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Abstract
In this article, we analyse the Dyson equation for the density–density response
function (DDRF) that plays a central role in linear response time-dependent
density functional theory (LR-TDDFT). First, we present a functional analytic
setting that allows for a unified treatment of the Dyson equation with general
adiabatic approximations for discrete (finite and infinite) and continuum sys-
tems. In this setting, we derive a representation formula for the solution of the
Dyson equation in terms of an operator version of the Casida matrix. While the
Casida matrix is well-known in the physics literature, its general formulation as
an (unbounded) operator in the N-body wavefunction space appears to be new.
Moreover, we derive several consequences of the solution formula obtained
here; in particular, we discuss the stability of the solution and characterise the
maximal meromorphic extension of its Fourier transform. We then show that
for adiabatic approximations satisfying a suitable compactness condition, the
maximal domains of meromorphic continuation of the initial DDRF and the
solution of the Dyson equation are the same. The results derived here apply
to widely used adiabatic approximations such as (but not limited to) the ran-
dom phase approximation and the adiabatic local density approximation. In
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particular, these results show that neither of these approximations can shift the
ionisation threshold of the Kohn–Sham system.

Keywords: time-dependent density functional theory, Dyson equation,
adiabatic approximation, density–density response function
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1. Introduction

Time-dependent density functional theory (TDDFT) is a formally exact theory to study the
time evolution of a system of electrons; it has many applications in quantum chemistry,
condensed-matter physics, and material science [7, 12, 36, 37]. Most of these applications
lie within the perturbative regime, where linear response theory applies (LR-TDDFT). In this
regime, one is no longer interested in the whole nonlinear evolution of the single-particle dens-
ity of the system but instead in the linear dynamical response of the density to a variation of the
external potential. Stated differently, one is interested in the density–density response function
(DDRF) of the system.

The fundamental equation of LR-TDDFT is the celebrated Dyson equation that form-
ally connects the DDRF of a given system of interest to the DDRF of an equivalent sys-
tem of non-interacting electrons, the Kohn–Sham system. The equivalence is in the sense that
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both systems have the same ground state density. In shorthand notation, the Dyson equation
reads2

χ(t) = χ0 (t)+
ˆ t

0
χ0 (t− s)

ˆ s

0
FHxc (s− τ)χ(τ)dτ,

where χ is the DDRF of the system of interest, χ0 is the DDRF of the Kohn–Sham
system of non-interacting electrons, and FHxc is the linear operator whose Schwartz ker-
nel is the Hartree plus exchange–correlation (Hxc-)kernel of TDDFT. In principle, the
Hxc-operator depends on the ground state density of the system or, equivalently, on
the Kohn–Sham ground state density. In practice, this density dependence is highly non-
trivial, and the exact Hxc-operator is unknown; one then relies on approximations of this
operator.

While several classes of approximations for the Hxc-operator were suggested in the physics
literature (see [22, 36] for an overview), the overwhelming majority of calculations are per-
formed with adiabatic approximations. In the adiabatic approximation, the Hxc-operator acts
instantaneously and can be formally represented as

Fadiabatic
Hxc (t) = δ0 (t)F,

where δ0 is a Dirac delta distribution at t= 0 and F is a linear operator acting from the (tangent)
space of densities to the (tangent) space of spatial potentials. Within the adiabatic approxim-
ation, the Dyson equation becomes

χF (t) = χ0 (t)+
ˆ t

0
χ0 (t− s)FχF (s)ds, (1.1)

where χ0 is again the DDRF of the non-interacting Kohn–Sham system, and χF is now an
approximation of the true DDRF of the system of interest. For suitable choices of F, such
approximations are observed to reproduce many response properties of large quantum systems
accurately (see, e.g. [37]).

In the non-perturbative regime, TDDFT models were considered in various settings (see,
e.g. [9, 10, 14, 19, 27, 34]). By contrast, the mathematical literature on the linear response
regime is scarce. Some works [4–6, 32] have focused on the numerical aspects of extract-
ing relevant properties (e.g. excitation energies, oscillator strengths, and absorption spectrum
cross-section) of the solution χF in the finite-dimensional case, i.e. by properly discretising
the underlying function space. Moreover, a first step towards a rigorous understanding of the
Dyson equation (1.1) in the infinite-dimensional (continuum) setting has been taken recently
by the author and collaborators in [15]. There, we presented a mathematical framework for
studying the Dyson equation within the random phase approximation (RPA), thereby rigor-
ously proving that the RPA excitation frequencies are always larger than the Kohn–Sham
excitations. Unfortunately, the approach presented in [15] heavily relies on the positivity of
the adiabatic approximation F, which is only applicable to the RPA with Coulomb potential
(or positive definite interaction potentials).

2 For a formal derivation of the Dyson equation, we refer to [15, appendix].
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In the current paper, we not only extend the framework presented in [15] to deal with more
general adiabatic approximations but also derive an explicit solution formula for χF. More
precisely, the main contributions of this article can be summarised as follows:

(1) We generalise the functional analytic setting presented in [15] to allow for a unified treat-
ment of the Dyson equation with general adiabatic approximations for both discrete (finite
and infinite) and continuum systems. Notably, this new setting allows us to study the cel-
ebrated adiabatic local density approximation (ALDA).

