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Abstract
Positron emission tomography (PET) is frequently used to monitor functional 
changes that occur over extended time scales, for example in longitudinal 
oncology PET protocols that include routine clinical follow-up scans to 
assess the efficacy of a course of treatment. In these contexts PET datasets 
are currently reconstructed into images using single-dataset reconstruction 
methods. Inspired by recently proposed joint PET-MR reconstruction methods, 
we propose to reconstruct longitudinal datasets simultaneously by using a 
joint penalty term in order to exploit the high degree of similarity between 
longitudinal images. We achieved this by penalising voxel-wise differences 
between pairs of longitudinal PET images in a one-step-late maximum a 
posteriori (MAP) fashion, resulting in the MAP simultaneous longitudinal 
reconstruction (SLR) method. The proposed method reduced reconstruction 
errors and visually improved images relative to standard maximum likelihood 
expectation-maximisation (ML-EM) in simulated 2D longitudinal brain 
tumour scans. In reconstructions of split real 3D data with inserted simulated 
tumours, noise across images reconstructed with MAP-SLR was reduced 
to levels equivalent to doubling the number of detected counts when using 
ML-EM. Furthermore, quantification of tumour activities was largely 
preserved over a variety of longitudinal tumour changes, including changes in 
size and activity, with larger changes inducing larger biases relative to standard 
ML-EM reconstructions. Similar improvements were observed for a range of 
counts levels, demonstrating the robustness of the method when used with a 
single penalty strength. The results suggest that longitudinal regularisation is 
a simple but effective method of improving reconstructed PET images without 
using resolution degrading priors.
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1. Introduction

In both clinical and research contexts, there is often a need to acquire multiple positron emis-
sion tomography (PET) scans of a subject to observe and measure longitudinal changes in 
molecular processes in vivo. For example, when monitoring oncology patients after beginning 
a course of therapy, longitudinal changes in the uptake of a lesion or tumour can be used to 
assess the efficacy of the treatment in question (Lordick et al 2007, Cheebsumon et al 2011, 
Zhu et al 2011). Another example is the use of PET to observe functional changes during the 
onset of neurodegenerative diseases like Alzheimer’s and other dementias in order to improve 
disease understanding and allow earlier diagnosis (Mosconi et al 2009, Jagust et al 2010).

PET images are typically reconstructed with iterative reconstruction methods such as 
maximum likelihood expectation-maximisation (ML-EM) (Shepp and Vardi 1982), or its 
accelerated version, ordered subsets expectation-maximisation (Hudson and Larkin 1994). 
These methods, which use accurate statistical and system models, are superior in terms of 
bias-variance characteristics to analytic methods like filtered backprojection (Qi and Leahy 
2006). However, due to the noise inherent in acquisition, these methods can yield undesirably 
noisy images. This led to the development of maximum a posteriori (MAP) methods that 
incorporate prior expectations about the image into the reconstruction. For example, Markov 
random field priors encourage local smoothness in the images by penalising large differences 
between neighbouring voxels (Qi and Leahy 2006). Nevertheless, these methods can suffer 
from over-smoothing of edges or unstable image estimates, depending on the choice of prior. 
More recent developments have aimed to provide stable, edge-preserving local PET priors 
(Wang and Qi 2012, 2015a, Teng et al 2016), but the relevant hyper-parameters can be highly 
scan specific and non-trivial to choose.

Other approaches to improving PET reconstructions have aimed to preserve edges by using 
a source of prior information to define regions in the PET image in which smoothness is 
expected (Somayajula et al 2011, Vunckx et al 2012, Bai et al 2013, Nguyen and Lee 2013, 
Wang and Qi 2015b, Ehrhardt et al 2016, Novosad and Reader 2016). Magnetic resonance 
(MR) images are a popular source of such prior information, since they are often superior to 
PET images in terms of resolution and noise, and patients are regularly scanned on both sys-
tems as part of routine clinical protocols.

With the increasing usage of simultaneous PET-MR systems, joint reconstruction methods 
are also being investigated which aim to allow both modalities to inform each other instead of 
a uni-directional sharing of information (Ehrhardt et al 2015, Knoll et al 2017). These meth-
ods can improve PET image quality via noise reduction and edge preservation and allow for 
accelerated MR acquisitions, potentially providing time for additional diagnostic MR image 
acquisitions.

Inspired by this ongoing research into simultaneous PET-MR reconstruction methods, we 
identify the opportunity to improve the reconstruction of longitudinal PET datasets by incor-
porating them into a simultaneous reconstruction framework. Specifically, we propose a novel 
reconstruction method that effectively shares information between longitudinal PET datasets 
during reconstruction in order to improve the resultant PET images by reducing image noise. 
By coupling datasets from the same modality we aim to mitigate some of the challenges 
highlighted in the simultaneous PET-MR reconstruction literature, such as differing contrasts, 
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inter-modality cross-talk, and differing intensity scales. Furthermore, by providing an extra 
dimension into which regularisation can be applied, we highlight the possibility of performing 
regularised PET reconstruction without the loss of spatial resolution.

