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Abstract
Objective.Recently, dental cone-beam computed tomography (CBCT)methods have been improved
to significantly reduce radiation dosewhilemaintaining image resolutionwithminimal equipment
cost. In low-dose CBCT environments,metallic inserts such as implants, crowns, and dentalfillings
cause severe artifacts, which result in a significant loss ofmorphological structures of teeth in
reconstructed images. Suchmetal artifacts prevent accurate 3Dbone-teeth-jawmodeling for diagnosis
and treatment planning.However, the performance of existingmetal artifact reduction (MAR)
methods in handling the loss of themorphological structures of teeth in reconstructedCT images
remains relatively limited. In this study, we developed an innovativeMARmethod to achieve optimal
restoration of anatomical details.Approach.The proposedMAR approach is based on a two-stage
deep learning-basedmethod. In the first stage, we employ a deep learning network that utilizes intra-
oral scan data as side-inputs and performsmulti-task learning of auxiliary tooth segmentation. The
network is designed to improve the learning ability of capturing teeth-related features effectively while
mitigatingmetal artifacts. In the second stage, a 3Dbone-teeth-jawmodel is constructedwith
weighted thresholding, where theweighting region is determined depending on the geometry of the
intra-oral scan data.Main results.The results of numerical simulations and clinical experiments are
presented to demonstrate the feasibility of the proposed approach. Significance.Wepropose for the
first time aMARmethod using radiation-free intra-oral scan data as supplemental information on the
toothmorphological structures of teeth, which is designed to perform accurate 3Dbone-teeth-jaw
modeling in low-doseCBCT environments.

1. Introduction

Dental cone-beam computed tomography (CBCT) has been developed to significantly reduce radiation dose
whilemaintaining image resolutionwithminimal equipment cost and is increasingly being used in several
dental applications such as implant planning and, dental andmaxillofacial surgery (Sukovic 2003,Marchetti et al
2007,Miracle andMukherji 2009, Swennen et al 2009, 2009, Gupta andAli 2013, Scarfe et al 2017,Weiss and
Read-Fuller 2019). Currently, the removal ofmetallic object-related artifacts poses amajor challenge in low-
dose dnetal CBCT. Artifacts related tometallic objects result in severe streaking and shadowing artifacts, which
cause a significant loss of themorphological structures of teeth inCT images. Consequently, such artifacts
interfere with 3Dbone-teeth-jawmodeling for planning diagnosis and treatment in clinical practice (Santler et al
1998, Gateno et al 2007, Schulze et al 2011, Nardi et al 2015). As the number of people withmetallic oral
appliances such as implants, crowns, and dentalfillings continues to increase,metal artifacts have been common
and their reduction has drawn increased attention (Draenert et al 2007, Sanders et al 2007, Razavi et al 2010,
Schulze et al 2010, Esmaeili et al 2012, Pauwels et al 2013, Sancho-Puchades et al 2015).
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Metal artifact reduction (MAR) is a very difficult problembecause the generation ofmetal-induced streaking
and shadowing artifacts is intricately intertwinedwith interactions betweenmetal, bone, and tissue involving
various factors such as beamhardening, scattering, nonlinear partial volume effects, photon starvation, and a
high degree of attenuation inhomogeneity (i.e. metal, bone, tissue, air) (Schulze et al 2011, Gjesteby et al 2016).
MAR ismuchmore challenging in low-dose dental CBCT environment owing to offset detection, truncation of
thefield of view (FOV), low radiation dose, and 3D characteristics in image reconstruction (Bayaraa et al 2020).
See figure 1.Moreover, whenmultiple and strongmetallic inserts occupy a significant area, low radiation doses
often cause photon starvation alongmetal traces. These result in severe loss or disruption of tooth structures
around the inserts in the reconstructed image.

NumerousMARmethods have been developed, including dual-energy approaches (Alvarez and
Macovski 1976, Lehmann et al 1981, Yu et al 2012), statistical iterative correction (DeMan et al 2001, Elbakri and
Fessler 2002,Williamson et al 2002,Menvielle et al 2005,O’Sullivan andBenac 2007), sinogram inpainting-
based correction (Kalender et al 1987, Bazalova et al 2007, Abdoli et al 2010,Meyer et al 2010, Park et al 2013),
and deep learningmethods (Park et al 2018, Zhang andYu 2018, Gjesteby et al 2019, Lin et al 2019, Yu et al 2020).
Although thesemethods have been shown tomitigatemetal-induced artifacts, their performance in dental
applications remain unsatisfactory, and they involve limitations in low-dose dental CBCT environments.
Figure 2 highlights that the improvement of corrupted andmissing details remains an arduous task evenwith
state-of-art deep learningmethods. There seems to be a fundamental limitation in accurately restoring the
morphological structure of teeth using only sinogramdata severely damaged bymetal inserts.