(2) We derive an explicit representation formula for the solution χF in the case where χ0 is the
DDRF of a self-adjoint Hamiltonian. For this, the key result is a representation formula
for the Fourier transform χ̂F in terms of an operator version of the Casida matrix.

(3) We derive and discuss several consequences of this representation formula. In particular,
we characterise the maximal meromorphic extension3 of χ̂F and show that, for widely
used adiabatic approximations such as the RPA and ALDA, the maximal domain of mero-
morphic continuation of χ̂F and χ̂0 are the same. Physically, this means that these approx-
imations are not able to shift the ionisation threshold of the Kohn–Sham system.

Remark (response theory terminology). In the physics literature, the name DDRF usually
refers to the Schwartz kernel of χ(t). Here we refer instead to the operator-valued function
t 7→ χ(t) as the DDRF. We also remark that χ is sometimes called the (linear) susceptibility
[7] or the reducible (or irreducible in the case of χ0) polarisability operator [21].

2. Main results

We now introduce some notation and discuss our main results. Throughout this article, H is a
self-adjoint operator acting on the anti-symmetric N-fold tensor product of L2(Ω,dµ),

HN :=
N∧
j=1

L2 (Ω,dµ) , (2.1)

where (Ω,µ) is a σ-finite measure space and L2(Ω,dµ) denotes the space of (equivalent classes
of) C-valued measurable functions that are square integrable with respect to µ. The specific
measure space is not relevant to our results; in particular, µ can be the counting measure on
some countable set Ω⊂ Rn (discrete systems), the Lebesgue measure on some open set Ω⊂
Rn (continuum systems), or a combination of both (continuum systems with internal spin).
Moreover, we assume the following.

Assumption 1. The self-adjoint operator H : D(H)⊂HN →HN satisfies the following:

(i) (Spectral gap) The ground state energy E0 := inf σ(H)>−∞ is a simple isolated
eigenvalue.

(ii) (Real Hamiltonian) H commutes with complex conjugation.

Remark (complex Hamiltonians). The assumption that H is a real Hamiltonian is not expli-
citly used in any part of the paper and the proofs do not depend on it. The reason for including

3 Here we consider meromorphic extensions with respect to the operator norm topology (see definition 2.10) and not
on weaker topologies, which is typically the case when studying resonances [17].
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this assumption here is that the formula for the DDRF of real Hamiltonians simplifies to
equation (2.7) below (see [15, proposition 2.3]).

Since the ground state of H is non-degenerate, we can unambiguously define its ground
state single-particle density (or simply density) as

ρ0 (r) := N
ˆ
ΩN−1

|Ψ0 (r,r2, . . .,rN) |2dµ(r2) . . .dµ(rN) , (2.2)

where Ψ0 is the unique (up to phase) normalised ground state wave function of H. We then
introduce the norms

‖ f‖ρ0 =

(ˆ
Ω

| f(r) |2ρ0 (r)dµ(r)
) 1

2

and ‖ f‖ 1
ρ0

=

(ˆ
Ω

| f(r) |2ρ0 (r)−1 dµ(r)

) 1
2

, (2.3)

and define the respective weighted L2 spaces as

L2ρ0
= {f : supp(ρ0)→ Cµ-measurable :‖ f‖ρ0 <∞} , (2.4)

L21
ρ0

=
{
f : supp(ρ0)→ Cµ-measurable :‖ f‖ 1

ρ0
<∞

}
, (2.5)

where supp(ρ0) denotes the support of ρ0. As usual, we identify the functions that coincide
µ-almost everywhere. Let us also introduce the reduced Hamiltonian

H# := PΨ⊥
0
(H−E0)PΨ⊥

0
, (2.6)

where PΨ⊥
0
is the orthogonal projection on {Ψ0}⊥. Note that H# is a positive operator acting

on {Ψ0}⊥ with domain D(H#) = D(H)∩{Ψ0}⊥.

2.1. The DDRF

The DDRF of H is the operator-valued function

t ∈ R 7→ χH (t) =−2θ (t)Bsin(tH#)B
∗, (2.7)

where θ(t) is the Heaviside step function, E0 is the ground state energy of H, and the operator
B= BΨ0 :HN → L21

ρ0

4 and its adjoint B∗ = B∗
Ψ0

: L2ρ0
→HN are defined as follows:

(BΦ)(r) = N
ˆ
ΩN−1

Ψ0 (r,r2, . . .,rN)Φ(r,r2, . . .,rN)dµ(r2) . . .dµ(rN)−〈Ψ0,Φ〉HNρ0 (r) ,

(2.8)

(B∗f)(r1, . . .,rN) =

 N∑
j=1

f(rj)−〈ρ0, f〉L2(Ω,dµ)

Ψ0 (r1, . . .,rN) . (2.9)

4 Here we use the operator B introduced in [8] instead of the operator SΦ(r) = N
´
ΩN−1 Ψ0(r, . . .)Φ(r, . . .) introduced

in [15]. This choice conveniently reduces the notation because B= SPΨ⊥
0

and we mostly work in the space {Ψ0}⊥.
Note that B is the linearised version (derivative atΨ0) of the map sending a N-body wavefunctions to its density (see
equation (2.2)).
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The motivation for this definition comes from the fact that χH is related to the density
response of the system to a perturbation of the external potential.More precisely, if we consider
the solution of the Schrödinger equation{

i∂Ψϵ (t) = HΨϵ (t)+ ϵV(t)Ψϵ (t) , t> 0,

Ψϵ (0) = Ψ0,

where Ψ0 is the ground state of H and V(t) is the multiplication operator

Ψ ∈HN 7→ (V(t)Ψ)(r1, . . .,rN) =
N∑
j=1

v(t,rj)Ψ(r1, . . .,rN) , t ∈ R+,(r1, . . .,rN) ∈ ΩN,

for some real-valued potential v : R+ ×Ω→ R, then the associated density ρΨϵ(t) satisfies
5

ρΨϵ(t) = ρ0 + ϵ

ˆ t

0
χH (t− s)v(s)ds+O

(
ϵ2
)
.

