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1. Introduction

The movement of a patient in a hospital bed contains clinically relevant information about the patient’s mobility 
(Azuh et al 2016, Hoyer et al 2016), risk of developing hospital acquired pressure injuries (Neilson et al 2014), 
sudden unexpected death in epilepsy (SUDEP) (Kloster and Engelskjon 1999), and quality of sleep (Lee et al 
2009). In clinical settings, the assessment of activity in bed is usually performed by visual observation, which is 
time consuming and difficult to implement in real-time.

Various methods have been used to automate the study of bed movements, including accelerometers (Wrzus 
et al 2012), load cell sensors (Adami et al 2008, Austin et al 2012, Alaziz et al 2016), pressure mats (Harada et al 
2002, Hsia et al 2009, Wai et al 2010, Pouyan et al 2013), and infrared cameras (Cary 2016). Systems that require 
additional devices or require individuals to wear equipment are less practical in clinical settings where time spent 
with patients is limited (Westbrook et al 2011).

Previous studies have shown success in using load cell sensors located in the four corners of a bed to moni-
tor movement (Adami et al 2008, 2010a, Beattie et al 2011, Alaziz et al 2016). To distinguish movements from 
background noise it is common to combine the mean square signal from each of the four load cells into a single 
parameter: the feature signal (Adami et al 2005, 2010a, 2010b, Alaziz et al 2016). The start and end of a movement 
are identified by smoothing the feature signal and applying an arbitrary threshold. Once the start and end of a 
movement have been identified, the movement itself can be characterized from the shift in the center of mass 
(CoM) obtained from the load cells. The trajectory of the CoM during a movement can be characterized by the 
distance between the start and the end points, the total length of the trajectory, and the lateral and vertical vari-
ances.

Parameters associated with load cell signals have been used to differentiate between certain groups or classes 
of movements. In a study of prescribed and voluntary movements, major postural shifts (torso rotation of more 
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Abstract
Objective: To characterize and classify six positions and movements for individuals in a bed using 
the output signals of four load cell sensors. Approach: A bed equipped with four load cell sensors and 
synchronized video was used to assess the load cell response of 54 healthy individuals in prescribed 
positions and as they moved between positions. Stationary positions were characterized by the 
signals from the four load cells and the coordinates of the center of mass (CoM). Movements were 
characterized by the changes in load cell signals, four parameters associated with the trajectory of the 
CoM between the initial and final position (Euclidean distance, length of the trajectory, and the x- 
and y- variances), and the initial position’s CoM coordinates. Classification and decision tree models 
were used to assess the ability of these parameters to identify specific positions or movements. Main 
results: Six positions were classified with an accuracy of 74.9% and six movements were classified 
with an accuracy of 79.7%. Significance: This study demonstrates the feasibility of distinguishing 
certain positions and movements with load cell sensors. The identification of positions and 
movements for individuals in bed can be used as a tool in a variety of clinical settings.
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than 45°), small and medium amplitude movements (arms and head), and leg movements were distinguished 
with a classification rate of 84.6% (Adami et al 2011). In a study of 27 prescribed movements, groups of large and 
small movements were distinguished with a success rate of 95.8% (Alaziz et al 2016). In another study of nine 
groups of prescribed movements, including torso rotations, individual and combined leg and arm movements, 
and head movements, turning directions (left or right) were successfully classified with accuracies of 91% and 
90%, respectively, independent of the starting position (Alaziz et al 2017). These studies demonstrate the utility 
of using load cell sensors to classify groups of movements; however, the ability to distinguish specific positions 
and movements has received less attention.

Previous work using load cell sensors has focused on discriminating between lying positions, independent of 
movement (Beattie et al 2011). In a study of subjects in stationary positions, the fluctuations of the CoM in the 
vertical direction (along the length of the bed) were used to distinguish between prone/supine, lying on the right 
side, or lying on the left side, with classification rates of 92%, 75%, and 86%, respectively (Beattie et al 2011).

These studies suggest that bed activity can be distinguished with different levels of success. The objective of 
this study was to assess the ability to identify and distinguish specific movements, which implicitly includes the 
identification of specific positions. The overall goal of our work is to develop a technology to automate the con-
tinuous assessment of patient movements while in bed, providing clinical staff with a tool to direct clinical care 
more efficiently and effectively.

