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Abstract.

Objective Training deep learning models for image registration or segmentation of

dynamic contrast enhanced (DCE) MRI data is challenging. This is mainly due to

the wide variations in contrast enhancement within and between patients. To train

a model effectively, a large dataset is needed, but acquiring it is expensive and time

consuming. Instead, style transfer can be used to generate new images from existing

images.

In this study, our objective is to develop a style transfer method that incorporates

spatio-temporal information to either add or remove contrast enhancement from an

existing image.

Approach We propose a Temporal Image-to-Image Style Transfer Network (TIST-

Net), consisting of an auto-encoder combined with convolutional long short-term

memory (LSTM) networks. This enables disentanglement of the content and style

latent spaces of the time series data, using spatio-temporal information to learn and

predict key structures . To generate new images , we use deformable and adaptive

convolutions which allow fine grained control over the combination of the content and

style latent spaces. We evaluate our method, using popular metrics and a previously

proposed contrast weighted structural similarity index measure (CW-SSIM). We also

perform a clinical evaluation, where experts are asked to rank images generated by

multiple methods.

Main Results Our model achieves state-of-the-art performance on three datasets

(kidney, prostate and uterus) achieving an SSIM of 0.91±0.03, 0.73±0.04, 0.88±0.04

respectively when performing style transfer between a non-enhanced image and a

contrast-enhanced image. Similarly, SSIM results for style transfer from a contrast-

enhanced image to a non-enhanced image were 0.89±0.03, 0.82±0.03, 0.87±0.03. In the

clinical evaluation, our method was ranked consistently higher than other approaches.

Significance TIST-Net can be used to generate new DCE-MRI data from existing

images. In future, this may improve models for tasks such as image registration or

segmentation by allowing small training datasets to be expanded.

Page 1 of 27 AUTHOR SUBMITTED MANUSCRIPT - PMB-116219.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



TIST-Net: Style transfer in dynamic contrast enhanced MRI 2

Keywords: Style Transfer, Spatio-temporal Information, Content/Style Disentangle-

ment, Dynamic Contrast Enhanced (DCE) - MRI
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TIST-Net: Style transfer in dynamic contrast enhanced MRI 3

1. Introduction

Deep learning models are increasingly popular due to their impressive performance

across multiple image processing tasks such as image segmentation, object detection and

classification. There have been continuous improvements made due to advancements in

architecture, computational performance and access to larger datasets. Having access

to large datasets is beneficial as it allows training with images that are similar to

images seen at inference, as well as avoiding any overfitting. However, medical imaging

datasets are often small with little variability compared to natural image datasets such

as ImageNet (Deng et al. 2009). This can make it difficult to train robust models.

For medical image processing tasks, deep learning consistently achieves state-of-the-art

performance, usually using augmentation to provide the models with additional varying

data.

Datasets containing dynamic contrast enhanced (DCE) - MRI are typically small

with a limited number of annotations outlining organs of interest. DCE-MRI is a type

of quantitative imaging used to monitor microvascular perfusion (Ingrisch and Sourbron

2013). Multiple T1 weighted images are rapidly taken over a few minutes along with

a contrast agent injection, which causes a rapid increase in intensity. DCE-MRI data

contains motion and contrast enhancement which is tissue dependent.

Quantitative analysis of DCE-MRI is often performed, which usually requires the

manual selection of voxels in each frame that represent the tissue of interest. However,

the selected voxels in a single frame may not represent the target tissue over the temporal

dimension due to motion between frames. Obtaining manually annotated images is time

consuming and difficult, hence fully annotated DCE-MRI datasets are scarce. This

reduces the diversity of available data to train segmentation and registration models.

When training a model using DCE-MRI data, it was found that strategically

using data from the whole sequence with varying contrast enhancements led to better

performing models (Tattersall et al. 2023a). However, the datasets are rarely annotated

and lack diversity. Augmentation can be used to increase the size and diversity of

the training dataset which can play a key role in training a robust model (Shorten

and Khoshgoftaar 2019). By artificially expanding the dataset through augmentation,

models are more capable of handling real-world scenarios where data can differ from

the training set. Augmentation acts as a form of regularisation, effectively preventing

overfitting and enhancing the model’s ability to generalise well to unseen examples

(Shorten and Khoshgoftaar 2019). However, common augmentation techniques may not

be enough to provide a model trained using DCE-MRI data with a diverse enough set of

examples during training. This is due to the lack of availability of annotations for non

contrast enhanced (CE) images, and the widely varying levels of contrast enhancement

in the images. Instead, an approach which can generate new images by adjusting the

contrast enhancement effect would enable a diverse dataset to be created. The generated

image would remain structurally identical whilst the contrast enhancement in the image

would be changed to ensure that any available ground truth can still be utilised. Such
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TIST-Net: Style transfer in dynamic contrast enhanced MRI 4

a method would allow for robust models to be trained using smaller datasets enlarged

using synthetic images.

Style transfer is a technique that aims to combine a content and a style image

resulting in an image which has a combination of characteristics from both images. The

content image provides the underlying structure and arrangement of objects, whilst the

style image contributes the artistic patterns, colours, and textures. Within medical

imaging, style transfer has been used to generate new CT images from MRI or MRI

from CT (Yang et al. 2019; Reaungamornrat et al. 2022). It has also been used to

improve image quality by denoising low dose CT images by translating them into a high

dose counterpart (Wolterink et al. 2017). Within the scope of DCE-MRI, the following

constraints need to be met. (1) The structure of the content image needs to be preserved.

This allows for any existing annotations to be used. (2) The change in intensities needs

to be localised and tissue dependent. (3) The characteristics of the image need to be

preserved such as the noise expected in MRI.

In this work, we proposed a model which used auto-encoders with convolutional

long short-term memory (LSTM) networks (Chao et al. 2018) to learn spatio-temporal

information. Adaptive convolutions (AdaConv) were used to combine content and

style latent spaces alongside deformable convolutions to allow the model to adapt the

receptive field to account for local geometric variations. This gave the model the ability

to decide which areas of the image should have specific style attributes.

Quantitatively evaluating style transfer can be difficult with unregistered data.

