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Abstract

Objective. Recently, dental cone-beam computed tomography (CBCT) methods have been improved
to significantly reduce radiation dose while maintaining image resolution with minimal equipment
cost. Inlow-dose CBCT environments, metallic inserts such as implants, crowns, and dental fillings
cause severe artifacts, which result in a significant loss of morphological structures of teeth in
reconstructed images. Such metal artifacts prevent accurate 3D bone-teeth-jaw modeling for diagnosis
and treatment planning. However, the performance of existing metal artifact reduction (MAR)
methods in handling the loss of the morphological structures of teeth in reconstructed CT images
remains relatively limited. In this study, we developed an innovative MAR method to achieve optimal
restoration of anatomical details. Approach. The proposed MAR approach is based on a two-stage
deep learning-based method. In the first stage, we employ a deep learning network that utilizes intra-
oral scan data as side-inputs and performs multi-task learning of auxiliary tooth segmentation. The
network is designed to improve the learning ability of capturing teeth-related features effectively while
mitigating metal artifacts. In the second stage, a 3D bone-teeth-jaw model is constructed with
weighted thresholding, where the weighting region is determined depending on the geometry of the
intra-oral scan data. Main results. The results of numerical simulations and clinical experiments are
presented to demonstrate the feasibility of the proposed approach. Significance. We propose for the
first time a MAR method using radiation-free intra-oral scan data as supplemental information on the
tooth morphological structures of teeth, which is designed to perform accurate 3D bone-teeth-jaw
modeling in low-dose CBCT environments.

1. Introduction

Dental cone-beam computed tomography (CBCT) has been developed to significantly reduce radiation dose
while maintaining image resolution with minimal equipment cost and is increasingly being used in several
dental applications such as implant planning and, dental and maxillofacial surgery (Sukovic 2003, Marchetti et al
2007, Miracle and Mukherji 2009, Swennen et al 2009, 2009, Gupta and Ali 2013, Scarfe et al 2017, Weiss and
Read-Fuller 2019). Currently, the removal of metallic object-related artifacts poses a major challenge in low-
dose dnetal CBCT. Artifacts related to metallic objects result in severe streaking and shadowing artifacts, which
cause a significant loss of the morphological structures of teeth in CT images. Consequently, such artifacts
interfere with 3D bone-teeth-jaw modeling for planning diagnosis and treatment in clinical practice (Santler et al
1998, Gateno et al 2007, Schulze et al 2011, Nardi et al 2015). As the number of people with metallic oral
appliances such as implants, crowns, and dental fillings continues to increase, metal artifacts have been common
and their reduction has drawn increased attention (Draenert et al 2007, Sanders et al 2007, Razavi et al 2010,
Schulze et al 2010, Esmaeili et al 2012, Pauwels et al 2013, Sancho-Puchades et al 2015).
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Figure 1. Low-dose dental CBCT uses a small detector with offset array. The small detector size leads to a small area of the scanner
FOV, which causes the patient’s head to be cut off the sinogram data in the transversal direction. This incomplete sinogram data can be
combined with beam hardening of the teeth, creating streaked artifacts. Photon starvation is very common in dental low-dose x-ray
CBCT, especially when the patient has many implants.
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Figure 2. Dental CBCT image and segmented teeth before and after applying deep learning (DL)-based MAR. Even though the deep
learning method enhances the overall image quality, it still suffers from recovering corrupted tooth details, as indicated in the yellow
arrows. Besides, as seen in the orange arrows, it is also very hard to separate two teeth (covered by dental crown) visualized as like being
attached to each other due to metal-inducing morphologcal information loss in CT data.

Metal artifact reduction (MAR) is a very difficult problem because the generation of metal-induced streaking
and shadowing artifacts is intricately intertwined with interactions between metal, bone, and tissue involving
various factors such as beam hardening, scattering, nonlinear partial volume effects, photon starvation, and a
high degree of attenuation inhomogeneity (i.e. metal, bone, tissue, air) (Schulze et al 2011, Gjesteby et al 2016).
MAR is much more challenging in low-dose dental CBCT environment owing to offset detection, truncation of
the field of view (FOV), low radiation dose, and 3D characteristics in image reconstruction (Bayaraa et al 2020).
See figure 1. Moreover, when multiple and strong metallic inserts occupy a significant area, low radiation doses
often cause photon starvation along metal traces. These result in severe loss or disruption of tooth structures
around the inserts in the reconstructed image.