Figure 1. Low-dose dental CBCTuses a small detectorwith offset array. The small detector size leads to a small area of the scanner
FOV,which causes the patient’s head to be cut off the sinogramdata in the transversal direction. This incomplete sinogramdata can be
combinedwith beamhardening of the teeth, creating streaked artifacts. Photon starvation is very common in dental low-dose x-ray
CBCT, especially when the patient hasmany implants.

Figure 2.Dental CBCT image and segmented teeth before and after applying deep learning (DL)-basedMAR. Even though the deep
learningmethod enhances the overall image quality, it still suffers from recovering corrupted tooth details, as indicated in the yellow
arrows. Besides, as seen in the orange arrows, it is also very hard to separate two teeth (covered by dental crown) visualized as like being
attached to each other due tometal-inducingmorphologcal information loss inCTdata.
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In this study, we propose a deep learning-basedMARmethod using radiation-free intra-oral scan data as
supplemental information for toothmorphological structure, as shown infigure 3. The proposedMARmethod
is a two-stage approach, which is designed to perform accurate 3D bone-teeth-jawmodeling. In thefirst stage,
we employ a deep learning network that utilizes intra-oral scan data as side-inputs and performsmulti-task
learning of auxiliary tooth segmentation. The network is designed to improve the learning ability of capturing
teeth-related features effectively whilemitigatingmetal artifacts. The suitable incorporation of explicit shape-
prior information from intra-oral scan datawith deep learningmodels can provide significant benefits in terms
of accuracy, learnability, feature extraction, and so forth (Sun et al 2019, Liu et al 2021). In the second stage, a 3D
bone-teeth-jawmodel is constructedwithweighted thresholding, where theweighting region is determined
depending on the geometry of the intra-oral scan data.We also adopted a simulation approach to train the
proposed deep learning network. For eachmetal-free CBCT scan, the correspondingmetal-free CBCT and
intra-oral scans are generated using a self-developed data generation tool that does not involve any time-
consuming and labor-intensivemanual processes.

We conducted numerical simulations and clinical experiments to investigate the potential impact of the use
of intra-oral scan data inMAR and bone-teeth-jawmodeling. The results of the experiments demonstrate the
feasibility of the proposedmethod and the benefits of using intra-oral scan data in low-dose dental CBCT
environments.

2.Method

In low-dose dental CBCT, themeasured sinogramdataP can be expressed as

ò h m= - - +à ( ( ) ( ) ) ( )E dEP nln exp . 1
E

E

Here,μE is the attenuation coefficient distribution of a 3Dhuman body to be scanned at an energyE, η is the
normalized energy distribution of the x-ray source, à is a cone beamprojection,n is theCTnoise, and  is
truncation caused by the size and arrangement of the detector (typically, small and offset). See figure 1. In the
presence ofmetallic objects inside the FOV, the standard FDK algorithm (Feldkamp et al 1984) produces severe
streaking and shadowing artifacts that cause the image quality ofmaxillofacial structures to deteriorate. Hence,
high-quality 3Dbone-teeth-jawmodeling is arduous onlywith the image.

The goal of the proposedmethod is to provide a high-quality 3Dbone-teeth-jaw (ormaxillofacial)model
frommetal-affected sinogramdataP by leveraging intra-oral scan dataO. The output should be competitive
with a ‘gold-standard’ bone-teeth-jawmodel ymf acquired froman artifact-free CT image y that is reconstructed
byPå, wherePå represents the artifact-free sinogramdata corresponding toP. The intra-oral scan dataO
provide a 3D tooth surfaces that can be useful as prior information about tooth geometry. It is assumed that
intra-oral scan dataO provides exact tooth boundary information.