2. Methods

2.1. Equipment and setup
The bed system used in this study consisted of a bed frame (213.4 cm  ×  91.4 cm  ×  9.5 cm) with four legs (one 
in each corner), four load cell sensors each with a 250 lbs capacity (iLoad Pro Digital USB Integrated Load Cell, 
Loadstar™ Sensors, Fremont, CA) placed under each leg, and a mattress (214.6 cm  ×  81.3 cm  ×  15.9 cm) (figure 
1(a)). The output signals from each of the four sensors (lbs) are designated as wA, wB, wC, and wD, and the sum of 
the load cell outputs (wA  +  wB  +  wC  +  wD) is designated as wtot (figure 1(b)). The output signals were collected 
at 10 Hz and recorded using the load sensor software (LoadVUE, Loadstar™ Sensors, Fremont, CA).

A video camera (HERO®4 camera, GoPro, San Mateo, CA) was positioned at the foot of the bed at a height of 
about 3.5 feet from the ground to record the subject’s movement. The video footage was used to confirm periods 
of time with and without movement and the quality of the movement. The quality of the movement was defined 
as how well the subject followed instructions when turning, i.e. did they initiate the turn in the correct direction, 
and whether extraneous movements occurred during the trial.

Synchronization between the load cell output and the video was achieved by dropping a ball in the center of 
the bed and aligning the peak in the load cell signal (wtot) with the camera frame that displayed the impact of the 
ball.

2.2. Participants
Fifty-four healthy adults (18+  years old, 5 ft 9 in  ±4 in (SD)) were recruited to participate in the study. Approval 
was obtained from the Johns Hopkins University Homewood Institutional Review Board and subject consent 
was obtained prior to participation. Exclusion criteria included anyone who was unable to give informed consent 
and anyone who was unable to sit and stand on their own without assistance.

2.3. Data collection
At the beginning of a trial, seven positions were described and demonstrated: (1) lying on the back (supine), (2) 
lying on the right side of the body (right), (3) lying on the stomach (prone), (4) lying on the left side of the body 
(left), (5) sitting in the center of the bed (C Sit), (6) sitting on the right side of the bed (R Sit), and (7) sitting on 
the left side of the bed (L Sit) (figure 1(c)). The initial position in the trial was supine: lying on the back with the 
sacrum in the middle of the bed, with legs and arms straight and palms facing up. The subjects were asked to 
return to this position after moving to each of the lying positions.

A piece of tape was placed in the center of the bed as a guide for returning to the supine position. A piece of 
tape was also placed in the middle of the left and right sides of the bed and subjects were asked to straddle these 
pieces of tape during the left and right seated positions.

A trial consisted of seven positions and 11 changes in position. Subjects were asked to move into each position 
in a manner that was most comfortable to them and hold that position (for approximately 5 s) until they were 
instructed to move into the next position. Each trial lasted between 3 and 4 minutes. Trials were excluded if the 
subject initiated a movement in a different direction than instructed. Three complete trials were recorded for 
each subject.

Physiol. Meas. 39 (2018) 125001 (11pp)
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2.4. Movement detection
For each trial, we recorded time records (3–4 min long) for each of the four load cells with a sample interval of 
0.1 s. To analyze the load cell signals associated with specific positions and the movements between positions, 
we first identified the beginning (ton) and end (toff) of each movement. The time associated with a subject 
maintaining a specific position is therefore defined by the end of one movement (toff) and the beginning of the 
next movement (ton).

Identifying the on- and off-times of a movement above the background signal from the load cells is non-triv-
ial. Since changes in the signal from an individual load cell may be positive or negative, identification of move-
ments is accomplished by defining a function f(t) that is the weighted sum of the mean square load cell signals 
(Adami et al 2005, 2008, 2010b):

f (t) =
4∑

i=1

ci(t)s
2
i (t) (1)

where s2
i (t) describes the mean square fluctuations of the load cell signal with respect to a local mean (see below), 

and ci is a weighting factor.
The parameter s2

i (t) is evaluated for each load cell at time t from the deviation of wi from the local mean:

s2
i (t) =

1

L − 1
Σ

L−1
2

k=−( L−1
2 )

(wi (t − k)− wi (t))
2

 (2)

where L is an odd number representing the length of the averaging window, and wi is the local mean value from 

the signal of each load cell (i) divided by length L (wi(t) = 1/L
∑(L−1)/2

k=−(L−1)/2 wi(t − k).
In this study we used L  =  11, so that the window includes the preceding and following five time points. Since 

we use a measuring frequency of 10 Hz, this is equivalent to a 1.1 s averaging window. The purpose of the averag-
ing window, defined by L, is to remove high frequency fluctuations and enable accurate identification of the start 
and end points of controlled movements (Adami et al 2010b).