Current metrics such as peak signal to noise ratio (PSNR), structural similarity

index measure (SSIM) (Zhou Wang et al. 2004) and multiscale (MS)-SSIM (Z. Wang,

Simoncelli, and Bovik 2003) primarily focus on the pixel-level similarity between a pair

of images. However, in DCE-MRI data, there is a large variety of contrast enhancement

which is tissue dependent. This makes evaluating synthetic DCE-MRI a difficult task.

A contrast-weighted (CW)-SSIM Tattersall et al. 2023b) was previously proposed which

separated the measurement of overall content and localised style. In this work, we also

explored and validated this metric to measure its effectiveness for evaluating generated

images.

We compared our model with other style transfer models using standard metrics

(PSNR, SSIM and MS-SSIM), CW-SSIM as well as completing a rigorous clinical

evaluation of our generated images to correlate the quantitative analysis with experts’

opinions.
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TIST-Net: Style transfer in dynamic contrast enhanced MRI 5

2. Related Work

Using neural networks for style transfer was first proposed by Gatys, Ecker, and Bethge

2016 and has been successfully built upon. Previously, it was a slow iterative process

with low quality style transfer, but the use of feed-forward networks (Ulyanov et al. 2016)

to speed up the process, as well as creating perceptual losses (Johnson, Alahi, and Fei-

Fei 2016) to give more visually pleasing results has led to new impressive models that

have generated realistic images (Karras et al. 2021).

2.1. Approaches to Style Transfer

There have been multiple style transfer approaches to generate new images such as

learning mappings between images or content/style disentanglement. Pix2Pix (Isola

et al. 2017) and CycleGAN (Zhu et al. 2017) are methods that learn mappings between

images. Pix2Pix used a conditional GAN which consists of a generator that maps an

input image to a desired output and a discriminator to classify between real and fake

images. Pix2Pix has been used to generate new medical images such as CT pelvis images

from MRI (Maspero et al. 2018). Although high quality images can be generated using

Pix2Pix, it requires paired and registered images to train effectively. To circumvent this,

Zhu et al. 2017 proposed CycleGAN which can be trained using unpaired data. In this

approach, generators learn mappings between two domains along with discriminators

to classify between real and fake images. A cycle consistency loss is also used to ensure

that translated images can be reversed. A disadvantage to both of these approaches is

that they can struggle to generate diverse outputs when new style images are introduced

at inference time as the model learns to map between domains directly. Galli et al. 2023

proposed a method using a CycleGAN architecture which translated the appearance

of DCE-MRI breast data between two datasets in an attempt to increase the size of

available datasets to improve lesion classification.

Alternatively, content/style disentanglement methods such as MUNIT (Huang, Liu,

et al. 2018) have been proposed. These methods aim to predict two latent spaces which

describe the content and style of the image. This type of method can allow for better

control of the translation process and the preservation of the content image whilst

transferring style. Content/style disentanglement methods usually use an auto-encoder

based architecture. Encoders typically encode content and style latent spaces whilst the

decoders combine the latent spaces to generate an image. Discriminators can also be

used for adversarial training. Lee et al. 2020 proposed DRIT++ which is an extension

of MUNIT. DRIT++ aimed to enhance diversity by introducing disentanglement at the

domain level, and improving attribute manipulation. A key issue with these approaches

is the large computational requirement. Content/style disentanglement methods have

been used with DCE-MRI data such as the method proposed by Cai et al. 2023 who used

content and style decoders along with a mapping network to increase style diversity.

There has also been some work using style transfer with videos. Early work

processed frames independently however, it was found that this created videos that
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TIST-Net: Style transfer in dynamic contrast enhanced MRI 6

flicker and produced false discontinuities (D. Chen et al. 2017). To alleviate this, D.

Chen et al. 2017 proposed a method to ensure temporal consistency between image

frames. Their method uses three components: a style sub-network, a flow sub-network

and a mask sub-network. The style sub-network is an auto-encoder which performs the

style transfer. The flow sub-network estimates the correspondence between consecutive

image frames and warps the features and finally, the mask sub-network that regresses

a mask to features in adjacent time frames. This ensures that the features of objects

in each image that are similar can be reused. Using this approach allows a smooth

style transfer between image frames, but it is prone to errors when there is large motion

between frames as well as propagating errors over time leading to inconsistent style

transfer and blurriness.

2.2. Injecting Style

Style transfer methods aim to transform images from one domain to another whilst

preserving content. However, they often fail to generate diverse and realistic images.

To achieve this, methods which inject style into the content image has been proposed

as an effective solution as it helps preserve the structure of the generated image whilst

creating an image that looks similar to the style image.

A popular method for injecting style is Adaptive Instance Normalization (AdaIN)

proposed by Huang and Belongie 2017. As shown in Figure 1a, AdaIN normalises the

activations in a neural network based on the statistics (mean and standard deviation) of

the style image. This allows the network to transfer the style of the style image to the

content image by matching their statistical properties, but this only uses global style

information. In the case of contrast transfer for DCE-MRI data, CE is variable between

the tissues, however, AdaIN adds CE to the whole image, making it unsuitable for this

task as the contrast enhancement is localised to specific tissues.

Spatially-Adaptive Normalization for Generative Networks (SPADE), proposed

by Park et al. 2019 is a method that builds on AdaIN and introduces spatially-

adaptive normalisation by incorporating semantic information for more controlled and

semantically consistent style transfer (Figure 1b). Usually, a semantic segmentation map

is used to predict the normalisation parameters for each pixel location. This improves

the control over the style generation process.

Another approach to injecting style into the generator network is through an

Adaptive Convolution (AdaConv) (Chandran et al. 2021). In AdaConv, the convolution

filters are learned dynamically from the style latent code to create a set of convolution

filters which are then applied to the content image (Figure 1c). While this comes at

a cost of increased computation, AdaConv captures global and local information to

predict parameters to combine the style and content latent spaces.
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TIST-Net: Style transfer in dynamic contrast enhanced MRI 7

(a) AdaIN (b) SPADE (c) AdaConv

Figure 1: Methods to combine content (C ) and style (S ): (a) AdaIN, (b) SPADE and (c)

AdaConv. MLP, Conv and IN denote multilayer perceptron, convolutional and instance

normalisation layers, respectively. µ represents the mean, σ represents the standard

deviation, γ is a learnable scaling parameter and β is a learnable bias parameter.
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TIST-Net: Style transfer in dynamic contrast enhanced MRI 8

3. Materials and Methods

3.1. Data

Three DCE-MRI datasets were used. The first contains 2D kidney DCE-MRI

(Lietzmann et al. 2012) from 13 patients with 375 images acquired continuously at a

temporal resolution of 1.6 s, a spatial resolution of 384x348 and pixel sizes 1.08x1.08 mm.