The proposedmethod is based on the image-to-image learning approach andweighted thresholding that
leverages intra-oral scan data as explicit shape prior information of tooth geometry forMAR. The
reconstructionmap f can be expressed as

Figure 3. 3Ddental CBCT and intra-oral scan data. The intra-oral scan data can provide 3D surface information of teeth.We assume
that intra-oral scanning provides exact tooth boundary information.
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= a- ◦ ◦ ( )†f f f , 2WT IE FDK

where

• †
FDK is theweighted FDK algorithm involving the sinogram extrapolationmethod for addressing offset

detector arrangement and FOV truncation.

• fIE is the tooth geometry prior information-based-image-enhancing network fIE, whichmitigatesmetal-
related artifacts.

• fα-WT is aweighted thresholding, wherein theweighting region is determined in basis of theα-shape from
intra-oral scan data. This procedure is used for further removing the remaining streaking artifacts around the
teeth in constructing a bone-teeth-jawmodel.

Here, the input of f is a pair ofmetal-affected dataP and intra-oral scan dataO (i.e. f: (P,O)a f (P,O)≈ ymf).
The overall process is illustrated infigure 4.

Stage 1. Image-enhancing network fIE
In our experience, an image domain-learning-based approach canmitigatemetal-related artifacts effectively,
whereas it tends to haveweakness in recovering tooth shape, especially when being destroyed by severe artifacts
or when beingmissing. To compensate for this weakness, we attempt to take advantage of supplemental shape
information from intra-oral scan data.We emphasize that data acquisition by the intra-oral scanner does not
increase the total amount of radiation exposure to a patient.

Let x be a 3DCBCT image reconstructed using the FDK algorithm (i.e. = - ( )x PFDK
1 ). The image-

enhancing network fIE aims to provide

»( ) ( )f x O y, , 3j j jIE

where yj is the jth slice of ametal-artifact-free image (i.e. y= - PFDK
1 ). It is also desirable that the output satisfies

¶ »( )∣ ( )f x O O, , 4j j teeth jIE

where∂fIE(xj,Oj)|teeth is a binarymask of the tooth surface region on the output image fIE(xj,Oj).
To accomplish these goals, two strategies are adopted; side-input layer andmulti-task learning. First,

additional information of intra-oral scan data is repeatedly enriched during feature extraction in an encoding
path. These side inputs can help the network extract tooth shapewhile compensating formissing or severely
distrusted structures through high quality shape information provided by intra-oral scan data. Second,multi-
task learning is applied, which learns image reconstruction and auxiliary tooth segmentation in a parallel
fashion. In themedical imagingfield, it has been reported that deep learning-based image reconstruction ability

Figure 4.Overall process of the proposedmetal artifact reductionmethodwith explicit shape-prior of intra-oral scan data for low dose
dental CBCT-based bone-teeth-jawmodeling.
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can be boosted by learning other image-related tasks, such as segmentation and registration (Sun et al 2019, Liu
et al 2021). In terms of image recovery, the auxiliary tooth segmentation is expected to reveal the shapes of the
teeth in the decoding path and the interference of tooth features, which are joint domain information of the
interrelated tasks, through the shared parameters.

Figure 4 shows the overall procedure of the proposed image-enhancing network fIE. Inspired byM-net
(Mehta and Sivaswamy 2017), the proposed network has side-input and side-output layers. In the side-input
layers, intra-oral scan dataOwith suitable resizing is repeatedly added to the encoding path after 3× 3
convolution. In the side-output layers, tooth segmentationmasks are obtained during the decoding path. The
detailed backbone structure can be found inMehta and Sivaswamy (2017).

When ( )( )s j
i

0 is thefinal network output of ith training data and jth slice (i.e. =( ) ( )( ) ( ) ( )fs x O,j
i

j
i

j
i

0 IE ), the
network fIE is trained as follows.
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j
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i
k 1
2 is a set

of side outputs in the decoding path, ℓ2
is the standardℓ2 loss, and ce is the cross-entropy loss. For

convenience, the notation fIE(x,O) is used to represent the output image (i.e. thefirst channel output).

Stage 2.α-shape-basedweighted thresholding fα-WT

The next step is bone-teeth-jawmodeling from themetal-artifact-reduced CBCT image obtained in the previous
stage. Afinal 3D bone-teeth-jawmodel is obtained byweighted thresholding, which can further reduce the
remaining streaking artifacts around teeth. Theweighting region is determined depending on the geometry of
the intra-oral scan dataO. To extract the geometry, theα-shape technique (Edelsbrunner andMucke 1994) is
used. It provides a family of piece-wise linear lines associatedwith the shape of the teeth. Figure 5 shows the
overall process.