This formula establishes the connection between χH and the linear response of the system.
In the sequel, we focus on describing the main properties of χH and present a characterisa-

tion of the maximal meromorphic extension of its Fourier transform. Let us start by recalling
some results from [15]. In [15], it is shown that the DDRF of typical Schrödinger operators on
R3N is a uniformly bounded and strongly continuous function with values in the set of bounded
operators between suitable Lp spaces. By adapting the proof in [15, section 2] to the current set-
ting, we can show that χH is, in fact, uniformly bounded and strongly continuous on the space
of bounded linear operators from L2ρ0

to L21
ρ0

, denoted here by B(L2ρ0
,L21

ρ0

). Consequently, the

Fourier transform of χH , given by

χ̂H (ω) = lim
η→0+

ˆ
R
χH (t)e

iωte−ηtdt= lim
η→0+

B
2H#

(ω+ iη)2 −H2
#

B∗, (2.10)

where the limit is taken in the distributional sense, is a tempered distribution with values on
B(L2ρ0

,L21
ρ0

). (See, e.g. [15, proposition 2.8] for a derivation of (2.10).) In particular, χ̂H has

an analytic extension to the upper half-plane. With some abuse of notation, we denote this
extension also by χ̂H.

An immediate consequence of the spectral gap assumption on H is that χ̂H can be analytic-
ally extended to the larger set C\

(
σ(H#)∪σ(−H#)

)
. In fact, it is shown in [15] that χ̂H can

be meromorphically extended to the domain

DΓ := {z ∈ C : |Re(z) |< Γ or Im(z) 6= 0} , (2.11)

where Γ := inf σess(H#) is the ionisation threshold of H. However, this extension is not max-
imal in general. For instance, some cancellations can occur due to the product of the resolvent
ofH# with the operators B and B∗. To precisely characterise the maximal meromorphic exten-
sion of χ̂H, let us define the single-particle excitation spectrum of H as

σ1 (H#) :=
{
λ ∈ σ (H#) : BP

H# (Bϵ (λ)) 6= 0, for any ϵ > 0
}
, (2.12)

5 See, e.g. [15, section 2] for the details.
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where Bϵ(λ)⊂ C denotes the ball centred at λ with radius ϵ and PH#(U) denotes the spectral
projection of H# on some Borel subset U⊂ C. We also define the discrete and essential parts
of σ1(H#) as

σdisc
1 (H#) :=

{
λ ∈ σ1 (H#) : λ isolated and rank BPH# ({λ})<∞

}
,

σess
1 (H#) := σ1 (H#) \σdisc

1 (H#) .

The first result of this paper is then the following.

Theorem 2.1 (maximal meromorphic extension). Let H be a Hamiltonian satisfying
assumption 1. Then the maximal meromorphic (see definition 2.10) extension of the Fourier
transform of χH is given by

χ̂H :D→B
(
L2ρ0

,L21
ρ0

)
z 7→ χ̂H (z) =

∑
λ∈σdisc

1 (H#)

2λ
z2 −λ2

BPH# ({λ})B∗ +B
ˆ
σess
1 (H#)

2λ
z2 −λ2

dPH#

λ B∗.

where

D := {z ∈ C :±z 6∈ σess
1 (H#)} . (2.13)

In particular, the set of poles of χ̂H is given by σdisc
1 (H#)∪σdisc

1 (−H#). Moreover, these poles
are all simple, and their rank is given by

rank λ (χ̂H) = rank BPH# ({λ}) .

Remark (poles with infinite rank). In fact, any isolated point in σess(H#) can also be seen as
a pole of infinite rank of χ̂H. The reason for excluding such poles from the discrete spectrum
is that compact perturbations of the operator H# may turn these poles into an accumulation
point of poles, thereby making these singularities no longer isolated.

Remark (single-particle excitations). The term single-particle excitation is inspired by the
observation that, for one-body Hamiltonians

H=
N∑
j=1

1⊗ . . .

jth position︷︸︸︷
h . . .⊗ 1 for a self-adjoint operator h on L2 (Ω,dµ) , (2.14)

the setσ1(H#) corresponds to a subset of the excitation spectrum of the single-particle operator
h. More precisely, we have the relation6

σ1 (H#)⊂ {λ−λj ∈ σ (h)−λj : λ⩾ λN+1 and j⩽ N} , (2.15)

where λj denotes the jth lowest eigenvalue of h.

6 For physically relevant operators h (e.g. Schrödinger operators) one expects that the product of two eigenfunctions
of h do not vanish (by the unique continuation property), which implies equality in (2.15) instead of inclusion (see
equation (B.2) in appendix B). However, under the sole condition that h is self-adjoint, one can artificially construct
examples for which the product between distinct eigenfunctions of h vanishes almost everywhere, and therefore, only
the strict inclusion in (2.15) holds.