Figure 1. The bed movement trial. (a) A schematic illustration of the bed and the positions of the four load cells. The origin of the 
coordinate system was located at the center of the bed. (b) Representative data from one trial showing the raw signals (lbs) from 
the four load cells (wA, wB, wC, and wD), along with the sum of the four load cells (wtot). The green and red circles on the wtot trace 
indicate the initiation (ton) and cessation (toff) of a movement (see text for details). The vertical dotted lines indicate the periods the 
subject was in the supine position. (c) Subjects adopted seven positions during a trial. (d) Six movements were defined by the initial 
and final positions. M1: supine to right side; M2: supine to left side; M3: supine to prone; M4: supine to sitting in the center; M5: 
right side to supine; M6: left side to supine.

Physiol. Meas. 39 (2018) 125001 (11pp)
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To account for the fact that weight is usually distributed unevenly amongst load cells (i.e. the CoM is not at the 
center of the bed), the mean square fluctuations are weighted by a scaling coefficient ci:

ci (t) =
1

ri (t) + 1 (3)

where ri(t) is the root mean square distance between the coordinates of the CoM and load cell i at time  
t (ri(t) =

√
((xi − xCoM(t))2 + (yi − yCoM(t))2)).

The location of the CoM is defined by

xCoM(t) =
wC (t) + wD (t)− wA(t)− wB(t)

wtot(t)

W

2
 (4)

yCoM(t) =
wA (t) + wD (t)− wB(t)− wC(t)

wtot(t)

L

2
 (5)

where wtot(t) is the sum of the four load cell signals and is equivalent to subject weight, W is the bed width 
(91.4 cm), and L is the bed length (213.4 cm).

If a subject’s position is such that the CoM is at the center of the bed (xCoM  =  0, yCoM  =  0), then ci(t) is the 
same for each load cell, and the fluctuations from each load cell contribute equally to f(t). However, if the CoM is 
shifted from the center of the bed, then the fluctuations from the load cells closer to the CoM contribute more to 
f(t) than fluctuations from load cells further away from the center of mass.

To define regions in the time record where the subject was not moving, we used a fixed threshold of 
f(t)  =  0.0002. The fixed threshold value of 0.0002 was approximately one standard deviation greater than the 
noise of the system calculated from the average load cell signal values of an empty bed. Previous studies have 
used individualized thresholds based on a subject’s weight to identify on- and off-times (Adami et al 2005, 
2010b). In this study, the customized thresholds were not dependent on subject weight (figure S1 (stacks.iop.
org/PM/39/125001/mmedia)) and hence we used the universal threshold described above. On average, the fixed 
threshold value (f(t)  =  0.0002) was more than 2-fold larger than the value while the subject was in one of the 
supine positions in the subset of subjects (30 out of 54) used to compare the fixed threshold value to the custom 
threshold value.

Regions of the time record corresponding to movements were defined by three rules: (1) the onset of a move-
ment (ton) was defined as the first point where f(t)  >  0.0002 and remained above the threshold for at least 1.5 s; (2) 
the end of a movement (toff) was defined by the first point where f(t)  ⩽  0.0002 and remained below the threshold 
for at least 1.5 s; and (3) if time between movements (toff  −  ton) was  ⩽1 s, the movements were combined. Using 
these rules, we defined ton and toff for each of the 11 movements in each trial. The number of on- and off-times 
associated with each trial was verified from the video to ensure the correct number of movements were detected.

2.5. Data analysis
Load cell signals were normalized to the subject’s body weight (BW). The subject’s BW was obtained from the 
average of wtot over 10 s when the subject was in a supine position. Sensor values are reported as %BW.

2.5.1. Position
Analysis of static positions was based on the average signal for (1) individual load cells (wA, wB, wC, wD), (2) 
four combinations (wA+D, wB+C, wA+B, wC+D), and (3) the position (xCoM(t), yCoM(t)) of the CoM (equation 
(4), equation (5)) during steady state periods (i.e. between toff of one movement and ton of the next movement) 
(figures 2(a) and (b)).