When ydl is ydl= fIE(x,O), theweight thresholding fα-WT can be expressed as

=a
t
- ( ) ( )f y O y, , 6

WT dl mf

where





t
=

= Î <
=

( ) ( )
( )

( )
p p p

p
y

y y

y

0 if or

1 otherwise
. 7

O
mf

mf mf

mf

⎧
⎨⎩

Here, p is a point in a grid of ymf, τ is a thresholding constant, andO is a thresholding region obtained using the
α-shape fromO.

The region O is obtained as follows. For given intra-oral scan dataO, is a point cloud corresponding to
O. Denoted by a, anα-shape of is given by a polytopewith a boundary a¶ , which is defined by

Figure 5.α-shape-based region determination for weighted thresholding fα-WT

5

Phys.Med. Biol. 67 (2022) 175007 CMHyun et al



a a¶ = D Ì D -{ ∣ ∣ ∣ } ( )     , 3, is exposed , 8

whereD denotes a simplex for , andD isα-exposed if and only if there exists an open ballBαwith radiusα
such that Ç = Æa B and ¶ Ç =a  B . Here,∂Bα is a boundary ofBα. After theα-shape is obtained, an
extension direction on each vertex of a is defined by taking the average of the normal vectors on the faces that
contain the vertex. Along the direction, a is extendedwhile preserving its shape and converted into a binary
maskαO, where the inner regions of the shape boundary are filledwith one. Finally, the regionO is determined
by

a= - ( )O, 9O O

where O is the binarymaskwhere the inner part of tooth surfaces inO isfilledwith one.

3. Experiment and result

3.1. Experiment setting
The sinogramdata of a real patient were obtained from a commercial CBCTmachine (Q-FACE,HDXWILL).
The voxel sizewas 1200× 654× 658with real scale of 0.2mm for each axis, where 1200 is the number of
uniformly sampled projection views in [0, 2π), and 654× 658 is the number of samplesmeasured by the 2Dflat
detector for each projection view. CBCT images were reconstructed in a voxel size of 800× 800× 400with a real
scale of 0.2mm. For cone beamprojection, an open-source code, known as TIGRE (Biguri et al 2016), was used,
where the projection algorithmwas implemented by a ray-drivenmethod. The scatteringwas not considered in
this study.

All simulated datawere consistently generated to have same scale as the real data. A self-developed fully-
automated paired data generation tool was used. The detailed process is described in section 3.2. Figure 6 shows
several samples of the simulated data using the data generation tool.

Metal-free CBCT sinogramdatawere collected from20 patients without anymetallic objects. Theywere
used for data generation.Metal-affectedCBCTdatawere collected fromnine patients. Theywere used for test
purposes. Among themetal-affected data, real intra-oral scan data for one patient was provided. The intra-oral
scan datawas acquired from a scanner (i500,MEDIT), where the file format was provided by the standard
triangle language (STL). A set of its vertices is a point cloud inmillimeters, where themaxilla andmandible are
represented by approximately 100 000 and 70 000 points, respectively. For registration into the dental CBCT
system, themethod described by Jang et al (2021)was applied.

In PyTorch environment (Paszke et al 2019), all deep learning experiments were conductedwith a computer
system equippedwith two Intel XeonCPUs E5-2630 v4, 128GBDDR4RAM, and fourNVIDIAGeForceGTX
2080ti GPUs. The optimizationwas conducted usingAdamoptimizer (Kingma andBa 2014) andmulti-GPUs.
Batch normalizationwas applied to achieve fast convergence andminimization (Ioffe and Szegedy 2015). The
network capacity (i.e. feature and network depths)wasminimized asmuch as possible whilemaintaining the

Figure 6.Clinical and simulatedCBCTdata. The simulated data is generated by the fully-automated data generation tool represented
in section 3.2.
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backbone structure because of the huge computational cost associatedwith theCBCT image size of
800× 800× 400.

Forα-shape implementation, open source packages, Visualization ToolKit (VTK) andAlpha Shape Toolbox
(AST), were used. The adaptive valuesα and τwere selected empirically.

