

(2021)
NAF 500 ResNet, Octave

CNN, Spatial

attention

mechanism

AH 91.23 — 90.59 90.81 — — — —

AHI — — — — — — — PCC= 0.96

13

P
hysiol.M

eas.45
(2024)03T

R
02

L
Y
an
g
etal



Table 6. (Continued.)

Num Year Author Signal Subjects Algorithm

Classification

type
Results

ACC (%)
PRE

(%) SPE (%) SEN (%) NPV RECALL

F1-

score

(%) CC

10 2021 Drzazga and

Cyganek

(2021)

OAFTREARE SHHS1 LSTM N 86.42 — — — — — — —

A 68.2 — — — — — — —

H 49.3 — — — — — — —

physionet N 84.35 — — — — — — —

A 68.2 — — — — — — —

H 58.28 — — — — — — —

11 2022 Nassi et al

(2022)
ARE 9656 WaveNet AH — 65.0 98.0 68.0 — 0.71 67 —

AHI — — — — — — — R2= 0.98

OSA 51.0 — — — — — — —

CSA 84.0 — — — — — — —

Arousals-

Hypopnea

40.0 — — — — — — —

NAF:AF fromnasal, OAF:AF fromoronasal, TRE: Thoracic respiratory effort; ARE: Abdominal respiratory effort; D:Dimension; CNN:Convolutional neural network;

LSTM: Long Short-TermMemory; Bi-LSTM: Bidirectional, ACC: Accuracy, SPE: Specificity, SEN: Specificity, NPV:Negative predictive value, AUC: Area under the curve;

CC:Correlation coefficient, ResNet: Residual network, cutoff: AHI threshold;—: Notmentioned;
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recognize Apnea andHypopnea based on the joint signal ofOAF, TRE, andARE (Drzazga andCyganek 2021),
utilizing the Adamoptimizer. ElMoaqet et alutilized variants of LSTM (Bi-LSTM) to detect Apnea based on
NAF,OAF andARE signals respectively, and the results showed that the detection accuracy based onNAFwas
higher (ElMoaqet et al 2020a), employing the Adamoptimizer. Hafezi et al combined the capability of CNN in
extracting robust features (Krizhevsky et al 2017)with the proficiency of LSTM in encoding relative information
across temporalmeasurements (SeppHochreiter 1997) to form aCNN+LSTMmodel. The RMSProp optimizer
was employed for the recognition of Apnea (Hafezi et al 2020), yielding satisfactory results. Table 6 provides an
overview of algorithms and results based on deep learning for recognizing SDB.

It is worth noting that utilizingDL techniques to deal with imbalanced data classification pose significant
challenges (Buda et al 2018, Johnson andKhoshgoftaar 2019). Imbalanced datasetsmay bias themodel towards
themajority class, resulting in skewed outcomes. To address this issue, researchers have employed various
algorithms to handle imbalanced SDBdata. Themost straightforward solutions include downsampling
(Vluymans 2019, Singh andMishra 2022), oversampling (ElMoaqet et al 2020a), and subsampling (Choi et al
2018, Lakhan et al 2018). However, thesemethodsmay result in the loss of valuable information and the risk of
overfitting, thereby impacting the generalization ability of the newdata. To overcome these disadvantages, an
innovative procedure called balanced bootstrapping has been proposed (Wallace et al 2011). Thismethod has
been adopted in subsequent recognition algorithms to address the imbalance problem in SDBdata (Van
Steenkiste et al 2019,Nassi et al 2022).

4. Perspective

Due to variations in data collectionmethods, data volume, database sources, and evaluation criteria across the 32
papers identified in our systematic review, accurately determining the superiority of one algorithmover another
is not feasible. However, it is possible to discuss the overall trends of various algorithms and their respective areas
of expertise, analyze the common issues present in current algorithms, and explore potential research directions
thatmay emerge in the future.

4.1. Trend of algorithmdevelopment
Early research predominantly relied on threshold rule-based algorithms, which provided a user-friendly and
accepted approach formedical personnel. These algorithms can clearly explainwhy signals at certainmoments
aremarked as containing sleep apnea events or not (Sannino et al 2014), which ismore user-friendly and
accepted formedical personnel. However, classical threshold rule-based detectors relied on experimentally
derived thresholds and features, which posed challenges in establishing a generalized standard due to individual
variations in physiological signals. Furthermore, these algorithms had limited applicability to small datasets and
struggled to extract input features and statistical distributions effectively (ElMoaqet et al 2020b). The reviewed
literature primarily focused on datasets of fewer than 120 people (Bianchi et al 2014).