2. Theory

Statistical PET image reconstruction seeks to maximise some objective function F  in terms 
of an activity image θ = {θj} given the measured data y = {yi}, i.e.

θ̂ = arg max
θ

F (θ|y) (1)

where θj denotes the intensity of the jth voxel, θ̂ denotes an estimate of θ and yi is the number 
of counts recorded in sinogram bin i.

The mean of the measured data can be modelled as a linear function of a given image 
according to

ȳi (θ) =

J∑
j=1

Pijθj + bi (2)

where Pij is the probability that a decay in voxel j is detected in sinogram bin i, and bi is an 
estimate of the additive contribution to bin i from scattered and random coincidences.

Since it is generally assumed that PET data is Poisson distributed, the aim of statistical PET 
image reconstruction is often to maximise the Poisson likelihood of the reconstructed image 
given the measured data. For simplicity, the Poisson log-likelihood is used instead, resulting in 
the following maximum likelihood (ML) objective function (omitting constant terms)

FML (θ|y) = L (θ|y)

=

I∑
i=1

yi log ȳi − ȳi.
 (3)

The maximum likelihood estimate for the image, θ̂
ML

, is often sought by using the itera-
tive expectation maximisation algorithm (Shepp and Vardi 1982), resulting in the widespread 
ML-EM reconstruction method. However, the ML estimate is often noisy due to the limited 
counts collected during data acquisition. One way to overcome this problem is to use MAP 
methods by introducing a penalty term, R (θ), to the objective function according to

FMAP (θ|y) = L (θ|y)− βR (θ) . (4)

This penalty term encourages the image to conform to prior expectations; for example, that 
it is smooth. The parameter β controls the trade-off between the data consistency and penalty 
terms, with higher β values forcing the reconstructed image to agree more strongly with prior 
expectations and lower β values allowing the measured data to override the prior expectations.

In order to derive a simultaneous longitudinal reconstruction method for two PET data-
sets, we define the following joint objective function in terms of two images, θ = {θj} and 
φ = {φj}

FMAP (θ,φ|y, z) = L (θ|y) + L (φ|z)− βR (θ,φ) (5)

where z = {zi} is the measured data for the second PET scanning session.
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In this work we tackle the proposed longitudinal MAP problem defined in equation (5) 
using the one-step-late (OSL) iterative algorithm (Green 1990). This method uses the gradient 
of the penalty term calculated for the image estimated at the previous iteration as an approx-
imation for the gradient of the penalty term in the current iteration. This leads to the update 
equations for one-step-late maximum a posteriori simultaneous longitudinal reconstruction 
(MAP-SLR) given by

θ
(s+1)
j =

θ
(s)
j

I∑
i=1

Pij + β ∂R
∂θj

∣∣∣
θ(s),φ(s)

I∑
i=1

Pijyi

ȳ(s)
i

 (6a)

φ
(s+1)
j =

φ
(s)
j

I∑
i=1

Qij + β ∂R
∂φj

∣∣∣
θ(s),φ(s)

I∑
i=1

Qijzi

z̄(s)
i

 (6b)

where Q is the system matrix for the second PET dataset, θ(s) and φ(s) denote the image esti-

mates after s iterations and {ȳ(s)
i } and {z̄(s)

i } are the estimated mean data calculated from θ(s) 
and φ(s) according to equation (2).

Assuming that the majority of voxels in θ and φ have the same intensity (i.e. that the dif-
ference image is sparse), we define two forms of R (θ,φ)

RTV =

J∑
j=1

|φj − θj| (7a)

RNC = σ

J∑
j=1

[
1 − exp

(
−
(φj − θj)

2

σ2

)]
. (7b)

The penalty in equation (7a) is a �1-norm based total-variation (TV) penalty term that is 
used in a variety of contexts as a convex substitute for the �0-norm (Lustig et al 2007). The 
second penalty, given by equation (7b), is a non-convex (NC) function designed to more accu-
rately reflect the ideal �0-norm. The parameter σ determines the width of the Gaussian relative 
to the ranges of differences being used and is also used as a scaling to keep the maximum 
magnitude of the OSL derivative independent of σ. Note that as σ tends towards zero, RNC 
tends towards the �0-norm. Inputting either the TV or NC penalty into the update formulae in 
equations (6a) and (6b) gives two variants of MAP-SLR, hereafter referred to as TV-MAP-
SLR and NC-MAP-SLR respectively.