2.5.2. Movement
Six movements were defined by the initial and final positions and consisted of moving from (1) supine to right 
(M1), (2) supine to left (M2), supine to prone (M3), supine to C Sit (M4), right to supine (M5), and left to supine 
(M6) (figure 1(d)). Analysis of movements between positions was based on (1) the load cell signals before and 
after the movement (i.e. from the time records in the preceding and following static positions), (2) the transient 
changes in the load cell signals during the movement, and (3) the initial position’s CoM coordinates. Analysis of 
the load cell signals before and after a movement considered the difference in (1) the load cell signals (ΔwA, ΔwB, 
ΔwC, ΔwD), and (2) four combinations of load cell signals (ΔwA+D, ΔwB+C, ΔwA+B, ΔwC+D). For example, 
moving from the supine position to sitting in the center of the bed resulted in a decrease in the signal from wA 
(figure 2(c)).

Analysis of the transient signals during movement also considered the trajectory of the CoM (Adami et al 
2011, Alaziz et al 2017). During movements, the CoM traced out a complex trajectory dependent on the way that 

Physiol. Meas. 39 (2018) 125001 (11pp)
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the subject moved into the new position (figure 2(d)). The trajectory of the CoM is made up of N segments at 
0.1 s intervals.

The Euclidean distance of the trajectory d is the shortest distance between the initial and final CoM and is 
given by

d =
»

(xf − xs)
2
+ (yf − ys)

2 (6)

where xs, ys define the CoM in the start position (before the movement) and xf, yf define the CoM in the final 
position (after the movement).

The length of the trajectory l is the distance along the path traced out by the trajectory and is given by

l =
N∑

j=1

lj (7)

where lj is the distance of a segment in the CoM trajectory (lj =
√
((xj − x( j−1))

2 + (yj − y( j−1))
2)).

The horizontal (side-to-side) and vertical (top-to-bottom) variations in CoM during a movement are 
defined by the variance. The horizontal variance of the trajectory is given by

vx =
N∑

j=1

(xCoM ( j)− xCoM)
2

N − 1
. (8)

The vertical variance of the trajectory is given by

vy =
N∑

j=1

(yCoM ( j)− yCoM)
2

N − 1 (9)

where N is number of time points over the transient period, xCoM is the mean CoM in the horizontal x direction, 
and yCoM is the mean CoM in the vertical y direction.

2.5.3. Statistical analysis
The CoM position (xCoM, yCoM) and transient variables (d, l, vx, vy) were summarized using mean  ±  SE. One-
way analysis of variance (ANOVA) was used to assess (1) differences in the CoM between positions, and (2) 
parameters related to the CoM trajectory during a movement (d, l, vx, vy). Multiple comparison analysis tests with 
Bonferroni adjusted p values identified (1) positions that were significant for CoM x- and y-coordinates and (2) 

Figure 2. Parameters associated with position and movement. (a) A representative time record from a single load cell (wA) during 
a steady state period, defined by the arrows, while the subject was in the supine position. (b) Three lying positions demonstrate 
the variation in the location of the CoM. The yellow circles indicate the location of the CoM for each position. (c) A representative 
change in the load cell signal associated with movement from supine (initial position) to C Sit (final position). (d) A representative 
trajectory of the CoM from supine (green circle) to C Sit (red circle). Parameters associated with the CoM trajectory between initial 
and final positions: d, the Euclidean distance of the trajectory; lj, one segment of the length of the trajectory; vx, the horizontal 
variance of the CoM trajectory; vy, the vertical variance of the CoM trajectory.

Physiol. Meas. 39 (2018) 125001 (11pp)
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movements that were significant for each parameter (p  <  0.05). The classification and regression tree method 
was used to create classification models for position and movement predictions. Split-sample validation was 
used to test the models, with 2/3 of subjects used for training. Before training the static position model, random 
under-sampling was used to account for the fact that there were more instances of the supine position. Random 
under-sampling was used to account for the fact that when supine and prone positions were combined there 
were more instances of the supine/prone positions. The variables included in the static position model were: the 
averaged individual load cell signals (wA, wB, wC, wD), the combinations (wA+D, wB+C, wA+B, wC+D), and the CoM 
coordinates (xCoM, yCoM). The individual load cell signals provide information on the distribution of body weight 
to a corner of the bed, whereas the combinations provide insight into the distribution along the sides of the bed: 
wA+D (top), wB+C (bottom), wA+B (right side), and wC+D (left side). The variables included in the movement 
model were: the difference in averaged individual load cell signals (ΔwA, ΔwB, ΔwC, ΔwD), the combinations 
(ΔwA+D, ΔwB+C, ΔwA+B, ΔwC+D), the parameters associated with the CoM trajectory (d, l, vx, vy), and the initial 
position’s CoM coordinates. All statistical analyses were performed using SPSS Statistics for Windows, version 
24 (IBM Corp., Armonk, NY).