Numerous MAR methods have been developed, including dual-energy approaches (Alvarez and
Macovski 1976, Lehmann et al 1981, Yu et al 2012), statistical iterative correction (De Man et al 2001, Elbakri and
Fessler 2002, Williamson et al 2002, Menvielle et al 2005, O’Sullivan and Benac 2007), sinogram inpainting-
based correction (Kalender et al 1987, Bazalova et al 2007, Abdoli et al 2010, Meyer et al 2010, Park et al 2013),
and deep learning methods (Park et al 2018, Zhang and Yu 2018, Gjesteby et al 2019, Lin et al 2019, Yu et al 2020).
Although these methods have been shown to mitigate metal-induced artifacts, their performance in dental
applications remain unsatisfactory, and they involve limitations in low-dose dental CBCT environments.

Figure 2 highlights that the improvement of corrupted and missing details remains an arduous task even with
state-of-art deep learning methods. There seems to be a fundamental limitation in accurately restoring the
morphological structure of teeth using only sinogram data severely damaged by metal inserts.
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Figure 3. 3D dental CBCT and intra-oral scan data. The intra-oral scan data can provide 3D surface information of teeth. We assume
that intra-oral scanning provides exact tooth boundary information.

In this study, we propose a deep learning-based MAR method using radiation-free intra-oral scan data as
supplemental information for tooth morphological structure, as shown in figure 3. The proposed MAR method
is a two-stage approach, which is designed to perform accurate 3D bone-teeth-jaw modeling. In the first stage,
we employ a deep learning network that utilizes intra-oral scan data as side-inputs and performs multi-task
learning of auxiliary tooth segmentation. The network is designed to improve the learning ability of capturing
teeth-related features effectively while mitigating metal artifacts. The suitable incorporation of explicit shape-
prior information from intra-oral scan data with deep learning models can provide significant benefits in terms
of accuracy, learnability, feature extraction, and so forth (Sun etal 2019, Liu et al 2021). In the second stage, a 3D
bone-teeth-jaw model is constructed with weighted thresholding, where the weighting region is determined
depending on the geometry of the intra-oral scan data. We also adopted a simulation approach to train the
proposed deep learning network. For each metal-free CBCT scan, the corresponding metal-free CBCT and
intra-oral scans are generated using a self-developed data generation tool that does not involve any time-
consuming and labor-intensive manual processes.

We conducted numerical simulations and clinical experiments to investigate the potential impact of the use
of intra-oral scan data in MAR and bone-teeth-jaw modeling. The results of the experiments demonstrate the
feasibility of the proposed method and the benefits of using intra-oral scan data in low-dose dental CBCT
environments.

2. Method

Inlow-dose dental CBCT, the measured sinogram data P can be expressed as
P = T(—lnj; n(E)exp(—Ropg)dE + n). (1)

Here, pis the attenuation coefficient distribution of a 3D human body to be scanned at an energy E, 7 is the
normalized energy distribution of the x-ray source, R ¢, is a cone beam projection, n is the CT noise, and 7 is
truncation caused by the size and arrangement of the detector (typically, small and offset). See figure 1. In the
presence of metallic objects inside the FOV, the standard FDK algorithm (Feldkamp et al 1984) produces severe
streaking and shadowing artifacts that cause the image quality of maxillofacial structures to deteriorate. Hence,
high-quality 3D bone-teeth-jaw modeling is arduous only with the image.

The goal of the proposed method is to provide a high-quality 3D bone-teeth-jaw (or maxillofacial) model
from metal-affected sinogram data P by leveraging intra-oral scan data O. The output should be competitive
with a ‘gold-standard’ bone-teeth-jaw model y,,racquired from an artifact-free CT image y that is reconstructed
by P,, where P, represents the artifact-free sinogram data corresponding to P. The intra-oral scan data O
provide a 3D tooth surfaces that can be useful as prior information about tooth geometry. It is assumed that
intra-oral scan data O provides exact tooth boundary information.

The proposed method is based on the image-to-image learning approach and weighted thresholding that
leverages intra-oral scan data as explicit shape prior information of tooth geometry for MAR. The
reconstruction map fcan be expressed as
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Figure 4. Overall process of the proposed metal artifact reduction method with explicit shape-prior of intra-oral scan data for low dose
dental CBCT-based bone-teeth-jaw modeling.

f=fo_wrofe oR%DK) (2)

where

* Rip is the weighted FDK algorithm involving the sinogram extrapolation method for addressing offset
detector arrangement and FOV truncation.