The second contains 3D prostate DCE-MRI (Lemâıtre et al. 2015) from 20 patients with

40 volumes acquired continuously at a temporal resolution of 6 s, a spatial resolution

of 256x192x16 and voxel sizes 1.12x1.12x3.5 mm. The third dataset contains 3D uterus

DCE-MRI (Reavey et al. 2021) from 36 patients with 150 volumes acquired continuously

at a temporal resolution of 2.45 s, a spatial resolution of 192x192x30 and voxel sizes

2.08x2.08x4mm. Each dataset was split at a patient level with an 80:20 ratio, training

was done using five-fold cross validation.

3.2. Style Transfer - Global Architecture

As in Tattersall et al. 2023b), we used a structure composed of encoders E, decoders D

and discriminators Dis. A sequence of images was passed into encoders to predict

content and style latent spaces. Successful disentanglement led to content latent

spaces containing information representing the structures of the image and style latent

spaces containing information representing the modality (MRI) and any contrast

enhancements. The content latent spaces were then passed into a bi-directional

(Graves and Schmidhuber 2005) convolutional LSTM (Figure 2) which allowed for the

modelling of temporal information from a sequence of images. The convolutional LSTM

used spatial invariance by extracting relevant features from the images regardless of

their spatial position. By using a bi-directional LSTM, the model was able to learn

information from past and future events.

To combine content and style, Tattersall et al. 2023b used AdaConv to convolve a

kernel (adaptive convolution), pointwise kernel (adaptive pointwise convolution) and

bias predicted from a style latent space over a content latent space. This allowed

for local, spatial information to be used when combining content and latent spaces.

However, we found that the generated images exhibited smoothening effects, especially

in areas of contrast enhancement. To improve this, we proposed TIST-Net (Temporal

Image-to-image Style Transfer) which used deformable convolutions proposed by Dai

et al. 2017 to offset the adaptive convolution. The offset is simply predicted by passing

a feature map, in our case the content latent space, through a convolutional layer.

This contained information to decide how much a kernel should be deformed. By using

this, it allows for the receptive field of a convolutional kernel to adapt and account for

local geometric variations in the input data. Figure 3 shows the role of deformable

convolutions with AdaConv. By offsetting the kernel, the model decided which areas

of the content image should gain particular style attributes which is necessary when

generating images with contrast enhancement at various time points.
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TIST-Net: Style transfer in dynamic contrast enhanced MRI 9

Figure 2: Encoding of images which FL were FL passed into encoders Ei to encode

content Ci and style Si, where i is between 0 and 4. Content spaces FL were FL passed

into a convolutional LSTM as a sequence. We then output a new predicted content

latent space C’

Figure 3: A style latent space is passed through three convolutional layers. An adaptive

convolution, adaptive pointwise convolution, and adaptive pointwise convolution bias

is predicted from each of the layers. An offset is also predicted from a content latent

space (of size channel (C), height (H), Width (W). The offset is then used to deform

the adaptive convolution. These predictions are used to combine the content and style

latent spaces. Note, this figure shows an example for 2D style transfer. For 3D an

additional dimension is used for depth.

We show the global architecture for our method in Figure 4. Discriminators were

used to predict if the generated image was real or fake. We also highlight the losses
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TIST-Net: Style transfer in dynamic contrast enhanced MRI 10

used to ensure disentanglement.

The L1 loss was used as the cycle consistency loss between the original and

reconstructed images and each of the initially predicted and reconstructed latent spaces.

This ensured that important information such as structure was not lost during the

reconstruction and translation process. This was calculated between the original and

reconstructed images as well as between the initially predicted and reconstructed latent

spaces. The mean square error (MSE) loss was used as an adversarial loss to predict if

an image was real or generated. This helped the model to generate images that were

realistic. We also used two perceptual losses proposed by Johnson, Alahi, and Fei-

Fei 2016. The content, style and generated images were passed through a pretrained

model P to predict feature maps. These feature maps were used as inputs to each of

the losses. The first was a feature reconstruction loss which calculated the squared,

normalised Euclidean distance (Eq. 1) between the feature maps of the content c and

generated g image. f is the dimension of the feature map. This loss encouraged the

style transfer model to generate images with similar structural features. The second was

a style reconstruction loss which penalised the differences in style between the feature

maps of the style s and generated image. The squared Frobenius norm of the difference

between the Gram matrices of the input feature maps was used (Eq. 2). Minimising

this loss encouraged the model to generate images which had similar style patterns and

texture to the style image.

Lfeature =
1

f
||P (g)− P (c)||22 (1)

LFrob = ||Gram(P (g))−Gram(P (s))||2F (2)

For the 2D image generation, we used a VGG-16 network pretrained on ImageNet

(Russakovsky et al. 2015) which was converted to grayscale. For the 3D data we used

MedicalNet (S. Chen, Ma, and Zheng 2019) which is a pretrained multi-modal, multi-

tissue model with a ResNet-18 backbone.

We applied the same weighting as shown in MUNIT (Huang, Liu, et al. 2018) to

each of the losses used during training. The cycle consistency loss between the original

and reconstructed image had a weighting of 10 whilst the remaining losses had an equal

weighting of 1. Some methods of style transfer such as the one proposed by Gatys,

Ecker, and Bethge 2016 aimed to balance a style and a content loss to generate an

image. In our work, we do not need to balance the losses, we only need to minimise

each of the losses.

3.3. Implementation

We used PyTorch to implement our approach and trained our approach with the Adam

optimiser (Kingma and Ba 2015), with a learning rate of 0.001 and batch size of 8 for 2D

data and 5 for 3D data. Early stopping was used with a patience of 20. Our experiments
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TIST-Net: Style transfer in dynamic contrast enhanced MRI 11

Figure 4: Our model takes an input I of 5 images/volumes to content encoders Ec
0...4 and

style encoders Es
0...4. Decoders DCE and DNCE construct images from latent spaces zi

predicted by the content and style encoders. CE represents the decoder which generated

contrast enhanced images whilst NCE represents the decoder which generated non-

contrast enhanced images. We also show the losses used: cycle consistency, perceptual

and adversarial. For clarity of the figure, we have only shown one example for each of

the losses.

were run on an RTX Titan GPU. To generate new images, we swapped the predicted

style latent spaces from input images with and without contrast enhancement.