3. Results

3.1. Position
We first considered the load cell signals while the subjects remained in one of the seven static positions. The 
average signal from the individual load cells, as well as combinations of pairs of load cells, are summarized in a 
heat map (figure 3(a)). In the supine position, the signals from the upper load cells (wA and wD) were larger than 
from the lower load cells (wB and wC), indicating that the vertical CoM (yCoM) was above the midpoint of the bed. 
However, wA  ≈  wD and wB  ≈  wC indicating that the horizontal CoM (xCoM) was along the midpoint of the bed.

All four lying positions resulted in more weight being distributed on the top half of the bed, with differences 
that ranged from 7.7 to 11.2 %BW between the top (wA+D) and bottom (wB+C) load cells. Sitting in the center of 
the bed had more weight distributed on the bottom half compared to the top (10.7 %BW). Weight was distrib-
uted almost equally between the top and bottom halves of the bed in the right and left seated positions. In the 
side-seated positions, almost 75 %BW was placed on the load cells that corresponded to the side the subject was 
sitting on (R Sit: wA+B  =  72.6 %BW and L Sit: wC+D  =  73.1 %BW). However, in the side-lying positions, there 
was less than 20 %BW difference between the load cells on the right and left sides of the bed (Right: wA+B  =  58.7 
%BW; Left: wC+D  =  59.3 %BW). The positions in the middle of the bed (supine, prone, sitting in the center) had 
similar weight values on the right and left side load cells.

The distribution of weight, inferred from the load cell signals, is clear in the distribution of the CoM for each 
position (figure 3(b)). The mean vertical CoM (yCoM) for the lying positions were all located at the top of the bed, 
above the horizontal midline. The mean CoM in the supine position was closer to the center of the bed than the 
mean CoM in the prone position (figure 3(d)), although both were along the vertical midline (figure 3(c)). Each 
trial contained five supine positions, however, the differences in CoMs were statistically significant suggesting 
that subjects did not return to the initial supine position (figure S2).

The CoM of the side-lying positions were shifted from the vertical midline (Right: xCoM  =  −8.2 cm and Left: 
xCoM  =  8.3 cm), and both were approximately parallel with the supine position towards the top of the bed (figure 
3(c)). The overlap in the error bars reflects the fact some subjects shifted towards the vertical center of the bed 
when moving into the side-lying positions (figure 3(b)). This was visually observed during the data collection. 
The CoM of the side-seated positions was further shifted from the vertical midline compared to the side-lying 
positions (R Sit: xCoM  =  –21.2 cm and L Sit: xCoM  =  20.7 cm) (figure 3(c)). The mean of the right seated position 
CoM was very close to the horizontal midline, while the mean of the left seated CoM was below the midline.

To assess the ability of the load cell data to predict the subject’s position in the bed, we used the classification 
and regression tree method. The model was trained using the averaged individual load cell signals (wA, wB, wC, 
wD), the combinations (wA+D, wB+C, wA+B, wC+D), and the CoM coordinates (xCoM, yCoM) for 67% of the subjects. 
The model was then used to predict the position in the remaining 33% of the subjects (table 1). The supine and 
prone positions were combined since the prone position was indistinguishable from the other positions. Almost 
half of the prone positions were misclassified as supine (46.3%). If we consider only prone and supine positions, 

the two positions can only be distinguished with an accuracy of 52.8%.
The three seated positions had the highest classification accuracies of the six positions (R Sit: 86.8%; L Sit: 

79.6%; and C Sit: 77.4%). The right and left lying positions had accuracies of 64.8% and 66.7%, respectively. 
More than half of the right (60.0%) and left (77.8%) position misclassifications were identified as supine/prone. 
Prediction of the supine/prone position had an accuracy of 75.9% and was typically misclassified as left or right; 
accounting for 76.9% of misclassification. The prediction accuracy of the model was almost identical if the CoM 
was excluded.

Physiol. Meas. 39 (2018) 125001 (11pp)
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3.2. Movement
Having analyzed the load cell signatures for static positions, we next analyzed the transient changes associated 
with six movements from one position to another (figure 1(d)). We first considered the changes in the magnitude 
of the signal from the individual load cells and the pairwise combinations (figure 4(a)). The differences in the 
four combinations of load cell signals (ΔwA+D, ΔwB+C, ΔwA+B, and ΔwC+D) were coupled; for example, an 
increase in ΔwA+D (top of the bed) resulted in an associated decrease in ΔwB+C (bottom of the bed). Similarly, 
the changes in ΔwA+B (right side) and ΔwC+D (left side) were coupled. Most of the differences in load cell signal 
were observed on the right and left sides of the bed (ΔwA+B and ΔwC+D). M4 (supine to sitting in the center of the 
bed) produced relatively large changes in ΔwA+D (−10.6%BW) and ΔwB+C (10.6%BW) and almost no change 
between the right and left load cells (ΔwA+B  =  −0.0%BW, ΔwC+D  =  0.1%BW); this was the only movement 
that included a seated position.