It should be noted that the MAP-SLR theory presented in this section considers only the 
simplifying case where: 1. There are only two longitudinal datasets to be reconstructed, 2. 
The two images are equal in intensity in regions that have experienced no change in func-
tional behaviour in the interval between scans, and 3. the subject is in an identical position 
in both images so that there is no misregistration between the two images. These simplifica-
tions are made throughout this work for clarity as well as providing the limiting case where 
the method would be expected to perform at its optimum. Extending the theory to multiple 
scans and incorporating these other effects will be done in future work (see Discussion for 
more details).
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3. Experimental methods

3.1. 2D simulation study

An initial 2D simulation study was performed in order to test the proposed MAP-SLR method 
with the two previously described priors. A static [18F]-fluorodeoxyglucose (FDG) PET phan-
tom was used to simulate two PET acquisitions representing baseline (PET1) and follow-up 
(PET2) scans. These two datasets were reconstructed with the proposed MAP-SLR meth-
ods and ML-EM, and the resultant images evaluated with objective image quality metrics. 
Simulation of data, reconstruction of simulated data, and analysis of reconstructed images 
were carried out with MATLAB (MathWorks, MA, USA).

3.1.1. Data simulation. A realistic head phantom software (Rahmim et al 2008) was used to 
create discretised 2D activity and attenuation maps with a grid size of 128 × 128 pixels and 
an isotropic pixel size of side length 1.774 mm. By adding a number of hot spots to the initial 
activity map, the PET1 and PET2 ground truth images were defined (figures 1(a) and (b)). 
This resulted in three regions of change in activity distribution between the scans: a frontal-
right region where an active tumour embedded in white matter increases in size and activity, a 
mid-right region where an active tumour embedded in grey matter decreases in size and activ-
ity, and a frontal-left region where a tumour appears. It should be noted that since the MAP-
SLR methods do not distinguish the order of the two scans, PET1 and PET2 can be swapped 
without affecting the outcomes of the experiment.

PET acquisition was simulated by forward projecting each of the ground truth images using 
the Radon transform. Attenuation factors, μ, for each scan were defined using the attenuation 
map shown in figure 1(d), with three pixel classes: air (µ = 0 cm−1), water (µ = 0.096 cm−1), 
and bone (µ = 0.172 cm−1) (Burger et al 2002). Randoms were simulated as uniform sino-
grams and scattered events were modelled as smoothed copies of the forward projection of 
each image. The number of expected counts in each of the noise-free sinograms was ∼2.25 M, 
with 20% from random and 20% from scattered events.

3.1.2. Reconstructions and parameter selection. Simulated noisy PET sinograms were 
reconstructed into images using the attenuation factors and randoms and scatters sinograms 
used in the simulations. All images were reconstructed into the same 128 × 128 grid as the 
ground truth images. For comparison purposes, the data were reconstructed using conven-
tional ML-EM (Shepp and Vardi 1982) as well as the proposed MAP-SLR methods. In addi-
tion, double counts PET1 and PET2 datasets with an expected number of counts equal to  
∼4.5 M were reconstructed with ML-EM to serve as a reference.

Figure 1. Ground truth images ((a)–(c)) and (d) the attenuation map used in the 2D 
simulation study. The ground truth images consist of (a) the PET1 activity map, (b), 
the PET2 activity map, and (c) the corresponding difference image displaying intensity 
changes due to changes in tumour sizes and activities. Red lines delineate the analysis 
regions in the three areas of change, labelled as ROI1, ROI2 and ROI3.
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For the TV-MAP-SLR method, β values between 1 × 10−4 and 1 × 10−3 were used. For 
NC-MAP-SLR, β values between 5 × 10−4 and 5 × 10−3 were used, with σ values ranging 
from 0.5 to 3.5. All reconstructions were run up to 200 iterations.

3.1.3. Image evaluation. For a set of images {ψ̂jn} where n = {1, 2, ...N} Poisson noisy reali-
sations of the simulated data, the reconstruction error relative to a ground truth image {ψGT

j } 
in a region Ω can be defined as a percentage root mean square error (%RMSE)

%RMSE =
100%

NΩ

∑
j∈Ω

√
1
N

∑N
n=1

(
ψ̂jn − ψGT

j

)2

ψGT
j

 (8)

where NΩ is the number of voxels in Ω. N = 60 noisy realisations of the data were used for 
reconstructions, and error levels were calculated across all non-zero pixels in the brain in the 
ground truth images (hereafter referred to as the whole-brain), as well as in regions of interest 
(ROIs) around each of the three regions of change. Specifically, these ROIs were: the front-
right tumour (ROI1), the mid-right tumour (ROI2), and the front-left tumour (ROI3). These 
latter three regions are shown in figures 1(a) and (b) superimposed on the PET1 and PET2 
ground truth images. Note that the same four analysis regions were used in both the PET1 and 
PET2 reconstructed images.

3.2. 3D tumour change experiment

The proposed MAP-SLR methods were then applied to real 3D data from a single FDG scan 
of a suspected frontal lobe epilepsy patient acquired on a Biograph mMR PET-MR scanner 
(Siemens Healthcare, Erlangen, Germany). The patient was injected with a total activity of 
182.9 MBq and scanned for 30 min at 1.3 hr post-injection, resulting in a recorded total of 
∼600 M prompt counts. Attenuation factors were estimated using an MR-based attenuation 
map generated from vendor-provided Dixon and ultra-short echo time sequences. Randoms 
and scatters were estimated with vendor-supplied tools using the delayed coincidence method 
and multi-slice 2D single scatter simulations respectively. Vendor-supplied normalisation files 
were also used in the reconstructions. Reconstructions and image analysis were carried out 
in MATLAB, with 3D mMR projections performed using in-house software (Belzunce et al 
2015).