3.4. Contrast Weighted (CW) - SSIM

Evaluating generated DCE-MRI for content and style resemblance can be difficult as

there can be varying levels of contrast enhancement in an image depending on the time

of acquisition after contrast agent injection. Methods such as PSNR and SSIM primarily

focus on the pixel level differences of the whole image. Here we evaluate a previously

proposed metric, CW-SSIM, constructed by applying a contrast-based weighting to

SSIM. To enable weighting by contrast enhancement, we highlighted regions where there

was a change in intensity caused by contrast enhancement. Using this information, we

were able to weight areas of the image depending on the distance from the contrast

enhancement. We began by taking a DCE-MRI series of length n and subtracting the

first image (I0) from each of the images (It) and taking an average (Eqn. 3) to find

the areas of contrast enhancement (ACE ). We then applied a threshold T (Eqn. 4)

to determine which voxels were contrast enhanced. DIFaddbegin For our datasets, an

empirical threshold of 20 was found as a good compromise between highlighting the

areas of expected contrast enhancement and emphasising noise.
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TIST-Net: Style transfer in dynamic contrast enhanced MRI 12

(a) Content Distance

Map

(b) Style Distance

Map

Figure 5: An example of two distance maps (content and style) calculated from one

kidney DCE-MRI sequence.

ACE(In, T ) = f

(
1

n− 1

n−1∑
t=1

|It − I0|, T

)
(3)

where

f(a, T ) =

{
0, if ∀ai ∈ a, ai < T

1, if ∀ai ∈ a, ai ≥ T
(4)

Next, we calculated two distance maps, dist map; one for content and one for style

evaluation. For the content distance map, we calculated the shortest euclidean distance

from each voxel to a contrast enhanced voxel. The distances were normalised between

0.1 and 1 so that each voxel in the image can contribute to the CW-SSIM. To evaluate

style, we inverted the distance map so that a voxel has a higher weighting when it is

closer to a contrast enhanced voxel. x is the generated image and y is either the content

or style image.

CW-SSIM(x, y, dist map) = SSIM(x · dist map, y · dist map) (5)

To evaluate the metric, we performed a series of tests on 100 non-contrast enhanced

and 100 contrast enhanced kidney images to ensure our metric evaluates the correct

areas of the image. To evaluate the style CW-SSIM, we took an image and modified

the intensity values in the regions we expect to see real contrast enhancement by adding

or removing intensity values using annotations of the kidney. Similarly for the content

CW-SSIM, we took an image and applied warps with increasing amplitude. To warp

the image we use sine waves to offset pixels in the image. For each image, we calculated

the CW-SSIM and compared it to the SSIM and MS-SSIM.

For the experiments involving the change in intensity, we expected to see a high

content CW-SSIM whilst the style CW-SSIM decreased. Similarly, for the experiments

that have warped images, we expected to see the content CW-SSIM decrease as the

warp increases whilst the style CW-SSIM remains high. We expected the SSIM and

MS-SSIM to decrease for each experiment.
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TIST-Net: Style transfer in dynamic contrast enhanced MRI 13

3.5. Clinical Evaluation

To evaluate the style transferred images, we conducted a clinical evaluation. To do this,

we created a website so that experts could login and visually assess the images. A user

was presented with one question at a time. For each question an original image was

shown and was noted to the user. We also showed images generated from our method,

the generated images from the method proposed in Tattersall et al. 2023b, MUNIT,

CycleGAN and StyleGAN3. We also showed the style image used in the style transfer.

The users were not told which approach each image has come from, or which image

is the original style image. All of the images were shuffled for each question so that the

order of the images were different each time. The users were asked to rank each image

according to the following questions:

(i) Compare the structures in each of the images to the original image. Rank in order (1

being best) each image with the closest structures to the original image, regardless

of contrast enhancement.

(ii) Each of these images have been generated to add (or remove) contrast enhancement

to the original image. Rank in order (1 being best).

(iii) Rank each image in order (1 being best) of general image quality (free from

artefacts, realistic noise characteristics etc.).

In total, 16 experts with an average of 11 years of MRI experience completed

our questionnaire. The participants had varying expertise such as MR physicists,

radiologists, clinical scientists, medical physicist, neurologist and a researcher in medical

image analysis. In total, 25 images from each dataset (kidney, prostate and uterus) were

evaluated by at least three different observers for each image. If an observer could not

decide between images, they were allowed to give them the same score. On average, each

user took 26 minutes to complete the study. In addition to evaluating our images, we

also used this to evaluate CW-SSIM, by studying how the experts’ qualitative evaluation

correlates with the quantitative results of the style transferred images.

To test for significant differences between the results of our proposed method and

the other style transfer methods, we computed the Kruskal-Wallis test (Kruskal and

Wallis 1952). This is a suitable choice as the data does not follow a normal distribution.

Additionally, the Kruskal-Wallis test works well with multiple groups that contain

ranking data.
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TIST-Net: Style transfer in dynamic contrast enhanced MRI 14

4. Results

4.1. Style Transfer - Qualitative Results

Figures 6, 7 and 8 qualitatively highlight the good results of our method on 2D and

3D datasets. We show an example of adding or removing contrast enhancement from

an image along with their corresponding metrics: SSIM, content CW-SSIM and style

CW-SSIM. We compare TIST-Net to the method proposed in Tattersall et al. 2023b

and other popular style transfer methods, namely MUNIT, CycleGAN and StyleGAN3.

We did not compare against DRIT++ due to the large computational requirements.

In Figure 6, we can see the results using kidney DCE-MRI. When we compare

TIST-Net (Figure 6g) to StyleGAN3 (Figure 6e), our results are sharper and contain

structures that better resemble the content image. MUNIT (Figure 6c) and CycleGAN

(Figure 6d) both struggle to transfer the style of the style image whereas our method

can. A similar trend is shown with the uterus data. For the prostate dataset, each

method struggled to add contrast enhancement to the image.