Figure 3. Load cell signatures for subjects in static positions. (a) A heat map showing the percentage of body weight (%BW) on 
each load cell (wA, wB, wC, wD) and different load cell combinations corresponding to sides of the bed (top: wA+D, bottom: wB+C, 
right side: wA+B, left side: wC+D) for each position. Darker colors are associated with a higher %BW. Left: lying on the left side of the 
body; Supine: lying on the back; Prone: lying on the stomach; Right: lying on the right side of the body; L Sit: sitting on the left side 
of the bed; C Sit: sitting in the center of the bed; R Sit: sitting on the right side of the bed. (b) The location of the CoM for each of the 
seven positions (mean  ±  SD). The origin is located at the center of the bed. (c) The x-coordinate of the CoM for the seven positions 
(mean  ±  SE). (d) The y-coordinate of the CoM for the seven positions (mean  ±  SE). *Significance (p  ⩽  0.05).
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From the CoM trajectories we obtained four derived parameters: the Euclidean distance (d) (figure 4(b)), 
the length (l) (figure 4(c)), the horizontal variance (vx) (figure 4(d)), and the vertical variance (vy) (figure 4(e)). 
Movement from supine to prone (M3) resulted in a shorter Euclidean distance and longer trajectory length than 
the other five movements. Conversely, moving from supine to sitting in the center of the bed (M4) had the longest 
Euclidean distance and the shortest trajectory length. There were no significant differences in Euclidean distance, 

Table 1. Accuracy of the classification model in predicting static positions. Left: lying on the left side of the body; supine/prone: lying on 
the back and lying on the stomach; right: lying on the right side of the body; L Sit: sitting on the left side of the bed; C Sit: sitting in the center 
of the bed; R Sit: sitting on the right side of the bed. N  =  54.

Position

Predicted
Percent 

correctLeft Supine/prone Right L Sit C Sit R Sit

Observed Left 36 14 3 0 1 0 66.7%

Supine/prone 5 41 5 2 1 0 75.9%

Right 1 12 35 0 0 6 64.8%

L Sit 11 0 0 43 0 0 79.6%

C Sit 1 8 3 0 41 0 77.4%

R Sit 0 0 7 0 0 46 86.8%

Figure 4. Load cell signatures for subjects moving between static positions. (a) A heat map showing the change in weight, from  −25 
to 25 %BW, on individual load cells (ΔwA, ΔwB, ΔwC, ΔwD) and pairwise combinations (top: ΔwA+D, bottom: ΔwB+C, right 
side: ΔwA+B, left side: ΔwC+D) for each of the six movements. Blue colors are associated with a positive change and red colors are 
associated with a negative change in %BW from the initial to final positions. (b) The Euclidean distance (d) of the CoM trajectory 
(mean  ±  SE). (c) The length (l) of the CoM trajectory (mean  ±  SE). (d) The horizontal variance (vx) of the CoM trajectory 
(mean  ±  SE). (e) The vertical variance (vy) of the CoM trajectory (mean  ±  SE). M1: supine to right side; M2: supine to left side; M3: 
supine to prone; M4: supine to sitting in the center; M5: right side to supine; M6: left side to supine. *Significance (p  ⩽  0.05).
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length, and horizontal and vertical variances between M1 (supine to right side) and M2 (supine to left side), and 
between M5 (right side to supine) and M6 (left side to supine), which illustrates that similar movements have 
similar characteristics. Additionally, there were no significant differences in Euclidean distance between M1, M2, 
M5, and M6. However, M1 and M2 had significantly longer trajectory lengths than M5 and M6, highlighting the 
longer time to move from supine to a side-lying position compared to moving in the reverse direction (side-lying 
to supine). M4 (supine to sitting in the center) had the lowest side-to-side variance (vx) and the highest top-to-
bottom variance (vy) on the bed.