3.2.1. Dataset generation. To create two pseudo-longitudinal datasets representing the PET1 
and PET2 scanning sessions, the histogrammed patient data was split equally by randomly 
assigning each prompt count to one of two new datasets with equal probability. This resulted 
in two 3D Poisson distributed emission datasets whose sum was equal to the original data. 
Attenuation and normalisation factors for each of the split datasets were the same as for the 
original full-counts dataset. Randoms and scatters were defined to be 50% of the original 
estimates.

Highly active tumours were then introduced to the same position in each dataset. For the 
PET1 dataset a spherical tumour with radius of 6.0 mm and additive intensity of 0.3 was added 
(where the surrounding grey matter had intensities of approximately 0.25). For the PET2 data-
sets, three tumour radii of 4.5 mm, 6.0 mm and 7.5 mm were defined, with additive intensities 
of 0.15, 0.30, or 0.45. By using all combinations of intensity and size, nine PET2 tumours 
were simulated, allowing investigation of nine cases of longitudinal change.
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3.2.2. Reconstructions. The split datasets for each tumour change were reconstructed with 
both ML-EM and TV-MAP-SLR (β = 20), with up to 100 iterations. In addition, reference 
images were obtained by adding tumours to the original dataset and reconstructing with 100 
iterations of ML-EM (referred to as double counts ML-EM). All images were reconstructed 
into a 344 × 344 × 127 grid with a voxel size of 2.08626 × 2.08626 × 2.03125 mm3.

3.2.3. Image evaluation. Images were analysed by measuring noise levels in two uniform 
regions of the reconstructed images. The first region was a 64 voxel region in the white matter 
and the second was a 32 voxel region within the highly active occipital grey matter. Noise in a 
given uniform region Ω for a given image ψ was quantified by using the coefficient of varia-
tion (CV) according to

CVΩ (ψ) =
SDΩ (ψ)

EΩ (ψ)
 (9)

where SDΩ (ψ) is the sample standard deviation of voxel values of ψ in the region Ω, and 
EΩ (ψ) is the mean value in the same region.

In addition, the mean values in the tumour, white matter region, and grey matter region were 
recorded in PET1 and PET2 in order to observe the level of bias introduced by the TV-MAP-
SLR method. Note that reconstructed image intensities using double counts ML-EM were 
halved prior to analysis to provide comparable regional means.

Ten realisations of the random splitting process were performed for each tumour change 
and the mean CV and mean values across realisations were used as final figures of merit.

3.3. 3D counts reduction experiment

The experiment described in section 3.2 was designed to explore the performance of the pro-
posed TV-MAP-SLR reconstruction method for multiple tumour changes at a fixed level of 
counts (equal to ∼300 M per scan). In order to investigate the effect of the counts level on 
performance, a single case of tumour change from section 3.2 was selected and reconstructed 
with ML-EM and TV-MAP-SLR for various levels of counts per dataset. Specifically, the 
tumour change was a radius reduction from 6.0 mm to 4.5 mm, with an additive intensity 
reduction from 0.30 to 0.15 (as defined above). The original emission data was split into pairs 
of datasets by the same technique described above, with output datasets containing between 
1% and 50% of the original ∼600 M counts each. The appropriately scaled tumours were then 
inserted into each of the datasets, resulting in a number of datasets nominally of the same 
object with varying counts levels.

Each of these pairs of datasets was reconstructed with 100 iterations of both ML-EM and 
TV-MAP-SLR with β = 20. In order to analyse the PET1 and PET2 image quality across 
counts levels, the contrast to noise ratio (CNR) between the tumour and a background region 
in the adjacent grey matter was defined as:

CNR (ψ) =
ET (ψ)− EB (ψ)

SDB (ψ)
 (10)

where ET (ψ) denotes the mean tumour intensity within the mask used to define the tumour, 
and EB (ψ) and SDB (ψ) denote the mean and standard deviation in the background region 
respectively. A higher CNR is assumed to indicate a superior image quality since it indirectly 
measures the extent to which the tumour is visible against the surrounding tissue. Ten reali-
sations of the data generation process were performed for each counts level and the average 
CNR across realisations calculated.
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4. Results

4.1. 2D simulation study

Figure 2 shows the PET1 and PET2 %RMSE values in the four analysis regions for ML-EM, 
double counts ML-EM, and TV-MAP-SLR with various values of β. Results are shown at iter-
ation numbers corresponding to minimum whole-brain error and at 200 iterations. TV-MAP-
SLR reduces whole-brain error relative to ML-EM both at minimum whole-brain error and at 
200 iterations. As β increases, the error levels in the whole brain reduce, with the maximum 
β value of 1 × 10−3 reducing minimum whole-brain %RMSE by an average of 11% over both 
scans relative to ML-EM. At 200 iterations, the corresponding improvement is 22%.