Figures 9, 10 and 11 show results for performing style transfer between two different

patients for each dataset. The results for methods such as MUNIT and CycleGAN shows

artefacts from the style image in the generated image. TIST-Net generates images that

has the structure of the content image whilst having the style of the style image.

4.2. Style Transfer - Quantitative Results

Tables 1, 2 and 3 show our quantitative results: PSNR between the style (image we

want to transfer style from) and generated image, SSIM and MS-SSIM between the

content (image we want to take structure from) and generated image and finally, our

proposed weighted SSIMs. We compare our proposed method with the method proposed

in Tattersall et al. 2023b and other popular style transfer methods, namely MUNIT,

CycleGAN and StyleGAN3. For each style transfer direction and metric, our method

consistently outperforms the other approaches.

4.3. CW-SSIM Evaluation Results

Figures 12 and 13 show some examples of the modifications made to the images with the

respective scores. Tables 4 and 5 show the quantitative results from each of the tests.

When we evaluate the style CW-SSIM, we can see that it decreases for both directions

(when increasing or decreasing intensity values), whilst the content CW-SSIM remains

high. The SSIM and MS-SSIM both decrease as the style changes. For the content

evaluation tests, as the intensity of the warp increases, the score decreases. The SSIM

and the MS-SSIM both decrease as the intensity of the warps increases. The style CW-

SSIM decreases slightly as the areas of contrast enhancement are warped, but the score

remains high. These results show that the proposed method can separate the evaluation

of content and style from the generated images.
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(a) No CE Image (b) CE Image

SSIM: 0.59
(C) CW-SSIM: 0.71
(S) CW-SSIM: 0.63

SSIM: 0.65
(C) CW-SSIM: 0.59
(S) CW-SSIM: 0.41

SSIM: 0.32
(C) CW-SSIM: 0.44
(S) CW-SSIM: 0.69

SSIM: 0.91
(C) CW-SSIM: 0.94
(S) CW-SSIM: 0.75

SSIM: 0.92
(C) CW-SSIM: 0.96
(S) CW-SSIM: 0.78

SSIM: 0.57
(C) CW-SSIM: 0.68
(S) CW-SSIM: 0.61

(c) MUNIT

SSIM: 0.56
(C) CW-SSIM: 0.54
(S) CW-SSIM: 0.51

(d) CycleGAN

SSIM: 0.31
(C) CW-SSIM: 0.42
(S) CW-SSIM: 0.67

(e) StyleGAN3

SSIM: 0.89
(C) CW-SSIM: 0.93
(S) CW-SSIM: 0.73

(f) Method 4*

SSIM: 0.91
(C) CW-SSIM: 0.95
(S) CW-SSIM: 0.76

(g) TIST-Net

* Method 4 is the method proposed by Tattersall et al. 2023b

Figure 6: Example results from different style transfer approaches ((c) MUNIT, (d)

CycleGAN, (e) StyleGAN, (f) method in Tattersall et al. 2023b), (g) TIST-Net) with

the kidney data. The first row (a and b) shows the input images. The second row shows

the results when (a) is used as the content image and (b) as the style. The third row

shows results when (b) is used as the content image and (a) as the style. We also show

scores given by the SSIM, content (C) CW-SSIM and style (S) CW-SSIM.
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(a) No CE Im-

age

(b) CE Image

SSIM: 0.41
(C) CW-SSIM: 0.39
(S) CW-SSIM: 0.29

SSIM: 0.44
(C) CW-SSIM: 0.53
(S) CW-SSIM: 0.31

SSIM: 0.32
(C) CW-SSIM: 0.42
(S) CW-SSIM: 0.54

SSIM: 0.69
(C) CW-SSIM: 0.93
(S) CW-SSIM: 0.62

SSIM: 0.72
(C) CW-SSIM: 0.96
(S) CW-SSIM: 0.65

SSIM: 0.71
(C) CW-SSIM: 0.61
(S) CW-SSIM: 0.52

(c) MUNIT

SSIM: 0.61
(C) CW-SSIM: 0.42
(S) CW-SSIM: 0.19

(d) CycleGAN

SSIM: 0.42
(C) CW-SSIM: 0.28
(S) CW-SSIM: 0.49

(e) StyleGAN3

SSIM: 0.79
(C) CW-SSIM: 0.92
(S) CW-SSIM: 0.59

(f) Method 4*

SSIM: 0.82
(C) CW-SSIM: 0.95
(S) CW-SSIM: 0.63

(g) TIST-Net

* Method 4 is the method proposed by Tattersall et al. 2023b

Figure 7: Example results from different style transfer approaches with the prostate

data (a 2D slice is shown from the 3D volume). The first row (a and b) shows the input

images. The second row shows the results when (a) is used as the content image and

(b) as the style. The third row shows results when (b) is used as the content image and

(a) as the style. We also show scores given by the SSIM, content (C) CW-SSIM and

style (S) CW-SSIM.

4.4. Clinical Evaluation Results

Tables 6, 7 and 8 show the results from our clinical user study. Each table shows

the mean and standard deviation (std) of the ranks given by the participants for each

question, style transfer direction and approach. Our method outperforms the other

methods and was even ranked higher than the real image shown to the user for having

the closest structure. We performed the Kruskal-Wallis test with a significance level of

0.05 and found that there was a significant difference between the scores given to our

method and the other methods. Additionally, we also found that there was no significant

difference when we stratified the observers by experience.
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(a) No CE Im-

age

(b) CE Image

SSIM: 0.57
(C) CW-SSIM: 0.39
(S) CW-SSIM: 0.29

SSIM: 0.6
(C) CW-SSIM: 0.53
(S) CW-SSIM: 0.31

SSIM: 0.42
(C) CW-SSIM: 0.42
(S) CW-SSIM: 0.54

SSIM: 0.83
(C) CW-SSIM: 0.93
(S) CW-SSIM: 0.62

SSIM: 0.89
(C) CW-SSIM: 0.96
(S) CW-SSIM: 0.65

SSIM: 0.61
(C) CW-SSIM: 0.61
(S) CW-SSIM: 0.52

(c) MUNIT

SSIM: 0.59
(C) CW-SSIM: 0.42
(S) CW-SSIM: 0.19

(d) CycleGAN

SSIM: 0.41
(C) CW-SSIM: 0.28
(S) CW-SSIM: 0.49

(e) StyleGAN3

SSIM: 0.83
(C) CW-SSIM: 0.92
(S) CW-SSIM: 0.59

(f) Method 4*

SSIM: 0.87
(C) CW-SSIM: 0.95
(S) CW-SSIM: 0.63

(g) TIST-Net

* Method 4 is the method proposed by Tattersall et al. 2023b

Figure 8: Example results from different style transfer approaches with the uterus data