7
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Remark (dark excitations). The complementary spectrum σ(H#) \σ1(H#) corresponds to
the dark excitations of H, i.e. the part of the spectrum that cannot be obtained by shining light
on the system and measuring the absorption cross-section. For instance, in the case of (non-
interacting) Hamiltonians as in equation (2.14), the set of dark excitations contain all double
(and higher order) excitations.

2.2. Well-posedness of the Dyson equation

Let us now turn to the solution of the adiabatic Dyson equation (1.1). The first step is to agree on
the underlying solution space. In LR-TDDFT, the goal of the Dyson equation is to approximate
the DDRF of a system of interacting electrons via the DDRF of the equivalent non-interacting
Kohn–Sham system. The equivalence is in the sense that the Hamiltonians of both the interact-
ing and non-interacting systems have the same ground state density ρ0. In particular, the DDRF
of both systems should lie on the space of strongly continuous maps from R+ to B(L2ρ0

,L21
ρ0

),

denoted here by

Cs

(
R+;B

(
L2ρ0

,L21
ρ0

))
.

Therefore, it seems natural to study the well-posedness of the Dyson equation within this
space. This choice is not unique, and we shall further motivate it later. Nevertheless, the Dyson
equation is well-posed in this space under a compatible boundedness assumption on the adia-
batic approximation of the Hxc-operator.

Theorem 2.2 (well-posedness of the Dyson equation). Let F ∈ B(L21
ρ0

,L2ρ0
) and χ0 ∈

Cs
(
R+;B(L2ρ0

,L21
ρ0

)
)
. Then, there exists a unique solution χF of the Dyson equation

χF (t) = χ0 (t)+
ˆ t

0
χ0 (t− s)FχF (s)ds

in the space Cs
(
R+;B(L2ρ0

,L21
ρ0

)
)
. Moreover, the solution map

SF :Cs
(
R+;B

(
L2ρ0

,L21
ρ0

))
→ Cs

(
R+;B

(
L2ρ0

,L21
ρ0

))
,

χ0 7→ χF

is bijective.

The proof of theorem 2.2 is a standard application of Banach’s fixed point theorem. For the
details, we refer the reader to [15, section 3], where the same theorem in a different function
space is proved. Although the proof is rather simple, we show that theorem 2.2 guarantees the
well-posedness of the Dyson equation for widely used adiabatic approximations of the Hxc-
operator under general conditions on the ground state density ρ0. In addition, the bijectivity
of the solution map implies that, for any F ∈ B(L21

ρ0

,L2ρ0
), the DDRF of a Hamiltonian with

ground state density ρ0 can be obtained by solving the Dyson equation for a unique reference
χ0. Of course, this does not guarantee that χ0 is the DDRF of a non-interacting Hamiltonian,
a common premise of LR-TDDFT.

8
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2.3. The Dyson DDRF

Throughout this section, we assume that H is a Hamiltonian satisfying assumption 1 and let F
be a linear operator in B(L21

ρ0

,L2ρ0
), where ρ0 is the ground state density of H. Our goal is then

to characterise the solution χF of the Dyson equation

χF (t) = χH (t)+
ˆ t

0
χH (t− s)FχF (s)ds,

where χH is the DDRF of H, and establish some of its fundamental properties. For this, the
key ingredient is a representation formula for χ̂F based on an operator version of the Casida
matrix.

More precisely, let us formally define the Casida operator as

C := H2
# + 2H

1
2
#B

∗FBH
1
2
#.

Then under the assumption that F is symmetric (which is satisfied for physically relevant adia-
batic approximations), we can apply the KLMN theorem (see section 3) to properly define C
as a semi-bounded self-adjoint operator on {Ψ0}⊥. Moreover, one can show (see lemma 4.3)
that

H
1
2
#

(
z2 −C

)−1
H

1
2
#, for z2 6∈ σ (C) ,

defines a bounded operator on {Ψ0}⊥. The key result of this paper is that the Fourier transform
of χF is given by the conjugation of B with the operator above. Precisely, we have

Theorem 2.3 (solution in the frequency domain). Let F ∈ B(L21
ρ0

,L2ρ0
) be symmetric, then

the Fourier transform of χ̂F is well-defined for |Im(z)|> ‖B∗FB‖ and satisfies

χ̂F (z) = 2BH
1
2
#

(
z2 −C

)−1
H

1
2
#B

∗. (2.16)

Remark (the Casida equations). For one-body Hamiltonians with purely discrete spectrum,
the Casida operator can be written in the basis of products of occupied and virtual orbitals of
the single-particle operator, which leads to the usual Casida equations appearing in the phys-
ics literature [11] (see appendix B for more details). The construction presented here, how-
ever, is completely general and does not require any spectral or structural assumptions on the
operator H.

We can now derive several properties of the solutionχF. For starters, we can take the inverse
Fourier transform of equation (2.16) to obtain the following representation formula for χF in
the time domain.

Corollary 2.4 (solution in the time domain). The solution χF is given by the formula

χF (t) =−2θ (t) tBH
1
2
# ft (C)H

1
2
#B

∗, (2.17)

where ft(λ) = sinc(t
√
λ) and sinc(s) = sin(s)/s is the analytic sinc function.