In the regions of change, the effect of the longitudinal TV regularisation is more varied. 
At the minimum whole-brain error iterations, %RMSE increases relative to ML-EM with 
increasing β in ROI1 (figure 2(a)) and ROI2 (figure 2(b)). In ROI3 (figure 2(c)), PET1 errors 
rise with increasing β whereas the PET2 error reduces. However, at 200 iterations the error 
in the tumour regions generally decreases with TV-MAP-SLR with increasing β, except for 
ROI1 in the PET2 reconstructions. In general, the increases in error levels in the regions of 
change are lower than the corresponding error reduction in the whole-brain error.

Figure 3 shows the error levels in the reconstructed images when using NC-MAP-SLR 
with σ values of 0.5 and 3.5. Similarly to the TV-MAP-SLR case, the whole-brain error 
decreases with increasing β for both σ values. When σ = 0.5, similar trends to the TV-MAP-
SLR case are observed, with %RMSE at minimum whole-brain error increasing with β in 
ROI2 (figure 3(b)) and in ROI3 in PET1 (figure 3(c)), and decreasing in the PET2 ROI3. In 
ROI1 however (figure 3(a)), the PET1 errors are reduced compared to the TV-MAP-SLR 
results in  figure 2(a), both at minimum whole-brain error and at 200 iterations. Furthermore, 
although the general trends for the the NC-MAP-SLR method are similar to the TV-MAP-
SLR results, the dependency on β is more non-linear. For β values beyond 2.5 × 10−3, the 
behaviour changes, with errors at minimum whole-brain error changing more rapidly in ROI2 
and ROI3. In fact, in ROI3 this change in behaviour causes the 200 iteration PET1 error to 
start to rise with β values greater than 3.5 × 10−3. Overall, with β values up to 2.5 × 10−3, the 
NC-MAP-SLR method with σ = 0.5 performs similarly to TV-MAP-SLR, but with additional 
error reduction in ROI1.

Increasing σ to 3.5 degrades the performance of the NC-MAP-SLR method (figures 
3(d)–(f)). The ROI1 error (figure 3(d)) increases with β in both PET1 and PET2 at minimum 
whole-brain error and at 200 iterations. In addition, the PET1 ROI2 error (figure 3(e)) at 200 
iterations increases relative to ML-EM with any value of β, as well as errors at minimum 
whole-brain error rising faster with β than for σ = 0.5. Furthermore, when σ = 3.5 there is 
no region that experiences an error reduction relative to the σ = 0.5 case.

Example reconstructed images after 200 iterations of each method are shown in figure 4 
for ML-EM, double counts ML-EM, TV-MAP-SLR with β = 6 × 10−4, and NC-MAP-SLR 
with σ = 0.5 and β = 2.5 × 10−3 and 4 × 10−3. The selected regularisation parameters avoid 
excessive penalisation of the regions of change whilst demonstrating the benefits of the respec-
tive methods. For the NC-MAP-SLR method, the two β values were used to demonstrate the 
more complex relationship between error levels and β observed in figure 3. Figure 4 demon-
strates that using the MAP-SLR methods improves the reconstructed images by reducing noise 
throughout the brain, approaching noise levels observed with double counts ML-EM. This is 
particularly clear in and around the striatum and is reflected in the difference images, where 
the amplitude of the background noise reduces when using the proposed MAP-SLR methods. 
Note that according to figures 2(a) and 3(a) the displayed NC-MAP-SLR reconstruction with 
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β = 2.5 × 10−3 achieves on average slightly lower whole-brain error than the TV-MAP-SLR 
with β = 6 × 10−4 (49.4 and 50.7 respectively) while also achieving lower error in ROI1 
(72.1 and 73.5 respectively). In addition, the corresponding NC-MAP-SLR difference image 
is sparser than the TV-MAP-SLR. Furthermore, increasing the β value to 4 × 10−3 in the 
NC-MAP-SLR method produces an even sparser difference image; however the error levels 
in ROI3 at this penalty strength begin to rise again (figure 3(c)).

4.2. 3D tumour change experiment

Figure 5 shows grey and white matter regional CVs and means for a range of iteration num-
bers for the 3D PET1 reconstructions using ML-EM, TV-MAP-SLR, and ML-EM with dou-
ble counts. The mean values in these regions are improved by the longitudinal penalty, with 
TV-MAP-SLR producing regional means that agree with the double counts ML-EM recon-
struction. In addition, using TV-MAP-SLR reduces the noise compared to standard ML-EM, 
with CV values almost identical to ML-EM with double counts at all iteration numbers.

These improvements are evident in the reconstructed images (figure 6). Image-wide noise 
at 100 iterations of TV-MAP-SLR is visibly reduced when compared to 100 iterations of 
ML-EM with the same split data, to the point where the TV-MAP-SLR reconstructions are 
visually similar to the double counts ML-EM images. In addition to demonstrating reduced 
image noise, figure 6 shows that the visual appearance of the tumour is unaffected by the 
applied longitudinal regularisation. Inspection of the difference images confirms this observa-
tion, with the region of change remaining clearly visible.