(a 2D slice is shown from the 3D volume). The first row (a and b) shows the input

images. The second row shows the results when (a) is used as the content image and

(b) as the style. The third row shows results when (b) is used as the content image and

(a) as the style. We also show scores given by the SSIM, content (C) CW-SSIM and

style (S) CW-SSIM.
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(a) No CE Im-

age

(b) CE Image

(c) MUNIT (d) CycleGAN (e) StyleGAN3 (f) Method 4* (g) TIST-Net

* Method 4 is the method proposed by Tattersall et al. 2023b

Figure 9: Example results of performing style transfer between two different patients

for each method with the kidney data. (a) was used as the content image and (b) was

used as the style image.

(a) No CE Im-

age

(b) CE Image

(c) MUNIT (d) CycleGAN (e) StyleGAN3 (f) Method 4* (g) TIST-Net

* Method 4 is the method proposed by Tattersall et al. 2023b

Figure 10: Example results of performing style transfer between two different patients

for each method with the prostate data. (a) was used as the content image and (b) was

used as the style image.
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TIST-Net: Style transfer in dynamic contrast enhanced MRI 19

(a) No CE Im-

age

(b) CE Image

(c) MUNIT (d) CycleGAN (e) StyleGAN3 (f) Method 4* (g) TIST-Net

* Method 4 is the method proposed by Tattersall et al. 2023b

Figure 11: Example results of performing style transfer between two different patients

for each method with the uterus data. (a) was used as the content image and (b) was

used as the style image.

Table 1: Quantitative results for each approach when adding or removing CE in the

kidney.

Metric Direction MUNIT CycleGAN StyleGAN3 Method 4* TIST-Net

PSNR Non-CE to CE 70.6 ± 3.2 66.5 ± 2.7 52.3 ± 3.9 81.3 ± 2.7 83.1 ± 1.9

CE to Non-CE 71.5 ± 3.4 66.8 ± 2.8 51.9 ± 3.8 78.5 ± 2.6 82.4 ± 1.6

SSIM Non-CE to CE 0.61 ± 0.05 0.66 ± 0.06 0.32 ± 0.06 0.89 ± 0.04 0.91 ± 0.03

CE to Non-CE 0.58 ± 0.04 0.58 ± 0.05 0.34 ± 0.07 0.88 ± 0.03 0.89 ± 0.03

MS SSIM Non-CE to CE 0.55 ± 0.04 0.43 ± 0.07 0.34 ± 0.04 0.82 ± 0.03 0.87 ± 0.03

CE to Non-CE 0.52 ± 0.04 0.45 ± 0.05 0.37 ± 0.05 0.79 ± 0.04 0.83 ± 0.04

Content Non-CE to CE 0.73 ± 0.03 0.61 ± 0.05 0.47 ± 0.05 0.95 ± 0.02 0.96 ± 0.03

CW-SSIM CE to Non-CE 0.69 ± 0.03 0.57 ± 0.05 0.41 ± 0.05 0.94 ± 0.02 0.96 ± 0.03

Style Non-CE to CE 0.64 ± 0.03 0.41 ± 0.05 0.67 ± 0.05 0.74 ± 0.02 0.79 ± 0.02

CW-SSIM CE to Non-CE 0.62 ± 0.03 0.49 ± 0.05 0.64 ± 0.05 0.72 ± 0.02 0.81 ± 0.04

* Method 4 is the method proposed by Tattersall et al. 2023b
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TIST-Net: Style transfer in dynamic contrast enhanced MRI 20

Table 2: Quantitative results for each approach when adding or removing CE in the

prostate.

Metric Direction MUNIT CycleGAN StyleGAN3 Method 4* TIST-Net

PSNR Non-CE to CE 40.6 ± 4.3 52.2 ± 3.8 43.5 ± 5.2 72.1 ± 3.6 77.2 ± 2.3

CE to Non-CE 68.7 ± 4.1 61.2 ± 3.4 51.9 ± 6.1 68.9 ± 4.1 70.4 ± 2.2

SSIM Non-CE to CE 0.41 ± 0.06 0.46 ± 0.05 0.36 ± 0.09 0.71 ± 0.04 0.73 ± 0.04

CE to Non-CE 0.69 ± 0.04 0.59 ± 0.05 0.43 ± 0.08 0.78 ± 0.03 0.82 ± 0.03

MS SSIM Non-CE to CE 0.49 ± 0.04 0.38 ± 0.06 0.28 ± 0.05 0.76 ± 0.04 0.82 ± 0.03

CE to Non-CE 0.47 ± 0.04 0.39 ± 0.05 0.32 ± 0.06 0.71 ± 0.03 0.75 ± 0.03

Content Non-CE to CE 0.38 ± 0.04 0.52 ± 0.05 0.41 ± 0.05 0.92 ± 0.03 0.94 ± 0.03

CW-SSIM CE to Non-CE 0.63 ± 0.04 0.46 ± 0.04 0.32 ± 0.06 0.93 ± 0.04 0.95 ± 0.04

Style Non-CE to CE 0.34 ± 0.05 0.28 ± 0.06 0.52 ± 0.07 0.59 ± 0.05 0.66 ± 0.04

CW-SSIM CE to Non-CE 0.53 ± 0.04 0.21 ± 0.05 0.47 ± 0.06 0.57 ± 0.04 0.64 ± 0.04

* Method 4 is the method proposed by Tattersall et al. 2023b

Table 3: Quantitative results for each approach when adding or removing CE in the

uterus.