3.2. Fully-automated paired data generation
Wegenerated a realistic paired training dataset forMAR through the following procedure, which do not involve
any time-consuming and labor-intensivemanual process (see figure 7 for overall workflow). As afirst step, fully-
automated individual tooth segmentationwas performed onmetal-free CBCTdata by using the technique
reported by Jang et al (2021). Several tooth positionswere chosen randomly inwhich virtualmetal implants
could be placed. For the crown case, a crownmaskwas constructed by cutting the roots of chosen teeth based on
crownheight information for each tooth (Nelson 2014), and then by the erosion process. The crown thickness
was randomly set from0.6 to 1.4mm. For an implant case, instead of erosion, another process was applied to
create an implant screw bar. A linewas defined for each tooth that passed through two points of the tooth center
in the lowest andmiddle slices, except those containing a tooth root. Then, the root parts were filledwith circles
whose center was located at the line, and the radiuswas empirically set. Using the generated dental crown or
tooth implantmask,metal-affected sinogramdatawas artificially synthesized using the Beer–Lambert law (1)
and combinedwithmetal-free sinogram.

The simulation projection datawas generated at a tube voltage of 85 keV. Ametal attenuation coefficient was
randomly assigned from {Au, Pd,Ni, Cr, Zr, Al}. For the numerical simulation, the energy distribution of the
x-ray source and attenuation coefficient values were those described elsewhere (Hubbell and Seltzer 1995,
Mahesh 2013). Poisson andGaussian noise were added to take account of theCTnoise. A total of 20metal-free
scanswere split into two disjoint sets (i.e. 15 and 5 scans) and used for training and testing, respectively. There is
no common ground-truth (i.e. metal-free scan) between the two sets. From15 scans, total 60 paired data (4 data
from each scan)were generated and only used for training purpose. From5 scans, 10 test data (2 data from each
scan)were generated.Here, the number of insertedmetal implants was randomly set from two tofive.

The intra-oral scan datawas simulated as a boundarymask of teethwith insertedmetal objects. The
boundarymaskwas obtained by applying the erosion process to the segmented teeth and insertedmetal objects.

3.3. Experimental results
To investigate the advantages of the proposed network, performance comparisonswere conductedwith various
MARmethods. The experiments were based on three test sets: synthesizedCBCTdata+ simulated intra-oral
scan data, clinical CBCTdata+ simulated intra-oral scan data, and clinical CBCTdata+ real intra-oral scan
data. Qualitative and quantitative evaluationswere conducted on the synthesizedCBCTdataset inwhich the

Figure 7.Overall process of fully-automated paired training data generation.
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corresponding ground-truth images are given. For clinical CBCTdata, qualitative evaluationswere performed.
For a quantitative comparison of tooth shape restoration near themetallic objects, we computed theHausdorff
distance (Huttenlocher et al 1993) between the tooth boundary segmentedmanually from aCT image and the
corresponding intra-oral scan data.Here, theHausdorff distance was computed on a region around themetal.

It should bementioned that comparisonwith othermethods is unfair, because the proposedmethod takes
advantage of additional information from intra-oral scan data.

3.3.1. Test on synthesized CBCT and simulated intra-oral scan data
Figure 8 and table 1 show qualitative and quantitative performance comparisons of the proposed networkwith
linear interpolation, an image domain network, a sinogramdomain network, and a sinogram inpainting
network. For the linear interpolation, the sinogram reflection technique reported by Bayaraa et al (2020)was
applied to deal withmetal trace truncation. Image thresholding was used to extractmetal traces. For the image
domain network, U-net (Ronneberger et al 2015)was trained, which directlymaps from an uncorrected image
to the corresponding ground truth image. For the sinogramdomain network, U-net was trained, which directly
maps from anuncorrected sinogram to the corresponding ground truth sinogram. For the sinogram inpainting
network, U-net was trained such that only themetal traces in the sinogramwere corrected by a network output.