Figure 2. %RMSE values in (a) ROI1, (b) ROI2 and (c) ROI3 versus the whole-brain 
%RMSE for the 2D simulation study (see section 3.1.3 and figures 1(a) and (b) for 
the definition of each ROI). Circular markers show ML-EM errors, diamond markers 
show error levels from ML-EM with double the expected number of counts, and solid 
lines with cross markers show TV-MAP-SLR errors as a function of β (β increases 
as cross markers move increasingly away from ML-EM errors). Each graph contains 
PET1 errors at the minimum whole-brain error iteration (green), PET2 errors at the 
minimum whole-brain error iteration (magenta), PET1 errrors at iteration 200 (red), and 
PET2 errors at iteration 200 (blue). Arrows labelled with * indicate 200 iteration error 
levels for TV-MAP-SLR with β = 6 × 10−4, corresponding to the TV-MAP-SLR 
reconstruction shown in figure 4.
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In terms of the quantification of the tumour, figure 7 shows the tumour means along with 
white matter CVs for all tumour changes for all methods at 100 iterations. For the case corre-
sponding to figure 6, where the tumour reduces in radius to 4.5 mm and additive intensity to 
+0.15, a slight bias is introduced into the TV-MAP-SLR reconstructions so that the PET1 
tumour mean is underestimated by 2.2% and the PET2 tumour mean is overestimated by 2.6% 
relative to the double counts ML-EM reconstructions.

For the other tumours the regional means are either slightly biased towards the longitudinal 
average, or they agree with the double counts ML-EM value. The largest observed percent-
age bias relative to the double counts reconstruction was −6% for the PET1 tumour when the 
PET2 tumour was 7.5 mm in radius and 0.15 in additive intensity, with all other bias magni-
tudes less than 5%.

4.3. 3D counts reduction experiment

Figure 8(a) shows the measured PET1 and PET2 tumour to background CNRs for count levels 
equal to 1% of the original dataset up to 50% (i.e. the case shown in figure 6) for ML-EM and 
TV-MAP-SLR. At all noise levels, and for both PET1 and PET2 reconstructions, TV-MAP-
SLR was observed to produce a higher CNR than the corresponding ML-EM reconstructions. 
Visual inspection of reconstructed images at the 15% counts level case (figure 8(b)) reflects 
these improvements, with the tumour more visible in the TV-MAP-SLR reconstructions due to 
a reduction of noise in both the adjacent background region and across the images in general.

Figure 3. %RMSE trade-offs (see figure 2 for full description) for the NC-MAP-SLR 
method with σ = 0.5 and 3.5. Note that ML-EM and double counts ML-EM results 
are replicated from figure  2 for comparison purposes. Arrows indicate end iteration 
errors for NC-MAP-SLR with σ = 0.5 and β = 2.5 × 10−3 (*) and 4 × 10−3 (†), 
corresponding to the NC-MAP-SLR reconstructions displayed in figure 4.
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Figure 4. Example 2D simulation study single realisation reconstructed images 
after 200 iterations of ML-EM, ML-EM with double counts, TV-MAP-SLR with 
β = 6 × 10−4 and NC-MAP-SLR with σ = 0.5 and β = 2.5 × 10−3 and β = 4 × 10−3. 
Top row: PET1, middle row: PET2, bottom row: the difference PET2–PET1. Note that 
all displayed images were filtered with a post-reconstruction Gaussian filter with a 
full width at half maximum of 2.5 mm to aid visualisation. When using the MAP-SLR 
methods, noise reduces relative to ML-EM across the image, with noise levels visually 
approaching those observed when using ML-EM with double count data.

Figure 5. PET1 regional grey matter and white matter CV and mean as a function 
of iteration number for the 3D split data study for: ML-EM (green squares), double 
counts ML-EM (grey diamonds) and TV-MAP-SLR with β = 20 (red triangles). 
Note that these results are for PET1 only; similar trends were observed for the PET2 
reconstructions.
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5. Discussion

In this paper we have presented a new reconstruction paradigm for simultaneous reconstruc-
tion of longitudinal PET data. By penalising the differences between estimated images at each 
iteration we achieve the transfer of shared information. The proposed method was tested on a 
2D simulation study which demonstrated that applying longitudinal regularisation improved 
the reconstructed images compared to ML-EM by reducing whole-brain error while maintain-
ing or even reducing error levels in the regions of change. The decrease in whole-brain error 
is due to the noise reduction achieved by penalising longitudinal differences. By enforcing 
similarity between pixel values in PET1 and PET2, information from both datasets was used 
in each reconstruction, in effect increasing the number of counts available for each scan. 
Furthermore, by sharing this information using the selected prior functionals, the output dif-
ference images were sparser than those produced using traditional ML-EM reconstruction.