* figis the tooth geometry prior information-based-image-enhancing network fig, which mitigates metal-
related artifacts.

* fo-wrisaweighted thresholding, wherein the weighting region is determined in basis of the a-shape from
intra-oral scan data. This procedure is used for further removing the remaining streaking artifacts around the
teeth in constructing a bone-teeth-jaw model.

Here, the input of fis a pair of metal-affected data P and intra-oral scan data O (i.e. f: (P, O) — f(P, O) & Y.
The overall process is illustrated in figure 4.

Stage 1. Image-enhancing network fig
In our experience, an image domain-learning-based approach can mitigate metal-related artifacts effectively,
whereas it tends to have weakness in recovering tooth shape, especially when being destroyed by severe artifacts
or when being missing. To compensate for this weakness, we attempt to take advantage of supplemental shape
information from intra-oral scan data. We emphasize that data acquisition by the intra-oral scanner does not
increase the total amount of radiation exposure to a patient.

Letxbe a 3D CBCT image reconstructed using the FDK algorithm (i.e. x = Rypy(P)). The image-
enhancing network fig aims to provide

fie ), 0)) = Yp (3)
whereyy; is the jth slice of a metal-artifact-free image (i.e. y="TRppgP.). Itis also desirable that the output satisfies
afiE (Xja O]) lieern = O;, 4)

where Ofig(X;, O))|eern is @ binary mask of the tooth surface region on the output image fig(x), O;).

To accomplish these goals, two strategies are adopted; side-input layer and multi-task learning. First,
additional information of intra-oral scan data is repeatedly enriched during feature extraction in an encoding
path. These side inputs can help the network extract tooth shape while compensating for missing or severely
distrusted structures through high quality shape information provided by intra-oral scan data. Second, multi-
task learning is applied, which learns image reconstruction and auxiliary tooth segmentation in a parallel
fashion. In the medical imaging field, it has been reported that deep learning-based image reconstruction ability

4
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Figure 5. cv-shape-based region determination for weighted thresholding f,, wr

can be boosted by learning other image-related tasks, such as segmentation and registration (Sun efal 2019, Liu
etal2021). In terms of image recovery, the auxiliary tooth segmentation is expected to reveal the shapes of the
teeth in the decoding path and the interference of tooth features, which are joint domain information of the
interrelated tasks, through the shared parameters.

Figure 4 shows the overall procedure of the proposed image-enhancing network fig. Inspired by M-net
(Mehta and Sivaswamy 2017), the proposed network has side-input and side-output layers. In the side-input
layers, intra-oral scan data O with suitable resizing is repeatedly added to the encoding path after 3 x 3
convolution. In the side-output layers, tooth segmentation masks are obtained during the decoding path. The
detailed backbone structure can be found in Mehta and Sivaswamy (2017).

When (so)gi) is the final network output of ith training data and jth slice (i.e. (so)gi) = fig (xg-"), Og»i))), the
network fiz is trained as follows.

argmin 3=, L(((s0)}) > y})
f

+Le((s0))P, 8Y) + iy Lee(s1), SP), (5)
where ((so)g»i) YD and ((so)g-i) ), respectively, denote the first and second channel outputs of (so)gi), Sg»") denotesa

binary segmentation mask of the reference tooth region in the metal-artifact-free image yg,i) , {(sk )g-i) }2 _ isaset

of side outputs in the decoding path, £ is the standard £, loss, and L., is the cross-entropy loss. For
convenience, the notation fig(x, O) is used to represent the output image (i.e. the first channel output).

Stage 2. a-shape-based weighted thresholding f,, wr
The next step is bone-teeth-jaw modeling from the metal-artifact-reduced CBCT image obtained in the previous
stage. A final 3D bone-teeth-jaw model is obtained by weighted thresholding, which can further reduce the
remaining streaking artifacts around teeth. The weighting region is determined depending on the geometry of
the intra-oral scan data O. To extract the geometry, the a-shape technique (Edelsbrunner and Mucke 1994) is
used. It provides a family of piece-wise linear lines associated with the shape of the teeth. Figure 5 shows the
overall process.