Figure 8.Comparison ofmetal artifact reduction over simulated datawith variousMARmethods; linear interpolation (LI), image
domain learning (ImgDL), sinogramdomain learning (SinoDL), sinogram inpainting learning (Sino InpaintDL), and the proposed
network. Case 1 is the bestMAR case andCase 2 is theworstMAR case. TheHausdorff distance between tooth boundary segmented
manually from aCT image and the corresponding intra-oral scan data is provided as a yellow value. The distancewas computed in the
region of a yellow box.
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In the experiments, the proposed network exhibited the best performance, significantly improving the shape
quality of teeth and bone associatedwith bone-teeth-jawmodeling. In particular, the proposed network appears
to have an outstanding ability to recover the tooth shape, even if it is fairly disrupted ormissing because ofmetal-
related artifacts. The performance of the proposedmethodwas validated aswell via 4-fold cross validation. See
appendix for details.

As shown infigure 9 and table 1, an ablation study formulti-task learning (MT) and side input layer (SI) in
the proposed networkwas conducted qualitatively and quantitatively. The single use ofMTdid not provide any
advantage in the sense of improving the reconstruction ability in the quantitative and qualitative sense. Either SI
or a combination of SI andMT enhances the reconstruction performance both qualitatively and quantitatively.
The combination of SI andMT appears to provide an optimal result owing to the synergistic effect.

3.3.2. Test on clinical CBCT and simulated intra-oral scan data
Figure 10 shows a comparison of the test set of real clinical CBCTdata and simulated intra-oral scan data, where
the intra-oral scan datawere obtained by tooth segmentation from the clinical CBCTdata.Here, themethod of
Jang et al (2021)was utilized, which provides considerably accurate tooth segmentation, even in the presence of
metal-related artifacts. Several simulated intra-oral scan data are listed in thefirst columnoffigure 10. In three
cases fromdifferent patients, the proposed network successfully reducedmetal artifacts while recovering the
boundary of the teeth effectively, whereas the image domain network tended to suffer from loss, blurring, or
disruption of the tooth boundary aroundmetal objects.

Figure 9.Ablation study for the proposedmethod;multitask learning (MT), side input layer (SI).

Table 1.Quantitative comparison of deep learning-basedMAR results for
simulated patient data in terms of normalizedmean square error (NMSE),
structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR).

Metric Uncorrected LI SinoDL Sino InpDL

NMSE 0.6298 0.4158 0.5445 0.7017

SSIM 0.9908 0.9948 0.9882 0.9846

PSNR 52.32 55.74 53.40 51.20

Metric ImgDL Img

DL+MT

Img

DL+SI

Proposed

Network

NMSE 0.3577 0.3885 0.3458 0.3421

SSIM 0.9954 0.9924 0.9963 0.9965

PNSR 57.06 56.36 57.35 57.44
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3.3.3. Test on clinical CBCT and real intra-oral scan data
Figure 11 shows reconstructed results using clinical CBCT and real intra-oral scan data. The proposedmethod
consistently preserves or recovers the boundary of the teeth aroundmetal objects comparedwith the image
domain network. See regions highlighted by yellow arrows infigure 11.

The performance of the proposedmethodwas compared aswell when using simulated and real intra-oral
scan data for the same clinical CBCTdata. Therewas some performance degradation in the case of real intra-oral
scan data relative to the simulated intra-oral scan case. See the region indicated by the orange arrows infigure 11.

3.3.4. 3D bone-teeth-jawmodel construction
Figure 12 shows 3D segmented bone-teeth-jawmodels by uncorrected image+ image thresholding, the
proposed network+ image thresholding, and the proposedmethod (the proposed network+ the proposedα-
shape-basedweighted thresholding). The result was obtained using clinical CBCTdata and real intra-oral scan
data. The proposedmethod clearly enhanced the quality of a 3Dbone-teeth-jawmodel so that it precisely
depicted the tooth and bone structures. Theα-shape-basedweighted thresholdingwas found to be powerful in
real intra-oral scan data for high quality bone-teeth-jawmodeling.

4. Conclusion anddiscussion

This study is afirst attempt to pave theway towardMARutilizing the shape prior from intra-oral scan data. The
utilization of radiation-free intra-oral scan data ismeaningful in the trend of that dental CBCThas been being
developed toward the direction ofminimizing radiation exposurewhilemaintaining diagnostic image quality.
Our experiments demonstrated the tremendous potential of the intra-oral scan data to have a significant positive
effect on the restoration of tooth shape loss bymetal-related artifacts.