9
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Remark. As the sinc function has a power series with only quadratic terms, the function
sinc(

√
s) defines an entire function.Moreover, this function is bounded on any half-line [α,∞).

In particular, sinc(t
√
C) uniquely defines a bounded operator for any self-adjoint operator

bounded from below. The fact that H
1
2
#sinc(t

√
C)H

1
2
# is also bounded in {Ψ0}⊥ will be shown

in section 4.

The above representation formula highlights some important features of the solution χF.
For instance, note that we can decompose

√
C =

√
C+ + i

√
C−

where C+ and C− are the non-negative self-adjoint operators corresponding respectively to the
positive part (on (0,∞)) and the non-positive part (on (−∞,0]) of the spectrum of C. As these
are mutually orthogonal operators, we have the decomposition

χF (t) =−2θ (t) tBH
1
2
#sinc

(
t
√
C+
)
H

1
2
#B

∗︸ ︷︷ ︸
=:χ+

F (t)

+−2θ (t) tBH
1
2
#sinc

(
it
√

C−
)
H

1
2
#B

∗︸ ︷︷ ︸
=:χ−

F (t)

.

Consequently, if 0 6∈ σ(C), then the positive part χ+
F is stable in the sense that it is uniformly

bounded in time, as expected from a DDRF of an isolated quantum system. The negative
part, on the other hand, grows exponentially fast with time. Nevertheless, note that, since the
operator C is bounded from below, the exponential growth of χ−

F is bounded by

‖χ−
F (t)‖≲ et

√
− infσ(C).

When 0 ∈ σ(C), the solution may contain a linearly growing part, corresponding to the spec-
tral projection of C on 0. In particular, if we gradually increase the strength of the adiabatic
approximation by setting F(ϵ) = ϵF, the point ϵ0 where the spectrum of the Casida operator
reaches 0 corresponds to a phase transition of the system.

The next corollary shows that the stability condition C > δ can be re-stated in terms of the
simpler operator

M := H# + 2B∗FB. (with domain D(H#)). (2.18)

Corollary 2.5 (stability condition). LetM be the operator defined in (2.18), then we have

0 ∈ σ (M) ⇐⇒ 0 ∈ σ (C) and σ (M)∩ (−∞,0) 6= ∅ ⇐⇒ σ (C)∩ (−∞,0) 6= ∅.

In particular, the solution χF is stable (in the sense described above) if and only if

M⩾ δ (2.19)

for some δ > 0. Moreover, χF is a tempered distribution and χ̂F admits an analytic extension
to the upper half-plane if and only if

M⩾ 0. (2.20)

Since χF is supposed to approximate the DDRF of another Hamiltonian (which is causal
and bounded), the stability condition is expected to hold for physically relevant F. For the
RPA, condition (2.19) follows from the positivity of FRPA (see equation (2.25)) and the fact
that inf σ(H#)> 0. For the ALDA, however, we are not aware of a general argument to prove
that (2.19) or (2.20) holds.

10
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Remark (quantitative stability). One can show the following quantitative version of corol-
lary 2.5 (see the remark after the proof of corollary 2.5)

M⩾ δ > 0 implies C ⩾ δω1,and (2.21)

C ⩾ δ > 0 implies M⩾
√
‖B∗FB‖2 + δ−‖B∗FB‖, (2.22)

where ω1 := inf σ(H#)> 0.

Remark (stability condition in the finite-dimensional case). A finite-dimensional analogue
of M, and the associated stability condition, also appear in previous works where linear-
response eigenvalue problems in finite dimensions are considered [4–6, 23, 35]. More pre-
cisely,M is an operator version of the matrixM= A+B defined in the basis of occupied and
virtual orbital products in [6].

Theorem 2.3 also allows us to characterise the maximal meromorphic extension of χ̂F. This
characterisation requires a spectral gap assumption on C and resembles the characterisation
of χ̂H given in theorem 2.1. To state it precisely, let us define the single-particle spectrum
of C as

σ1 (C) :=
{
λ ∈ C : BH

1
2
#P

C (Bϵ (λ)) 6= 0 for any ϵ > 0 small
}
,

where PC is the spectral projection of C. As before, we define the discrete part of σ1(C) as the
set of isolated points with rank BH

1
2
#P

C({λ})<∞, and the essential part as the complement
of the discrete part. Then, we have the following characterisation.

Corollary 2.6 (maximal meromorphic extension of χ̂F). Suppose that σ1(C) has a spectral
gap on the non-negative part of the spectrum, i.e. [0,∞) 6⊂ σ1(C). Then the maximal mero-
morphic extension of χ̂F is given by

χ̂F :DF →B
(
L2ρ0

,L21
ρ0

)
z 7→ χ̂F (z) =

∑
λ∈σdisc

1 (C)

2
z2 −λ

BH
1
2
#P

C ({λ})H
1
2
#B

∗ +BH
1
2
#

ˆ
σess
1 (C)

2
z2 −λ

dPC
λH

1
2
#B

∗,

where

DF :=
{
z ∈ C : z2 6∈ σess

1 (C)
}
. (2.23)

In particular, the set of poles of χ̂F is given by {z ∈ C : z2 ∈ σdisc
1 (C)}.

Remark (poles rank and order). The non-zero poles of χ̂F are all simple and satisfy

rank λ (χ̂F) = rank BH
1
2
#P

C ({λ}) .

On the other hand if 0 ∈ σdisc
1 (C), then χ̂F has a pole of second order at the origin.