Whenvyy is ya = fie(x, O), the weight thresholding f,, v can be expressed as

fawrOap O) = Ve (6)

where

o = {?mf(p) =0 ifp € Aoory, (p) <7 )

mf V.e(p) = 1 otherwise

Here, pisapointin a grid of y,,, 7is a thresholding constant, and .A is a thresholding region obtained using the
a-shape from O.

The region A is obtained as follows. For given intra-oral scan data O, Q is a point cloud corresponding to
0. Denoted by ag, an a-shape of O is given by a polytope with a boundary da, which is defined by

5
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Figure 6. Clinical and simulated CBCT data. The simulated data is generated by the fully-automated data generation tool represented
in section 3.2.

dag = { Ar| T C O, |T|<3, Arisa—exposed }, ®)

where At denotes a simplex for T, and Ay is a-exposed if and only if there exists an open ball B, with radius «
suchthat B, N Q@ = @and 0B, N @ = T.Here, 0B, isaboundary of B,,. After the a-shape is obtained, an
extension direction on each vertex of g is defined by taking the average of the normal vectors on the faces that
contain the vertex. Along the direction, « is extended while preserving its shape and converted into a binary
mask ao, where the inner regions of the shape boundary are filled with one. Finally, the region A is determined
by

AO = 0o — 6) (9)

where O is the binary mask where the inner part of tooth surfaces in O is filled with one.

3. Experiment and result

3.1. Experiment setting

The sinogram data of a real patient were obtained from a commercial CBCT machine (Q-FACE, HDXWILL).
The voxel size was 1200 x 654 x 658 with real scale of 0.2 mm for each axis, where 1200 is the number of
uniformly sampled projection views in [0, 27), and 654 X 658 is the number of samples measured by the 2D flat
detector for each projection view. CBCT images were reconstructed in a voxel size of 800 x 800 x 400 with a real
scale of 0.2 mm. For cone beam projection, an open-source code, known as TIGRE (Biguri et al 2016), was used,
where the projection algorithm was implemented by a ray-driven method. The scattering was not considered in
this study.

All simulated data were consistently generated to have same scale as the real data. A self-developed fully-
automated paired data generation tool was used. The detailed process is described in section 3.2. Figure 6 shows
several samples of the simulated data using the data generation tool.

Metal-free CBCT sinogram data were collected from 20 patients without any metallic objects. They were
used for data generation. Metal-affected CBCT data were collected from nine patients. They were used for test
purposes. Among the metal-affected data, real intra-oral scan data for one patient was provided. The intra-oral
scan data was acquired from a scanner (1500, MEDIT), where the file format was provided by the standard
triangle language (STL). A set of its vertices is a point cloud in millimeters, where the maxilla and mandible are
represented by approximately 100 000 and 70 000 points, respectively. For registration into the dental CBCT
system, the method described by Jang et al (2021) was applied.

In PyTorch environment (Paszke et al 2019), all deep learning experiments were conducted with a computer
system equipped with two Intel Xeon CPUs E5-2630 v4, 128 GB DDR4 RAM, and four NVIDIA GeForce GTX
2080ti GPUs. The optimization was conducted using Adam optimizer (Kingma and Ba 2014) and multi-GPUs.
Batch normalization was applied to achieve fast convergence and minimization (Ioffe and Szegedy 2015). The
network capacity (i.e. feature and network depths) was minimized as much as possible while maintaining the

6
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Figure 7. Overall process of fully-automated paired training data generation.

backbone structure because of the huge computational cost associated with the CBCT image size of
800 x 800 x 400.

For a-shape implementation, open source packages, Visualization ToolKit (VTK) and Alpha Shape Toolbox
(AST), were used. The adaptive values « and 7 were selected empirically.

3.2. Fully-automated paired data generation

We generated a realistic paired training dataset for MAR through the following procedure, which do not involve
any time-consuming and labor-intensive manual process (see figure 7 for overall workflow). As a first step, fully-
automated individual tooth segmentation was performed on metal-free CBCT data by using the technique
reported by Jang et al (2021). Several tooth positions were chosen randomly in which virtual metal implants
could be placed. For the crown case, a crown mask was constructed by cutting the roots of chosen teeth based on
crown height information for each tooth (Nelson 2014), and then by the erosion process. The crown thickness
was randomly set from 0.6 to 1.4 mm. For an implant case, instead of erosion, another process was applied to
create an implant screw bar. A line was defined for each tooth that passed through two points of the tooth center
in the lowest and middle slices, except those containing a tooth root. Then, the root parts were filled with circles
whose center was located at the line, and the radius was empirically set. Using the generated dental crown or
tooth implant mask, metal-affected sinogram data was artificially synthesized using the Beer—Lambert law (1)
and combined with metal-free sinogram.