Metric Direction MUNIT CycleGAN StyleGAN3 Method 4* TIST-Net

PSNR Non-CE to CE 71.5 ± 2.9 64.9 ± 3.1 51.8 ± 3.6 80.8 ± 2.4 83.6 ± 2.1

CE to Non-CE 72.2 ± 2.8 67.3 ± 2.4 52.3 ± 3.4 79.3 ± 2.2 83.1 ± 1.4

SSIM Non-CE to CE 0.57 ± 0.05 0.58 ± 0.06 0.39 ± 0.06 0.82 ± 0.04 0.88 ± 0.04

CE to Non-CE 0.60 ± 0.06 0.58 ± 0.04 0.38 ± 0.05 0.82 ± 0.05 0.87 ± 0.03

MS SSIM Non-CE to CE 0.52 ± 0.04 0.41 ± 0.06 0.29 ± 0.03 0.79 ± 0.04 0.88 ± 0.05

CE to Non-CE 0.53 ± 0.06 0.42 ± 0.06 0.36 ± 0.07 0.81 ± 0.06 0.85 ± 0.05

Content Non-CE to CE 0.74 ± 0.04 0.64 ± 0.04 0.49 ± 0.06 0.94 ± 0.04 0.96 ± 0.05

CW-SSIM CE to Non-CE 0.67 ± 0.05 0.58 ± 0.06 0.42 ± 0.04 0.92 ± 0.04 0.95 ± 0.06

Style Non-CE to CE 0.62 ± 0.03 0.43 ± 0.06 0.65 ± 0.04 0.73 ± 0.04 0.78 ± 0.03

CW-SSIM CE to Non-CE 0.64 ± 0.04 0.48 ± 0.04 0.66 ± 0.04 0.73 ± 0.04 0.79 ± 0.02

* Method 4 is the method proposed by Tattersall et al. 2023b

Table 4: Mean results and standard deviation of the content (C) CW-SSIM evaluation.

Metric Warped 1 Warped 2 Warped 3

(C) CW-SSIM 0.78 ± 0.04 0.63 ± 0.05 0.41 ± 0.03

(S) CW-SSIM 0.95 ± 0.03 0.87 ± 0.04 0.76 ± 0.06

SSIM 0.84 ± 0.03 0.61 ± 0.06 0.44 ± 0.06

MS-SSIM 0.87 ± 0.04 0.58 ± 0.03 0.47 ± 0.04
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(C) CW-SSIM: 1

(S) CW-SSIM: 1

(a) Original

(C) CW-SSIM: 0.79

(S) CW-SSIM: 0.96

(b) Warped 1

(C) CW-SSIM: 0.62

(S) CW-SSIM: 0.89

(c) Warped 2

(C) CW-SSIM: 0.44

(S) CW-SSIM: 0.75

(d) Warped 3

Figure 12: An experiment to evaluate the content CW-SSIM. Here we have an original

image and images with an increasingly large amount of warps added to them. The

CW-SSIM score is also shown.

(C) CW-SSIM: 1

(S) CW-SSIM: 1

(C) CW-SSIM: 0.98

(S) CW-SSIM: 0.89

(C) CW-SSIM: 0.95

(S) CW-SSIM: 0.57

(C) CW-SSIM: 0.92

(S) CW-SSIM: 0.12

(C) CW-SSIM: 1

(S) CW-SSIM: 1

(a) Original

(C) CW-SSIM: 0.97

(S) CW-SSIM: 0.83

(b) Modified 1

(C) CW-SSIM: 0.95

(S) CW-SSIM: 0.41

(c) Modified 2

(C) CW-SSIM: 0.91

(S) CW-SSIM: 0.05

(d) Modified 3

Figure 13: An experiment to evaluate the content CW-SSIM. Here we have an original

image and images with intensity either being added or removed. The CW-SSIM score

is also shown.
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Table 5: Mean results and standard deviation of the style (S) CW-SSIM evaluation.

Metric Modified 1 Modified 2 Modified 3

(C) CW-SSIM 0.96 ± 0.04 0.94 ± 0.05 0.89 ± 0.05

(S) CW-SSIM 0.85 ± 0.06 0.49 ± 0.09 0.08 ± 0.06

SSIM 0.89 ± 0.03 0.82 ± 0.04 0.76 ± 0.04

MS-SSIM 0.88 ± 0.05 0.84 ± 0.03 0.79 ± 0.04

Table 6: Mean rank and standard deviation of the kidney data for each question in the

user study.

Question Original Image Style Image MUNIT CycleGAN StyleGAN3 Method 4* TIST-Net

1 CE 2.83 ± 0.76 4.95 ± 0.82 5.04 ± 0.46 5.33 ± 0.71 1.93 ± 0.54 1.30 ± 0.62
NoCE 2.79 ± 0.74 4.57 ± 0.74 5.00 ± 0.40 5.35 ± 0.72 1.79 ± 0.56 1.15 ± 0.47

2 CE 2.83 ± 0.76 4.64 ± 0.81 5.04 ± 0.50 5.39 ± 0.66 1.87 ± 0.55 1.21 ± 0.56
NoCE 2.79 ± 0.74 4.72 ± 0.78 4.99 ± 0.48 5.34 ± 0.67 1.90 ± 0.47 1.23 ± 0.55

3 CE 2.90 ± 0.74 4.79 ± 0.81 4.95 ± 0.45 5.33 ± 0.68 1.80 ± 0.56 1.27 ± 0.61
NoCE 2.79 ± 0.72 4.67 ± 0.76 4.97 ± 0.50 5.40 ± 0.70 1.87 ± 0.59 1.28 ± 0.64

* Method 4 is the method proposed by Tattersall et al. 2023b

Table 7: Mean rank and standard deviation of the prostate data for each question in

the user study.

Question Original Image Style Image MUNIT CycleGAN StyleGAN3 Method 4* TIST-Net

1 CE 2.83 ± 0.76 4.61 ± 0.72 4.99 ± 0.38 5.35 ± 0.67 1.93 ± 0.55 1.27 ± 0.59
NoCE 2.87 ± 0.77 4.72 ± 0.84 5.01 ± 0.50 5.48 ± 0.64 1.83 ± 0.58 1.31 ± 0.65

2 CE 1.43 ± 0.69 4.61 ± 0.73 5.01 ± 0.48 5.39 ± 0.62 1.97 ± 0.47 1.86 ± 0.80
NoCE 1.40 ± 0.63 4.65 ± 0.80 5.05 ± 0.44 5.32 ± 0.70 2.08 ± 0.71 1.84 ± 0.69

3 CE 2.75 ± 0.74 4.74 ± 0.82 4.97 ± 0.37 5.47 ± 0.63 1.87 ± 0.50 1.31 ± 0.65
NoCE 2.77 ± 0.71 4.70 ± 0.77 5.03 ± 0.44 5.38 ± 0.70 1.87 ± 0.52 1.27 ± 0.57

* Method 4 is the method proposed by Tattersall et al. 2023b

Table 8: Mean rank and standard deviation of the uterus data for each question in the

user study.