As a last consequence of theorem 2.3, we show that under a compactness condition on F,
the domain of maximal meromorphic continuation of χ̂F agrees with the domain of maximal
meromorphic continuation of χ̂H. As the proof of this result is more involved than the proof
of the previous corollaries, we promote it to a theorem.

11
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Theorem 2.7 (invariance of maximal domain). Suppose that F ∈ B(L21
ρ0

,L2ρ0
) satisfies

B∗FB ∈ B∞

(
D(H#) ,{Ψ0}⊥

)
, (2.24)

where B∞(D(H#),{Ψ0}⊥) denotes the set of compact operators from D(H#) (endowed with
the graph norm) to {Ψ0}⊥, then

DF =D,

where D and DF are the maximal domains defined in (2.13) and (2.23), respectively.

The relevance of the above theorem is that for typical Schrödinger operators, the max-
imal domain of meromorphic continuation of χ̂H is related to its ionisation threshold via
equation (2.11). Since the compactness condition (2.24) holds for standard adiabatic approx-
imations (see proposition 2.9 below), the above corollary implies that such approximations
are not able to shift the ionisation threshold of H (which is the Kohn–Sham Hamiltonian in
applications).

2.4. Applications

We now discuss some applications of the previous results in the context of LR-TDDFT.
Throughout this section, we work within the quantum chemistry set-up where Ω= R3 and
the underlying single-particle space is the classical Lebesgue space L2(R3).

In this setting, the typical Hamiltonians of interest (e.g. the molecular Hamiltonian) are
Schrödinger operators

H=−∆+V(r1, . . .,rN) ,

where∆ is the Laplacian onR3N andV is some real-valued function that acts bymultiplication.
Under general assumptions on V (e.g. V is in the Kato class of R3N [33]), the ground state
density of H is bounded whenever it exists. In particular, the following criterion applies to
many situations encountered in practice. (The proof is a straightforward application of Hölder’s
inequality.)

Proposition 2.8 (sufficient criterion for adiabatic approximations). Let ρ0 ∈ L1(R3)∩
L∞(R3), and F= F1 +F2 satisfy

‖F1 f‖L2(R3)+L∞(R3) ≲ ‖ f‖L1(R3)∩L2(R3) and |(F2 f)(r) |≲ ρ0 (r)
δ | f(r) |,

for some δ ⩾−1. Then F ∈ B(L21
ρ0

,L2ρ0
).

The above criterion is easily verified for the following adiabatic approximations:

• The random phase approximation (RPA). In the RPA, F is given by

(
FRPAg

)
(r) =

ˆ
R3

g(r ′)
|r− r ′|

dr ′. (2.25)

Thus from the Hardy–Littlewood–Sobolev (HLS) inequality, we conclude that FRPA ∈
B(L21

ρ0

,L2ρ0
). (In fact, we just need ρ0 ∈ L

3
2 (R3) here.)

12
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• The Petersilka, Gossmann, and Gross approximation (PGG) [25]. In the PGG approxima-
tion, the operator F is given by

(
FPGGg

)
(r) =

(
FRPAg

)
(r)− 1

2

ˆ
R3

|γH (r,r ′) |2

ρ0 (r)ρ0 (r ′)
g(r ′)
|r− r ′|

dr ′,

where γH(r,r ′) is the ground state single-particle density matrix of the Hamiltonian asso-
ciated to χH . Hence, from the simple inequality |γH(r,r ′)|2 ⩽ ρ0(r)ρ0(r ′) and the HLS
inequality, we also have FPGG ∈ B(L21

ρ0

,L2ρ0
) for any ρ0 ∈ L

3
2 (R3).

• The adiabatic local density approximation (ALDA) [22, 36, 38]. The ALDA is not a
single approximation but rather a class of approximations. In the ALDA, the operator F is
given by

(
FALDA
ρ0

g
)
(r) =

(
FRPAg

)
(r)+

d2
(
ρεHEGxc (ρ)

)
dρ2

∣∣∣∣
ρ=ρ0(r)︸ ︷︷ ︸

:=fHEGxc (ρ0(r))

g(r) ,

where εHEGxc (ρ) = εHEGx (ρ)+ εHEGc (ρ) is the exchange–correlation energy per particle of the
homogeneous electron gas. While the exchange part is known and given by

εHEGx (ρ) =−Cρ 1
3 , (2.26)

the correlation can only be approximated, which leads to different approximations of FALDA
ρ0

.
To see why such approximations also belong to B(L21

ρ0

,L2ρ0
), let us take the parametrisa-

tion of εHEGc introduced by Perdew and Wang [24] as an example. The PW correlation
approximation is

εPW92
c (ρ) =−2A

(
1+α1ρ

− 1
3

)
log

(
1+

1

β1ρ
− 1

6 +β2ρ
− 1

3 +β3ρ−
1
2 +β4ρ

− 1+P
3

)
, (2.27)

whereP= 1 or 3
4 , andA,α1,β1,β2,β3,β4 > 0 are parameters chosen to reproduce the asymp-

totics expansions of εHEGc in the low and high-density limits, and to fit data from quantum
Monte Carlo simulations [13] in the intermediate regime. Thus from (2.26) and (2.27), one
can check (see appendix C) that

| f HEGxc (ρ0 (r)) |≲∥ρ0∥L∞ ρ0 (r)
max{ 1

2 ,
1+P
3 }− 4

3 ≲∥ρ0∥L∞ ρ0 (r)
− 5

6 , (2.28)

where the implicit constants depend on ‖ρ0‖L∞ but not on r ∈ Ω. Therefore, FALDA
ρ0

∈
B(L21

ρ0

,L2ρ0
) for any bounded ρ0. Other parametrisations of εHEGc (ρ) also satisfy the above

inequality as long as they reproduce (up to second derivatives) the asymptotic expansion of
εHEGc in the low-density limit.