The simulation projection data was generated at a tube voltage of 85 keV. A metal attenuation coefficient was
randomly assigned from { Au, Pd, Ni, Cr, Zr, Al}. For the numerical simulation, the energy distribution of the
x-ray source and attenuation coefficient values were those described elsewhere (Hubbell and Seltzer 1995,
Mahesh 2013). Poisson and Gaussian noise were added to take account of the CT noise. A total of 20 metal-free
scans were split into two disjoint sets (i.e. 15 and 5 scans) and used for training and testing, respectively. There is
no common ground-truth (i.e. metal-free scan) between the two sets. From 15 scans, total 60 paired data (4 data
from each scan) were generated and only used for training purpose. From 5 scans, 10 test data (2 data from each
scan) were generated. Here, the number of inserted metal implants was randomly set from two to five.

The intra-oral scan data was simulated as a boundary mask of teeth with inserted metal objects. The
boundary mask was obtained by applying the erosion process to the segmented teeth and inserted metal objects.

3.3. Experimental results

To investigate the advantages of the proposed network, performance comparisons were conducted with various
MAR methods. The experiments were based on three test sets: synthesized CBCT data + simulated intra-oral
scan data, clinical CBCT data + simulated intra-oral scan data, and clinical CBCT data + real intra-oral scan
data. Qualitative and quantitative evaluations were conducted on the synthesized CBCT dataset in which the

7
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Intra-Oral Scan Ground Truth Uncorrected LI
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Case 2

Sino DL Sino Inpaint DL Proposed Network
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Figure 8. Comparison of metal artifact reduction over simulated data with various MAR methods; linear interpolation (LI), image
domain learning (Img DL), sinogram domain learning (Sino DL), sinogram inpainting learning (Sino Inpaint DL), and the proposed
network. Case 1 is the best MAR case and Case 2 is the worst MAR case. The Hausdorff distance between tooth boundary segmented

manually from a CT image and the corresponding intra-oral scan data is provided as a yellow value. The distance was computed in the
region of a yellow box.

corresponding ground-truth images are given. For clinical CBCT data, qualitative evaluations were performed.
For a quantitative comparison of tooth shape restoration near the metallic objects, we computed the Hausdorff
distance (Huttenlocher et al 1993) between the tooth boundary segmented manually from a CT image and the
corresponding intra-oral scan data. Here, the Hausdorff distance was computed on a region around the metal.

It should be mentioned that comparison with other methods is unfair, because the proposed method takes
advantage of additional information from intra-oral scan data.

3.3.1. Test on synthesized CBCT and simulated intra-oral scan data

Figure 8 and table 1 show qualitative and quantitative performance comparisons of the proposed network with
linear interpolation, an image domain network, a sinogram domain network, and a sinogram inpainting
network. For the linear interpolation, the sinogram reflection technique reported by Bayaraa et al (2020) was
applied to deal with metal trace truncation. Image thresholding was used to extract metal traces. For the image
domain network, U-net (Ronneberger et al 2015) was trained, which directly maps from an uncorrected image
to the corresponding ground truth image. For the sinogram domain network, U-net was trained, which directly
maps from an uncorrected sinogram to the corresponding ground truth sinogram. For the sinogram inpainting
network, U-net was trained such that only the metal traces in the sinogram were corrected by a network output.

8
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Proposed Network

Img DL Img DL + MT Img DL + SI (Img DL + MT + ST)

Case #1

Case #2

Figure 9. Ablation study for the proposed method; multitask learning (MT), side input layer (SI).

Table 1. Quantitative comparison of deep learning-based MAR results for
simulated patient data in terms of normalized mean square error (NMSE),
structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR).