Question Original Image Style Image MUNIT CycleGAN StyleGAN3 Method 4* TIST-Net

1 CE 2.83 ± 0.78 4.68 ± 0.79 5.04 ± 0.46 5.43 ± 0.67 1.98 ± 0.54 1.30 ± 0.64
NoCE 2.80 ± 0.75 4.72 ± 0.80 5.02 ± 0.46 5.37 ± 0.64 1.91 ± 0.55 1.30 ± 0.63

2 CE 2.80 ± 0.70 4.69 ± 0.79 5.00 ± 0.48 5.44 ± 0.65 1.91 ± 0.54 1.29 ± 0.62
NoCE 2.73 ± 0.75 4.73 ± 0.80 4.96 ± 0.40 5.39 ± 0.63 1.95 ± 0.57 1.25 ± 0.58

3 CE 2.72 ± 0.72 4.81 ± 0.84 4.94 ± 0.49 5.36 ± 0.65 1.90 ± 0.51 1.44 ± 0.73
NoCE 2.81 ± 0.75 4.71 ± 0.78 5.07 ± 0.50 5.46 ± 0.63 1.91 ± 0.53 1.32 ± 0.68

* Method 4 is the method proposed by Tattersall et al. 2023b
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5. Discussion

In this work, we proposed TIST-Net, a method for style transfer that utilised temporal

information by using convolutional LSTMs. This enabled the model to learn changes in

structure caused by contrast enhancement across the temporal dimension. We improved

upon classical style transfer by using AdaConv combined with deformable convolutions.

The deformable convolutions predict an offset to adapt the AdaConv kernel to change

the receptive field of the model. The receptive field of the model can then account for

local geometric variations. This enabled better fine-grained control over the transfer

of style. TIST-Net can be used as a method of augmentation for DCE-MRI data to

generate new images and fully utilise any available annotations in a dataset.

Our qualitative evaluation showed that TIST-Net led to sharper images, better

content preservation, better localised CE and realistic MRI appearance compared

to previous works and state-of-the-art style transfer methods. Our model achieved

good results in both style transfer directions (adding or removing CE) for both the

quantitative and qualitative results. When performing style transfer between different

patients, TIST-Net was able to generate images which had the structure of the content

image whilst having the style characteristics of the style image. Additionally, we

outperformed the other algorithms for each metric, for each style transfer direction. Our

results showed that when the contrast enhancement has defined edges in the image, such

as those in the kidney, it is an easier task to perform style transfer in both directions.

In comparison, when there was no clear boundary to the contrast enhancement (such

as in the prostate data), the task was much harder. Typically, when moving from 2D

to 3D models, there can be a decrease in performance due to the increased number of

parameters to learn whilst having a small amount of data. However, we found that

TIST-Net performed well on 2D and 3D datasets as evidenced by our results on the

uterus dataset.

CW-SSIM enabled the evaluation of the quality of the content and style of a

generated image when there was contrast enhancement. When we compared it with

the qualitative results from our clinical evaluation, the quality of the images was in line

with each of the CW-SSIM results. By using two distance maps to weight the SSIM,

we were able to evaluate the similarity in overall structure as well as the localised style

between the generated image and the content and style images. An advantage to using

this metric over the SSIM or MS-SSIM is that we were able to measure the content and

style of a generated image separately. This allowed us to ensure that the key structures

remained whilst the intensity values of the image matched those of the style image. This

is important with DCE-MRI as the contrast enhancement is tissue specific rather than

a global change in the image. When we compared the style CW-SSIM of the kidney

and uterus images generated by our method with their corresponding style images, we

could see that the high scores reflect the image quality. In comparison, the style CW-

SSIM scores of the prostate data were much lower, which again reflects the quality

of the generated image. By separating the content and style weighting, we lessen the
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possibility of regions of the image with little or no contrast enhancement inflating the

SSIM score.

A limitation to our style transfer approach was that it struggled to generate realistic

images when the edges between areas of contrast enhancement were ambiguous. This

was seen in the prostate data where there was no clear boundary of the contrast

enhancement compared to the kidney or uterus data. It is worth noting that this struggle

was shared by all the methods we compared to. We hypothesise that this lack of contrast

between neighbouring tissues might lead to a sub-optimal disentanglement. Finally,

similar to MUNIT, our method has large computational and memory requirements. In

this work, we focused on using LSTMs to encode content latent spaces and not style

latent spaces. During our preliminary work we found that the model was unable to learn

from the style latent spaces effectively and it was detrimental to our model, leading to

worse results. The preliminary exploration was not shown in this paper as it is outside

the scope of this paper.

The results from our clinical evaluation confirmed that TIST-Net generates images

that are realistic as TIST-Net was often given a higher rank than the real image. These

results show that our images have similar structures to the content image, similar styles

to the style image as well as having characteristics that are expected in MRI. The results

also match the order given by the content CW-SSIM, further proving that this metric

is suitable for evaluating synthetic images.

6. Conclusion

We proposed TIST-Net, a style transfer approach which used temporal information

to predict disentangled representations of content and style. To learn spatio-temporal

information, convolutional LSTMs were used which allowed better content latent spaces

to be predicted from structural information through time. We also used deformable

convolutions to offset AdaConv to combine content and style latent spaces. We

observed an increase in performance for both adding and removing contrast enhancement

compared to state-of-the-art style transfer methods.

The qualitative and quantitative analyses showed that our method outperformed

state-of-the-art style transfer techniques. The results from our clinical evaluation

confirmed that our method generates images that are realistic. We also evaluated CW-

SSIM, to validate its viability as a metric. The results from our clinical evaluation

further demonstrated that it can be used to evaluate the generated images. Using

TIST-Net, we can generate new images and sequences with varying levels of contrast

enhancement. Using this augmentation approach enables the use of a small number of

annotations making it easier to train robust models for tasks such as image registration

or segmentation.
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