The above list contains the most common adiabatic approximations used in practice and is
not exhaustive. Note also that all adiabatic approximations mentioned above are symmetric
(as they correspond to the Hessian of approximated exchange–correlation energy function-
als). In particular, proposition 2.8 guarantees that the solution formulas derived here apply to
the Dyson equation with these approximations under the sole condition that the ground state
density of the Kohn–Sham system is bounded.

13
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Remark (generalised gradient approximations). Unfortunately, the results presented here
do not apply to generalised gradient approximations (GGA) of the exchange–correlation oper-
ator, as these involve not only the pointwise values of the ground state density but also of its
gradient. At the moment, we do not know how to adapt the framework introduced here to the
GGA case, but we plan to address this question in the future.

Remark (absorption spectrum). It turns out that the ground state density of typical quantum
systems is not only bounded but also decays exponentially fast at infinity [1, 2, 33]. In this
case, the weighted density space L2ρ0

contains functions that can grow exponentially fast at
infinity. In particular, the polarisability tensor

Ajk (ω) =−Im〈rj, χ̂H (ω)rk〉

is a well-defined tempered distribution. Similarly, if the stability condition (2.20) holds, the
polarisability tensor of the solution χF also defines a tempered distribution.

As a final result, we present a simple sufficient criterion for the compactness property (2.24)
that applies to the aforementioned adiabatic approximations. As a consequence, theorem 2.7
shows that none of these adiabatic approximations are able to shift the ionisation threshold of
the Kohn–Sham system.

Proposition 2.9 (compactness criterion). Suppose that ρ0 ∈ L1(R3)∩L∞(R3) and that
the domain of H is continuously embedded in the classical Sobolev space H1(∆) = {Ψ ∈
L2(R3N) :

´
R3N |∇Ψ|2dr<∞}. Then for any F= FRPA +Fρ0 with Fρ0 satisfying

|Fρ0g(r) |≲ ρ0 (r)
δ |g(r) | for all g ∈ L21

ρ0

and some δ >−1, (2.29)

we have B∗FB ∈ B∞(D(H#),{Ψ0}⊥).

Remark (optimality of (2.29)). The condition δ >−1 in proposition 2.9 is optimal, as the
following example shows. Let N= 1 and define the adiabatic approximation Fρ0 as

(Fρ0 f)(r) = cρ0 (r)
−1 f(r) ,

for some c ∈ R. Since N= 1, the ground state density is simply ρ0(r) = |Ψ0(r)|2 and the oper-
ators B and B∗ reduce to

BΦ (r) = Ψ0 (r)Φ(r)−〈Ψ0,Φ〉ρ0 (r) and (B∗f)(r) = f(r)Ψ0 (r)−〈ρ0, f〉Ψ0 (r) .

Thus we have C = H2
# + 2cH#, which implies that

(C \DF)
2
= σess

1 (C) =
{
λ2 + 2cλ : λ ∈ σess

1 (H#)
}
6=
{
λ2 : λ ∈ σess

1 (H#)
}
= (C \D)

2
,

provided that c 6= 0 and σess
1 (H#) is non-empty.

Outline of the paper. We introduce some notation in the next paragraph. In the following
section, we recall some well-known results about self-adjoint operators, their quadratic forms,
and the associated Sobolev scale of spaces. These results are then used in section 4 to prove
the main results of this paper. In the appendices, we briefly discuss the optimality of weighted
density spaces as the domain and co-domain of the DDRF (appendix A), clarify the connection
between the Casida operator C and the usual formulation of the Casida equations from LR-
TDDFT (appendix B), and give a proof of estimate (2.28) (appendix C).
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2.4.1. Notation. We denote the set of non-negative real numbers by R+. For A and B scalar
quantities, A≲ B means that there is an irrelevant positive constant C such that |A|⩽ C|B|.
Occasionally, we also use A≲ϵ B to indicate the dependence of the implicit constant on the
additional parameter ϵ.

Let F be a Banach space, then we denote its norm by ‖·‖F, or simply by ‖·‖ if the space is
clear from the context. The set of linear continuous operators from F to another Banach space
G is denoted by B(F,G); the set of compact operators is denoted by B∞(F,G). The operator
norm is denoted by ‖T‖F,G or simply by ‖T‖ if the Banach spaces are clear from the context.
The kernel and the range of T are denoted, respectively, by kerT⊂ F and ran T⊂ G. We also
use rank T= dimran T for the rank of T. The anti-dual of a Banach space F, i.e. the space
of antilinear continuous functions from F to C endowed with the operator norm is denoted by
F⋆. For the Fourier transform of a function f : R→ F, we use the physics convention

f̂(ω) =
ˆ
R
f(t)ei tωdt. (2.30)

For any Hilbert spaceH, we adopt the convention that the inner-product 〈·, ·〉H is antilinear in
the first variable and linear in the second.