Metric Uncorrected LI Sino DL Sino Inp DL
NMSE 0.6298 0.4158 0.5445 0.7017
SSIM 0.9908 0.9948 0.9882 0.9846
PSNR 52.32 55.74 53.40 51.20
Metric ImgDL Img Img Proposed
DL+MT DL+SI Network
NMSE 0.3577 0.3885 0.3458 0.3421
SSIM 0.9954 0.9924 0.9963 0.9965
PNSR 57.06 56.36 57.35 57.44

In the experiments, the proposed network exhibited the best performance, significantly improving the shape
quality of teeth and bone associated with bone-teeth-jaw modeling. In particular, the proposed network appears
to have an outstanding ability to recover the tooth shape, even if it is fairly disrupted or missing because of metal-
related artifacts. The performance of the proposed method was validated as well via 4-fold cross validation. See
appendix for details.

As shown in figure 9 and table 1, an ablation study for multi-task learning (MT) and side input layer (SI) in
the proposed network was conducted qualitatively and quantitatively. The single use of MT did not provide any
advantage in the sense of improving the reconstruction ability in the quantitative and qualitative sense. Either SI
or a combination of ST and MT enhances the reconstruction performance both qualitatively and quantitatively.
The combination of ST and M T appears to provide an optimal result owing to the synergistic effect.

3.3.2. Test on clinical CBCT and simulated intra-oral scan data

Figure 10 shows a comparison of the test set of real clinical CBCT data and simulated intra-oral scan data, where
the intra-oral scan data were obtained by tooth segmentation from the clinical CBCT data. Here, the method of
Jang et al (2021) was utilized, which provides considerably accurate tooth segmentation, even in the presence of
metal-related artifacts. Several simulated intra-oral scan data are listed in the first column of figure 10. In three
cases from different patients, the proposed network successfully reduced metal artifacts while recovering the
boundary of the teeth effectively, whereas the image domain network tended to suffer from loss, blurring, or
disruption of the tooth boundary around metal objects.
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Figure 10. Comparison of metal artifact reduction with clinical CBCT data and simulated intra-oral scan data; image domain learning
(ImgDL) and the proposed method. The Hausdorff distance between tooth boundary segmented manually from a CT image and the
corresponding intra-oral scan data is provided as a yellow value. The distance was computed in the region of a yellow box.

3.3.3. Test on clinical CBCT and real intra-oral scan data
Figure 11 shows reconstructed results using clinical CBCT and real intra-oral scan data. The proposed method
consistently preserves or recovers the boundary of the teeth around metal objects compared with the image
domain network. See regions highlighted by yellow arrows in figure 1 1.

The performance of the proposed method was compared as well when using simulated and real intra-oral
scan data for the same clinical CBCT data. There was some performance degradation in the case of real intra-oral
scan data relative to the simulated intra-oral scan case. See the region indicated by the orange arrows in figure 11.

3.3.4. 3D bone-teeth-jaw model construction

Figure 12 shows 3D segmented bone-teeth-jaw models by uncorrected image + image thresholding, the
proposed network + image thresholding, and the proposed method (the proposed network + the proposed a-
shape-based weighted thresholding). The result was obtained using clinical CBCT data and real intra-oral scan
data. The proposed method clearly enhanced the quality of a 3D bone-teeth-jaw model so that it precisely
depicted the tooth and bone structures. The a-shape-based weighted thresholding was found to be powerful in
real intra-oral scan data for high quality bone-teeth-jaw modeling.

4. Conclusion and discussion

This study is a first attempt to pave the way toward MAR utilizing the shape prior from intra-oral scan data. The
utilization of radiation-free intra-oral scan data is meaningful in the trend of that dental CBCT has been being
developed toward the direction of minimizing radiation exposure while maintaining diagnostic image quality.
Our experiments demonstrated the tremendous potential of the intra-oral scan data to have a significant positive
effect on the restoration of tooth shape loss by metal-related artifacts.

To train the proposed network, a paired dataset of metal-artifacted data, metal-artifact-free data, and intra-
oral scan data is required, but data accessibility is limited in clinical practice. Hence, the data generation tool was
utilized to provide a realistic paired dataset, where the intra-oral scan data for training was simulated as a set of
boundaries of individual teeth segmented in an artifact-free CBCT image. However, the simulation did not fully
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Figure 11. Comparison of metal artifact reduction with clinical CBCT data; image domain learning (Img DL), the proposed method
with real intra-oral scan data, the proposed method with simulated intra-oral scan data. In the second row, we provides an overlapped
image of a reconstructed image with the corresponding intra-oral scan data (solid line with apricot color). The Hausdorff distance
between tooth boundary segmented manually from a CT image and the corresponding intra-oral scan data is provided as an orange
(for real intra-oral scan) or yellow (for simulated intra-oral scan) value. The distance was computed in the region of a yellow box.
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Figure 12. CBCT-based 3D bone-teeth-jaw modeling via the proposed method with clinical CBCT and real intra-oral scan data. The
Hausdorff distance between tooth boundary obtained from a model and the corresponding real intra-oral scan data is provided as an
orange value. Here, the value was obtained by computing the Hausdorff distance at each 2D slice in the region of a yellow box and then