To assess the ability of the transient response of the load cells to predict movements between two positions, 
we used the classification and regression tree method (table 2). The accuracy of the model was 79.7% correct. 
The test dataset contained 54 trials for the six movements. Classification of movement accuracy ranged from 
61.8% for M2 (supine to left side) to 88.9% for M4 (supine to sitting in the center of the bed). Although the vari-
ation in the vertical component of the trajectory (vy) was significant for some movements, the same accuracy was 

achieved without this parameter.
In addition to the load cell signals and parameters associated with the CoM, we also assessed four addi-

tional parameters in the classification model of subject movement: the duration of the movement (s), and three 
parameters derived from f(t) (peak, area under the curve, and full width at half maximum). The duration of a  
movement was significant for some movements (figure S3(a)), and there was a strong correlation between the 
duration of movement and the trajectory length (r  =  0.815) (figure S3(b)). Similarly, there was statistical sig-
nificance between movements for peak, area under the curve, and full width at half maximum of f(t) (figure S4). 
However, similar to vy, the inclusion of these parameters did not change the accuracy of the classification model.

4. Discussion

We analyzed load cell data for subjects in seven static positions and the transitions associated with six specific 
movements between two positions. For a subject lying with their CoM in the center of the bed, the signal from the 
individual load cells corresponds to 25 %BW. In any other position, the load cell signals reflect the redistribution 
of weight towards or away from that load cell. The pairwise combinations of load cell signals provide insight into 
the top-to-bottom (wA+D and wB+C) or side-to-side (wA+B and wC+D) distribution of weight. For the positions in 
this study, the load cell signals varied from 21.6 %BW to 64.0 %BW. The CoM also provides information on the 
subject’s weight distribution, with a side-to-side range of more than 20 cm, and a top-to-bottom range of more 
than 10 cm for the positions studied here.

Of the seven static positions, the supine and prone positions were the most difficult to differentiate from each 
other. Although subjects moved to the supine and prone positions from different start positions, subjects tended 
to re-center themselves on the bed when adopting these positions resulting in indistinguishable weight distri-
butions. The inability to distinguish between the supine and prone positions using load cell sensors has been 
reported previously (Beattie et al 2011), and hence we combined the prone/supine positions.

Of the three lying positions (prone/supine, left side, right side) and three seated positions (left, right, and 
center), the seated positions had the highest classification accuracies (~77%–87%). The seated positions were 
easy to identify because their weight distributions were furthest from the center of the bed. However, the vari-
ation in CoM location and relatively high classification accuracy of the right and left seated positions may be 
influenced by the instruction to sit close to the horizontal center of the bed.

Lying positions were more difficult to distinguish than seated positions because of the locations of the lying 
positions on the bed. Large horizontal shifts of the CoM during the side-lying positions are difficult to distin-
guish from side-seated positions (if the subject’s full weight is on the bed). Conversely, in some cases subjects 
turn onto their side but maintain their CoM in the center of the bed, a position that is difficult to distinguish from 
the supine/prone position. In general, cases where the horizontal CoM location was a few centimeters from the 

Table 2. Accuracy of the classification model for six movements using load cell signals. M1: supine to right side; M2: supine to left side; M3: 
supine to prone; M4: supine to sitting in the center; M5: right side to supine; M6: left side to supine. N  =  54.

Movement

Predicted
Percent 

correctM1 M2 M3 M4 M5 M6

Observed M1 Supine  →  Right 43 2 3 0 1 5 79.6%

M2 Supine  →  Left 0 34 9 0 9 3 61.8%

M3 Supine  →  Prone 4 7 43 0 0 0 79.6%

M4 Supine  →  C Sit 0 0 0 48 4 2 88.9%

M5 Right  →  Supine 0 6 1 0 45 2 83.3%

M6 Left  →  Supine 5 2 0 0 1 46 85.2%
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vertical midline of the bed were correctly classified as a side-lying position. The most frequent misclassification 
of the side-lying positions was the supine/prone position (more than half of the misclassifications), indicating 
that some subjects maintained a position in the center of the bed when lying on their side.

Similarly, when the CoM of the supine/prone position was not in the center of the bed, this position was dif-
ficult to distinguish from other positions; the majority were misclassified as the side-lying position. When the 
horizontal CoM location was shifted laterally from the center of the bed, the supine/prone position was classified 
as the side-lying position that corresponded to the direction of the shift. When the vertical CoM location was 
shifted towards the bottom of the bed, the supine/prone position was misclassified as sitting in the center of the 
bed. In summary, if the CoM of the supine/prone position is shifted from the center of the bed, even by a small 
amount, the position is likely to be misclassified.

