This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Brought to you by:
ACCEPTED MANUSCRIPT The following article is Open access

Spread-out Bragg peak measurements using a compact quality assurance range calorimeter at the Clatterbridge Cancer Centre

, , , , , , , , , , , , , , and

Accepted Manuscript online 24 April 2024 © 2024 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd

What is an Accepted Manuscript?

DOI 10.1088/1361-6560/ad42fd

10.1088/1361-6560/ad42fd

Abstract

Objective: The superior dose conformity provided by proton therapy relative to conventional X-ray radiotherapy necessitates more rigorous Quality Assurance (QA) procedures to ensure optimal patient safety. Practically however, time-constraints prevent comprehensive measurements to be made of the proton range in water: a key parameter in ensuring accurate treatment delivery. Approach: A novel scintillator-based device for fast, accurate water-equivalent proton range QA measurements for ocular proton therapy is presented. Experiments were conducted using a compact detector prototype, the Quality Assurance Range Calorimeter (QuARC), at the Clatterbridge Cancer Centre (CCC) in Wirral, UK for the measurement of pristine and spread-out Bragg peaks (SOBPs). The QuARC uses a series of 14 optically-isolated 100 x 100 x 2.85 mm polystyrene scintillator sheets, read out by a series of photodiodes. The detector system is housed in a custom 3D-printed enclosure mounted directly to the nozzle and a numerical model was used to fit measured depth-light curves and correct for scintillator light quenching. Main Results: Measurements of the pristine 60 MeV proton Bragg curve found the QuARC able to measure proton ranges accurate to 0.2 mm and reduced QA measurement times from several minutes down to a few seconds. A new framework of the quenching model was deployed to successfully fit depth-light curves of SOBPs with similar range accuracy. Significance: The speed, range accuracy and simplicity of the QuARC make the device a promising candidate for ocular proton range QA. Further work to investigate the performance of SOBP fitting at higher energies/greater depths is warranted.

Export citation and abstract BibTeX RIS

As the Version of Record of this article is going to be / has been published on a gold open access basis under a CC BY 4.0 licence, this Accepted Manuscript is available for reuse under a CC BY 4.0 licence immediately.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by/4.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected and is not published on a gold open access basis under a CC BY licence, unless that is specifically stated in the figure caption in the Version of Record.

10.1088/1361-6560/ad42fd