reflect the real scanning environment, such as scanning protocol, condition, and performance. The difference
between the training and test domains brought the performance degradation. The performance of the proposed
network on real intra-oral scan data can be improved if more realistic simulated intra-oral scan data or a
sufficient number of real oral scan data for training can be obtained (Hyun et al 2021).

Intra-oral scan is very accurate for small area scans, but its accuracy gradually decreases as the scan moves
away from the start of the scan due to cumulative stitching errors (Nagy et al 2020). Recent advances in intra-oral
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scan technology have significantly reduced stitching errors in full-arch description (Winkler and

Gkantidis 2020). Specifically, an average full arch description error 0o£ 0.008 83 + 0.010 88 mm in vivo analysis
was reported by Kwon et al (2021) for the intra-oral scanner (1500, MEDIT, Seoul, South Korea) used in this
study. In our CBCT imaging setup with a spatial resolution of 0.2 mm, the errors can produce variations of

1 pixel or 2 pixels. This error can be effectively addressed using the stitching error correction method proposed
byJang et al (2021) to mitigate the possible influence on MAR performance caused by error-related shape
variation.

The ability of the proposed MAR method can be further improved through complex network architectures
and alarge-scale training dataset. However, there is a trade-off with the total computational cost for learning that
can be critical, especially in high-dimensional data applications (Hyun et al 2020). Even for the simple M-net
architecture shown in figure 4, atleast 10 d are required for training of 300 epochs with a dataset of 60 image
voxels under the computational resources used in this study. Even though the use of sophisticated networks or
large training datasets can potentially enhance MAR capability, associated hurdles involving high dimensionality
should be addressed for practical dental CBCT applications.

Acknowledgments

This work was supported by Samsung Science & Technology Foundation (No. SRFC-IT1902-09). H S Park was
partially supported by the National Institute for Mathematical Sciences (NIMS) grant funded by the Korean
government (No. NIMS-B22920000). We are deeply grateful to Dr H Jung and Dr SM Lee of HDXWILL for
their help and collaboration.

Appendix. Cross validation for MAR performance comparison

A total of twenty metal-free scans were equally split into four non-overlapping folds. Here, one fold was retained
and used for testing, and the remaining three folds were used for training. This validation process was then
repeated 4 times. From each scan of folds, we generated four (for a training fold) or two (for a test fold) realistic
metal-artifacted data using the method described in section 3.2. In each iteration (or partition), a total of

60 paired data (= 4 syntheses x 5 scans x 3 folds) were used for training, and a total of 10 paired data

(=2 syntheses x 5scans X 1 fold) were used for test. Figure A1 illustrates the 4-fold cross-validation process.
Table A1 shows the normalized mean square error for the test data in four different partitions. The result shows
that the proposed method outperforms the img DL method on all partitions.

D : training fold D : test fold

20 metal artifact free scans

= = - e e e e - - —-—-—-——-—-——-——— - »
| Oscamns ., Sscans . Hscans _ 5 scans
Partition 1 Fold 1 Fold 2 Fold 3 Fold 4
) | Y

60 training data 10 test data

(= 4 syntheses x 5 scans x 3 folds) (= 2 syntheses x 5 scans x 1 fold)
Partition 2 Fold 1 Fold 2 Fold 3 Fold 4
Partition 3 Fold 1 Fold 2 Fold 3 Fold 4
Partition 4 Fold 1 Fold 2 Fold 3 Fold 4

Figure Al. Dataset summary for 4-fold cross validation.

Table Al. Cross validation results of the img DL and proposed method.

NMSE Partition 1 Partition 2 Partition 3 Partition 4
ImgDL 0.3577 0.3821 0.3169 0.3626
Proposed Method 0.3421 0.3738 0.3009 0.3459
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