In contrast,machine learning has emerged as a solution to address challengesmentioned above. Its strong
learning ability, capacity to automatically detect complex patterns, highermodel accuracy, and greaterflexibility
havemade it indispensable in the recognition of SDB algorithms at all stages.Machine learning algorithms
constitute a substantial proportion of the reviewed literature, accounting for 40.6%.However, the core of
machine learning lies in feature selection andmodel selection to achieve optimal classification performance
(Jordan andMitchell 2015,Mahesh 2020), which also leads to some limitations. Firstly, researchers need to
possess strong prior knowledge and a comprehensive understanding of the signals to extract effective feature
sets, which can be challenging for non-medical personnel without expertise in SDBpathology. Secondly, the
manually extracting of features for data acquisition is costly and subject to subjective influences. Additionally,
machine learning algorithms have limited ability to capture temporal information, posing challenges when
analyzing complex long-term vital sign signals like respiratory signals. Thus, there are inherent limitations to
usingmachine learning for extracting hidden pathologic information from respiratory signals.

Since 2017, deep learning-based SDB recognition algorithms have gradually emerged as the dominant trend,
primarily due to their ability to automatically extract features and recognize hidden information from time
series data. In practical applications, researchers often employCNNmodels, renowned for their prowess in
image processing, and LSTMmodels, which excel at processing time series data. CNN technology primarily
involves transforming respiratory signals into images through techniques such asWavelet Transform and Fast
Fourier transform, followed by enhancing features using various image processing techniques to improve SDB
recognition accuracy. On the other hand, LSTMmodels focus on improving themodel’s ability to learn
temporal features, thereby enhancing the accuracy of SDB recognition. To further improve recognition
accuracy, researchers have also adopted a combined approach utilizing bothCNNandLSTMmodels, leveraging
the advantages offered by each (Hafezi et al 2020).
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In summary, although our analysis did not reveal clear differences or trends among the variousmethods of
signal acquisition, signal processing, and feature extraction, a significant trend emergedwhen examining
classificationmodels. This trend underscores the growing importance of deep learning in the field of SDB
recognition. Its impact on SDB recognition is expected to persist untilmore advancedmodels emerge.

4.2. Techniques to enhancemodel performance
Although conclusive statistical evidence regarding the superiority of specific algorithms is lacking, there are
effective techniques available to enhance the performance of SDB detectionmodels. In terms of signal source,
algorithms can be categorized into three categories: NAF,OAF, and respiratorymovement-related signals (ARE,
TRE). A comparison of algorithms based on different signal sources reveals that the overall recognition
algorithmutilizingNAF signals achieves the highest accuracy at 94.11%,whereas the average accuracy for the
other two signal types is only 78.19% (it is important to note that this comparison considers only the recognition
results of the apnea algorithm, as different papers employ distinct classification targets and evaluation
indicators). This statistical finding is consistent with the research result in Avci andAkbas (2015), which further
emphasizes the significant impact of the signal source selection onmodel accuracy.

From a functional perspective, a simple respiratory signal alone can only provide recognition of apnea,
hypopnea, or AHI, which possesses limited diagnostic capabilities. However, for a comprehensive SDB
diagnosis, it is necessary not only to recognize apnea or hypopnea, but also to diagnose the type of SDB, such as
OSA,MSA andMIX, to formulate effective treatment plans. In cases ofOSAobstruction events, the direction of
thoracicmotion is opposite to the direction of abdominalmotionwhen the subject tries to breathe, presenting a
unique contradictorymotion pattern (Tobin et al 1983, Staats et al 1984, Farre et al 2004). InCSA, when an
obstruction occurs, the brain cannot produce or transmit signals to control respiratorymuscles, leading to a
complete cessation of breathing for a brief period (Ramachandran andKaruppiah 2021). Both situationswill
occur in theMIXpattern. Therefore, TRE andARE can be added as two additional signals to increase the ability
to identify SDB types (Lin et al 2016), thus expanding themodel’s function.

When dealingwith SDBdata, it is crucial to address the issue of data imbalance. This is primarily due to the
limited positive instances of respiratory arrest for each patient, leading to an imbalanced dataset.Whenmachine
learning or deep learningmodels are trained using such datasets, they tend to exhibit a strong bias towards the
majority class, resulting in skewed outcomes. Commonmethods for dealingwith imbalanced data include
Subsample, Bootstrapping, andOversampling. In practical applications, researchers can usemultiple
techniques and evaluationmetrics such as accuracy and specificity to compare the performance ofmodels in
multiple dimensions to identify the best-performingmodel. It is important to note that when dealingwith
imbalanced data, precision and recall (Hafezi et al 2020) should be added to evaluate the performance of the
classifier.