Figure 6. Reconstructed images at 100 iterations for the 3D tumour change experiment 
for ML-EM, ML-EM with double counts, and TV-MAP-SLR with β = 20. Top row: 
PET1, middle row: PET2, bottom row: the difference PET2–PET1. Note that for the 
double counts ML-EM case the same noisy data constituted both the PET1 and PET2 
datasets and so the difference image contains only the change in the inserted lesion.
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When using the TV-MAP-SLR method, the error levels in the two right tumours at mini-
mum whole-brain error rose with increasing β, essentially creating a trade-off between error 
in the whole-brain and error in regions of change. This increased error in regions of change 
is because the TV prior penalises all differences equally, resulting in some degradation of 
the changes caused by tumour change. On the other hand, ROI3 in the PET2 reconstruction 
benefited from the TV regularisation due to improved reconstruction of the surrounding white 
matter. After 200 iterations of TV-MAP-SLR, error reduced in the mid-right tumour (ROI2) 
but increased in the front-right PET2 tumour (ROI1). This may be due to noise reduction 

Figure 7. Tumour mean and white matter CV values for all nine tumour changes at 
100 iterations. Each change is a combination of PET2 tumour additive value and radius, 
with each plot showing the results for PET1 and PET2 using ML-EM (squares), ML-
EM with double counts data (diamonds), and TV-MAP-SLR with β = 20 (triangles). In 
all cases, the PET1 dataset included an inserted tumour of radius 6 mm and an additive 
value of +0.30. The largest observed tumour bias (relative to double counts ML-EM) 
using TV-MAP-SLR was of −6% in the PET1 tumour when the PET2 tumour radius 
increased by 1.5 mm and the intensity decreased by 0.15 (bottom right). In all cases, the 
noise in the white matter region was reduced to the same level as the double counts ML-
EM reconstruction when using TV-MAP-SLR with 50% of the counts.
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occurring in the tumours as well as biases being introduced, so that in the mid-right tumour, 
where the magnitude of the ground truth change (2.25) is relatively low, the noise reduction 
is stronger than the bias, whereas for the front-right tumour where the corresponding change 
magnitude is 5.4, the bias counteracts the noise reduction.

When using the NC-MAP-SLR method with σ = 0.5, whole-brain error again decreased due 
to a sharing of information between scans serving to increase the amount of data available for 
each image. However, in regions of change, the error levels at minimum whole-brain error were 
not as adversely affected as for TV-MAP-SLR, in particular in ROI1. The reason for this is the 
non-convexity of the prior that provides a derivative of zero at high changes. In terms of the itera-
tive update in equations (6a) and (6b), this ensures that pixels with a large enough change revert 
to updates similar to ML-EM, and the cross-talk between scans in these regions is reduced.

However, as shown in figure 3, the NC-MAP-SLR method is sensitive to the values of β 
and σ; if β is too high, error levels can begin to rise more quickly with β (figures 3(b) and (c)), 
and with an excessive σ value the reconstruction penalises the differences we wish to maintain 
and the error levels also rise drastically (figures 3(d) and (e)). A good choice of σ is not neces-
sarily obvious though, since it depends on the distribution of voxel changes due to noise and 
the magnitudes of the changes that are to be measured.

In addition, the non-convexity of the NC-MAP-SLR makes it a less robust option for recon-
structing longitudinal datasets because the use of a non-convex prior can result in a number of 
local maxima in the objective function. The number and nature of these local maxima would 
depend on the sizes of σ and β, and it would be difficult to ensure that a global optimum were 
being approached for the reconstruction of any given dataset.

In the results for the 3D data experiment, using TV-MAP-SLR reduced image-wide noise 
to the same levels achieved when the number of counts was doubled and reconstructed with 
standard ML-EM. In general, for ML-EM reconstructions, noise reduces when the counts 
increase due to the signal-to-noise properties of Poisson distributions. The fact that TV-MAP-
SLR reduced noise to the same level as doubling counts shows that the method is in effect 
sharing counts between datasets where the voxel-wise change is small enough.

Figure 8. Results of the counts reduction experiment showing (a) the measured CNR 
at various counts levels per dataset and (b) example reconstructed images at the 15% 
counts per dataset noise level (dashed line in (a)), using identical datasets for ML-EM 
and TV-MAP-SLR with β = 20. Labels in (b) show the measured CNR in each of the 
displayed images.
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In the tumour itself, the amount of bias introduced in the tumour varied depending on 
tumour size and intensity, with the largest observed bias of −6% in the case of increasing 
tumour size and decreasing tumour activity. In practice, the performance at a given tumour 
change is likely to depend on the strength of the regularisation, making future validation of 
these effects over a greater range of changes important.