To train the proposed network, a paired dataset ofmetal-artifacted data,metal-artifact-free data, and intra-
oral scan data is required, but data accessibility is limited in clinical practice. Hence, the data generation tool was
utilized to provide a realistic paired dataset, where the intra-oral scan data for trainingwas simulated as a set of
boundaries of individual teeth segmented in an artifact-free CBCT image. However, the simulation did not fully

Figure 10.Comparison ofmetal artifact reductionwith clinical CBCTdata and simulated intra-oral scan data; image domain learning
(ImgDL) and the proposedmethod. TheHausdorff distance between tooth boundary segmentedmanually from aCT image and the
corresponding intra-oral scan data is provided as a yellow value. The distancewas computed in the region of a yellow box.
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reflect the real scanning environment, such as scanning protocol, condition, and performance. The difference
between the training and test domains brought the performance degradation. The performance of the proposed
network on real intra-oral scan data can be improved ifmore realistic simulated intra-oral scan data or a
sufficient number of real oral scan data for training can be obtained (Hyun et al 2021).

Intra-oral scan is very accurate for small area scans, but its accuracy gradually decreases as the scanmoves
away from the start of the scan due to cumulative stitching errors (Nagy et al 2020). Recent advances in intra-oral

Figure 11.Comparison ofmetal artifact reductionwith clinical CBCTdata; image domain learning (ImgDL), the proposedmethod
with real intra-oral scan data, the proposedmethodwith simulated intra-oral scan data. In the second row, we provides an overlapped
image of a reconstructed imagewith the corresponding intra-oral scan data (solid linewith apricot color). TheHausdorff distance
between tooth boundary segmentedmanually from aCT image and the corresponding intra-oral scan data is provided as an orange
(for real intra-oral scan) or yellow (for simulated intra-oral scan) value. The distancewas computed in the region of a yellow box.

Figure 12.CBCT-based 3Dbone-teeth-jawmodeling via the proposedmethodwith clinical CBCT and real intra-oral scan data. The
Hausdorff distance between tooth boundary obtained from amodel and the corresponding real intra-oral scan data is provided as an
orange value.Here, the valuewas obtained by computing theHausdorff distance at each 2D slice in the region of a yellowbox and then
taking average over slice.
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scan technology have significantly reduced stitching errors in full-arch description (Winkler and
Gkantidis 2020). Specifically, an average full arch description error of 0.008 83± 0.010 88mm in vivo analysis
was reported byKwon et al (2021) for the intra-oral scanner (i500,MEDIT, Seoul, SouthKorea)used in this
study. In ourCBCT imaging setupwith a spatial resolution of 0.2mm, the errors can produce variations of
1 pixel or 2 pixels. This error can be effectively addressed using the stitching error correctionmethod proposed
by Jang et al (2021) tomitigate the possible influence onMARperformance caused by error-related shape
variation.

The ability of the proposedMARmethod can be further improved through complex network architectures
and a large-scale training dataset. However, there is a trade-off with the total computational cost for learning that
can be critical, especially in high-dimensional data applications (Hyun et al 2020). Even for the simpleM-net
architecture shown infigure 4, at least 10 d are required for training of 300 epochswith a dataset of 60 image
voxels under the computational resources used in this study. Even though the use of sophisticated networks or
large training datasets can potentially enhanceMAR capability, associated hurdles involving high dimensionality
should be addressed for practical dental CBCT applications.
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Appendix. Cross validation forMARperformance comparison

A total of twentymetal-free scanswere equally split into four non-overlapping folds. Here, one foldwas retained
and used for testing, and the remaining three folds were used for training. This validation process was then
repeated 4 times. From each scan of folds, we generated four (for a training fold) or two (for a test fold) realistic
metal-artifacted data using themethod described in section 3.2. In each iteration (or partition), a total of
60 paired data (= 4 syntheses× 5 scans× 3 folds)were used for training, and a total of 10 paired data
(= 2 syntheses× 5 scans× 1 fold)were used for test. Figure A1 illustrates the 4-fold cross-validation process.
Table A1 shows the normalizedmean square error for the test data in four different partitions. The result shows
that the proposedmethod outperforms the imgDLmethod on all partitions.

Figure A1.Dataset summary for 4-fold cross validation.

TableA1.Cross validation results of the imgDL and proposedmethod.

NMSE Partition 1 Partition 2 Partition 3 Partition 4

ImgDL 0.3577 0.3821 0.3169 0.3626

ProposedMethod 0.3421 0.3738 0.3009 0.3459
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