4.3. Problems to be Improved and Solved
In general, algorithms relying on a single respiratory signal source are preferred due to their simpler hardware
implementation and lower costs.However, the standard definition of a hypopnea event by the AASM requires a
decrease in respiratory airflowof over 30% for at least 10 s, accompanied by a decrease in oxygen saturation of
over 3%or an arousal (Iber C et al 2017). This definition poses limitations on detecting hypopnea using a single
respiratory signal source.Most algorithms reviewed in the literature combined apnea and hypopnea into one
event, and even those that recognized hypopnea have shown unsatisfactory overall performance. For instance,
the highest recognition rate reported involved only 25 subjects at 73.34% (Adha and Igasaki 2021), while the
lowest recognition ratewas amere 49.3% (Drzazga andCyganek 2021). Currently, a commonpractice to
improve hypopnea recognition rates is to incorporate blood oxygen signal sources, but this necessitates
additional hardware resources. Hence, there is a need to develop algorithms solely based on a single respiratory
signal source to enhance hypopnea recognition accuracy, which should be a new research direction.

Nowadays, deep learning algorithms are widely utilized in themedical and healthcarefields due to their
ability to automatically extract features, capture long-term temporal dependencies, and handle large and
unstructured datasets (Ravi et al 2017). However, these algorithms are often treated as a highly complex ‘black
box’ system,making it challenging to explain their results, access the underlyingmechanics, ormake
modifications in case ofmisclassifications. This lack of interpretability is not user-friendly formedical personnel
who are notwell-versed in algorithmic fields. Consequently, developing a new SDB classificationmodel that is
interpretable and human-machine coexistent will be a new research focus.

Over the years, SDB recognition technology hasmade significant advancements, transitioning from the
initial gold standard ofmulti-lead PSG to various single-lead detection technologies, accompanied by cost
reductions.However, precisemeasurement of respiratory signals still necessitates the installation of sensors at
themouth and nose, whichmust bemeasured continuously throughout the night. This approach is
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inconvenient for patients and affects their compliance.With the emergence of newmaterials and the
development of the Internet of Things, several contactless respiratory signal acquisitionmethods have been
explored, such as infrared optical gas imaging (An et al 2022), radar (Javaid et al 2015, Kagawa et al 2016), and
mattress of pressure sensor (Yizraeli Davidovich et al 2016). However, they are still in the early stages of research
and are not yet applied clinically. Thus, developing a reliable contactless respiratory signal recognition algorithm
for clinical applications is a promising research direction for the future.

5. Conclusion

This article presents a comprehensive investigation into the literature on the SDBdetection algorithms based on
respiratory and respiratorymovement-related signals from2012 to 2022. From the selected 32 articles, a detailed
analysis and discussionwere conducted, focusing on fourmain aspects: respiratory signal acquisition, signal
processing, feature extraction, and classification algorithm.

The research findings indicate thatNAF obtained from airflow thermal or thermal sensors demonstrates
superior accuracy,making it the preferred signal for studying respiratory signal algorithms formajority of
researchers. Additionally, due to the presence of respiratory paradoxicalmovement, ARE andTRE obtained
throughRIP belts or PVDF belts can serve as signals for recognizing different types of SDB. Regarding signal
processing, the literature commonly employs techniques such as band-pass,median, notching, IIR, and FIR
filters. However, given the substantial inter-individual variations in respiratory signals and the presence of
artifacts, researchers should consider exploring adaptive filtering ormore sophisticated algorithms to improve
signal quality. Feature extraction is of paramount importance in rule-based andmachine learning algorithms as
it enables enhanced accuracy through use of suitable feature selectionmethods and algorithmicmatching.
Researchers are advised to conduct comparative experiments and carefully select suitable features andmatching
algorithms.Within the domain of classificationmodels, deep learning has emerged as the predominant
approach owing to its automatic feature extraction capabilities and superior learning performance. However,
researchersmust be aware of the ‘black box’ effect inherent in deep learning and strive tomitigate it through
algorithmic enhancements or novelmodels.

In summary, this article provides a comprehensive overview of the SDB algorithmbased on respiratory and
respiratory-relatedmovement signals. It aspires to serve as a quick reference guide for novice researchers and
provide valuable insights for experienced researchers to help them adjust algorithms.Moreover, the article
identifies and analyzes the current unsolved problems of the SDB algorithm, with the hope of helping
researchers in formulating future research topics and developing new algorithms.
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