These results suggest that it may be feasible to detect whether a subject is lying or sitting in bed, but that it 
would be difficult to distinguish between lying positions (supine/prone, left side, or right side), or distinguish 
supine/prone and sitting in the center of the bed when only considering position information.

We considered six movements between positions: supine to side (right and left), side to supine (starting on 
the right or left), supine to prone (counter clockwise turn), and supine to sitting in the center of the bed. The 
supine to prone and supine to sitting in the center of the bed movements were the only movements that were 
not quarter turns (supine to side and side to supine). The supine to sitting was the easiest to distinguish of the six 
movements. Sitting up is associated with CoM trajectories that can clearly be separated from turning.

Supine to sitting in the center of the bed is a motion that involves a large shift in the vertical CoM, changing 
the vertical CoM location from above to below the midline of the bed. This resulted in a large Euclidean distance 
between the initial and final CoM position but a short CoM trajectory length, consistent with this being a rela-
tively simple movement even though it requires significant effort to lift the torso. This movement had the small-
est side-to-side variance and largest top-to-bottom variance reflecting the directionality of the trajectory along 
the vertical midline of the bed; the opposite was true for turning.

The distinction between rolling over (supine to prone) and quarter turning movements was achieved from 
the Euclidean distance and length of the CoM trajectory parameters. As described previously, the supine and 
prone positions were largely indistinguishable. The Euclidean distance between the initial (supine) and final 
(prone) positions of the supine to prone movement was significantly shorter than the supine to side, side to 
supine, and supine to sitting in the center of the bed movements. In addition, rolling over requires a greater shift 
in the CoM than a quarter turn or sitting up in bed resulting in the longer CoM trajectory length observed during 
supine to prone versus the other five movements.

Compared to supine to sitting in the center of the bed and supine to prone, quarter turning movements  
(side to supine and supine to side) had similar CoM trajectory characteristics. All turning conditions had 
increased side-to-side and decreased top-to-bottom variances compared to sitting up in bed. However, the 
side to supine turns had smaller side-to-side and top-to-bottom variances and shorter CoM trajectory lengths  
than the supine to side turning conditions, indicating that it is easier to turn onto the back than on to the side.

When turning movements were misclassified they were typically classified as another movement in the same 
direction. For example, right to supine, supine to left, and supine to prone (counter clockwise) were counter 
clockwise movements. In the instances when right to supine movements were misclassified, most misclassifica-
tions were as one of the other two counter clockwise turns.

By binning movements into categories with similar CoM trajectory characteristics (independent of ini-
tial and final position) it is possible to reduce classification errors. In general, increased accuracy is achieved 
by broadening the definition of each movement category, and in turn, reducing the number of categories. For 
example, classification accuracy can be increased by binning turns as either right or left, independent of starting 
position, (Alaziz et al 2017) or by binning movements as small, medium, or large (Adami et al 2011). To provide 
a direct comparison between the accuracy of the movement model and a previous model (Alaziz et al 2017), the 
movements in this study were binned into turns to the right (M1 and M6) and turns to the left (M2 and M5). 
The movement model’s accuracy (95.8%) to distinguish between right and left turns was slightly larger than the 
previous model’s (90%) (Alaziz et al 2017). However, combining movements limits the information that can be 
obtained, reducing the ability to extract position information from movement. Our model is able to distinguish 
between specific movements, which inherently includes static positions before and after movements with an 
accuracy of 79.7%. This level of accuracy is slightly lower than studies that categorize movements only, achiev-
ing accuracies of 95.8% (Alaziz et al 2016), 84.6% (Adami et al 2011), and 90% (Alaziz et al 2017), but provides a 
greater level of classification specificity. The ability to classify specific movements allows the characterization of 
both major postural shifts and stationary positions from our model, creating a detailed picture of bed activity.

The controlled static positions and transient movements implemented in this trial have allowed us to per-
form quantitative assessment of bed load cell data. The results show the characteristic signatures of the selected 
positions and movements and indicate which ones are more distinct. The increased classification accuracy of 
movement compared to position illustrates the utility of analyzing static and dynamic characteristics to infer 
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position from specific movements. Although the controlled conditions allow detailed analysis, the accuracy of 
the prediction models may be decreased under less controlled conditions where a subject is free to move without 
following directions.

5. Conclusion

The purpose of this study was to illustrate that positions and movements in bed have unique load cell 
characteristics. Classification models distinguished six positions and movements in bed based on parameters 
derived from the load cells. These results suggest that load cell monitoring may be useful in a clinical setting, 
providing information needed for predictive algorithms to address a wide scope of clinical issues associated with 
movements and positions.
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