As the number of counts per dataset reduced from 50%, TV-MAP-SLR continued to pro-
vide improved images, measured as an increase in tumour to background CNRs compared to 
ML-EM. There is the implicit assumption that the CNR accurately reflects the overall image 
quality, which may not be true when biases are present. For example, the results of the tumour 
change experiment (figure 7) show that longitudinal bias is possible when using the TV-MAP-
SLR method. For the PET2 reconstructions, this bias is positive, with tumour means being 
increased relative to estimates from ML-EM. Using equation (10), it is clear that an increase 
in CNR can occur with either an increase in tumour mean or a decrease in background noise 
(given that the background mean is stable). Therefore, for PET2 reconstructions, the increased 
CNR could be due to a combination of both background noise reduction and the longitudinal 
bias in the tumour. However, the PET1 CNR values are also increased by using TV-MAP-SLR 
compared to ML-EM. In these images, tumour means should be biased negatively, lowering 
the CNR. The fact that the PET1 reconstructions exhibit higher CNR values even with the 
presence of this negative longitudinal bias suggests that the longitudinal biases are small rela-
tive to the noise reduction; and also confirms that the improvements in CNR seen for PET2 are 
primarily due to the noise reduction in the background as desired.

Overall, the experimental results of both the 2D simulated and 3D split real data studies 
show that there is generally a trade-off between reconstruction quantification performance in 
regions of change and regions that do not change when using the proposed MAP-SLR meth-
ods. The most suitable level of compromise will in practice be largely application-specific; 
metastasis localisation studies may be more tolerant to biases induced in lesions and ben-
efit more from the increased CNR of the MAP-SLR methods, while studies where accurate 
quanti fication is of interest may benefit only a small amount (if at all) from coupling datasets 
in the reconstruction in the way described in this work. As such, it is clear that the proposed 
methods will require application-specific testing before being used in a clinical setting to 
ascertain (i) if there is a benefit to using MAP-SLR reconstruction methods in those contexts, 
and (ii) which level of regularistion is optimal. These considerations, while vital, are beyond 
the scope of this first exploratory study into longitudinal reconstruction methods.

From a technical point of view, the MAP-SLR methods presented in this work have some 
limitations that need to be addressed in future work. Firstly, MAP-SLR in its current form 
assumes that the majority of voxels are equal in intensity in both the PET1 and PET2 images. 
In practice, the injected dose in the PET2 acquisition is not necessarily equal to that of the 
PET1 acquisition. In this case, there would be a multiplicative factor for the intensities in one 
of the PET images that would provide the sparse difference image required. Future work will 
address this issue by including such a scale factor into the reconstruction, perhaps even simul-
taneously estimating the dose scaling factor during the reconstruction.

Another simplification used by the proof-of-concept experiments presented in this work is 
the assumed perfect alignment between the subject in the PET1 and PET2 datasets. This pro-
vides confidence that penalisation is applied to voxel differences that reflect only physiological 
change or change due to noise, and ignores the case where voxel values change due to a relative 
misalignment of anatomy. This limitation can be overcome by using anatomical information, 
such as MR images, to find the alignment operation and apply this in the reconstruction to 
obtain the correct differences. Alternatively, this misalignment could be estimated during the 
reconstruction (Jacobson and Fessler 2003, Blume et al 2010, Kalantari et al 2016).
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Finally, the one-step-late nature of the proposed methods is not optimum because it is not 
guaranteed to converge to a maximum. For the TV-MAP-SLR method, defining an alternative, 
smooth prior that is TV-like at large changes and quadratic at small changes (such as the prior 
used by Wang and Qi (2015a)) would allow a more mathematically rigorous algorithm to be 
defined that is both guaranteed to converge to the MAP estimate and allows higher β values 
due to improved stability.

Nevertheless, the results presented in this work demonstrate that it is possible to improve 
reconstructed PET images by penalising differences longitudinally. For clinical studies where 
more than two scans are acquired, the MAP-SLR methods may be extended, potentially allow-
ing even greater levels of noise reduction by sharing data from multiple PET datasets.

6. Summary

PET is frequently used to observe intra-subject longitudinal functional changes in a variety 
of contexts, including follow-up oncology scans to assess treatment efficacy. In this work, we 
propose a novel MAP PET reconstruction method to reconstruct longitudinal PET images 
simultaneously. The large degree of similarity between these datasets allows for information 
to be exchanged longitudinally in order to improve the reconstructed images by reducing 
noise. This was achieved by penalising differences between two longitudinal images during 
reconstruction in a one-step-late fashion, using both total-variation and non-convex difference 
penalties. The proposed methods, TV-MAP-SLR and NC-MAP-SLR, were demonstrated 
on 2D simulated datasets where lower whole-brain error levels were observed compared to 
ML-EM and error levels could be maintained in regions of change. In real 3D split datasets, 
with appropriate choices of hyper-parameters, the use of MAP-SLR reduced noise to effec-
tively the level normally observed by using twice the number of counts while also maintaining 
regional means in a longitudinally variable inserted tumour.

Future work includes accounting for varying relative activity levels in the scans to be 
reconstructed, as well as spatial misalignment between the datasets. In practice, if adequately 
validated and tested, the proposed MAP-SLR reconstruction method may allow for reduced 
injected dose in routine clinical scanning protocols where multiple acquisitions over extended 
time-scales are required; or it may open up possibilities of scanning more vulnerable patient 
groups who are often excluded on the grounds of limiting radioactive dose.
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