For 1⩽ p⩽∞, Lp(Rn) = Lp(Rn;C) denotes the standard Lp spaces of C-valued measur-
able functions with respect to the Lebesgue measure on Rn. We also use Lp(Rn)+ Lq(Rn) and
Lp(Rn)∩Lq(Rn) for the Banach spaces of Lebesgue-measurable functions with the norms

‖ f‖Lp+Lq := inf
f=fp+fq

{‖ fp‖Lp + ‖ fq‖Lq} and ‖ f‖Lp∩Lq :=max{‖ f‖Lp ,‖ f‖Lq} .

Lastly, we recall the definition of an operator-valued meromorphic function [17,
appendix C].

Definition 2.10 (meromorphic operator-valued function). Let D ⊂ C be open, then we say
that K :D→B(F,G) is a meromorphic operator-valued function if for any z0 ∈ D there exists
(i) a neighbourhood Uz0 ⊂D of z0, (ii) finitely many finite rank operators {Kj}j⩽M ⊂ B(F,G),
and (iii) a holomorphic function K0 : Uz0 →B(F,G) such that

K(z) = K0 (z)+
M∑
j=1

(z− z0)
−jKj for z ∈ Uz0 .

If Kj 6= 0 for some j⩾ 1, we say that z0 is a pole of K. In addition, if Kj = 0 for j⩾ 2, then we
say that z0 is a simple pole of K and define its rank as

rank z0 (K) = rank K1.

Moreover, we say thatD is the maximal domain of K if there exists no meromorphic extension
of K to a strictly larger connected domain.

3. Mathematical background

In this section we briefly recall some well-known facts about the scale of Sobolev spaces
associated to self-adjoint operators and their quadratic forms. We also use this short recap to
set-up some additional notation that will be used during the proofs from section 4. Thematerial
presented here can be found in standard references such as [28–30].
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3.1. Sobolev scale of spaces

Throughout this section, we let A : D(A)⊂H→H be some self-adjoint operator on a Hilbert
space H satisfying the inequality

〈Ψ,Aψ 〉⩾ ‖Ψ‖2 for any Ψ ∈ D(A) .

(In the case A⩾ 1− c for some c> 0, we replace A by A+ c everywhere in the discussion
below.) Then by the spectral theorem, there exists a measure space (X,ν), a unitary map U :
H→ L2(X,dν), and a real-valued ν-measurable function a : X→ [1,∞) such that

U(D(A)) = L2
(
X,a2dν

)
=

{
f ∈ L2 (X,dν) :

ˆ
X
| f(x) |2a(x)2 dν (x)<∞

}
,

and A acts on L2(X,dν) by multiplication by a, i.e.

(UAU∗f)(x) = a(x) f(x) .

We then define the Sobolev spaces induced by A as follows.

Definition (Sobolev spaces). For s⩾ 0, the Sobolev space of order s is the set

Hs (A) :=
{
Ψ ∈H : UΨ ∈ L2 (X,asdν)

}
endowed with the norm

‖Ψ‖2Hs(A) :=

ˆ
X
|UΨ(x) |2a(x)s dν (x) = ‖A s

2Ψ‖2. (3.1)

Moreover, the negative Sobolev space of order −s is defined as the anti-dual space of Hs(A),
i.e. the set

H−s (A) :=Hs (A)⋆ = {T :Hs (A)→ C antilinear and continuous}

endowed with the operator norm.

By the Riesz representation theorem, we can isometrically identifyH with its anti-dualH⋆

via the Riesz map

R :H→H⋆ Ψ 7→ RΨ = 〈·,Ψ〉H.

In this way, we have a natural chain of dense inclusions

. . .⊂Hs (A) . . .⊂Hm (A) . . .⊂H
R∼=H⋆. . .⊂H−m (A) . . .⊂H−s (A) . . . (s⩾ m⩾ 0) .

(3.2)

From (3.1), the operator As restricted to Hm(A) defines an isometric isomorphism between
Hm(A) and Hm−s(A) for any 0⩽ s⩽ m. Consequently, the adjoint map induces an isometric
isomorphism from Hs−m(A) to H−m(A). In particular, by the chain of inclusions in (3.2) and
using the commutation relations

AsAm = As+m = AmAs,
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the operator As can be uniquely extended to a continuous7 operator on the whole Sobolev scale
of spaces

As :H−∞(A) :=
⋃
m∈R

Hm(A)→H−∞(A) (for any s ∈ R).

Furthermore, the chain of inclusions in (3.2) also allow us to naturally define the operator

µ−A :Hs (A)→Hs−2 (A)

for any s ∈ R and µ ∈ C. A useful consequence of the spectral theorem is that the spectrum of
A is independent of the Sobolev scale used. More precisely, we have

Lemma 3.1 (inverse on Sobolev scale). Let µ ∈ C, then the operator µ−A is invertible in
B(Hs(A),Hs−2(A)) for some s ∈ R if and only if it is invertible for every s ∈ R.

Proof. First, we can use the Riesz representation theorem on L2(X,dν) to extend the unitary
map (given by the spectral theorem)U :H→ L2(X,dν) toU :H−s(A)→ L2(X,a−sdν) for any
s⩾ 0. More precisely, UT ∈ L2(X,a−sdν) is the unique operator satisfying

T(U∗g) =
ˆ
X
g(x)(UT)(x)dν (x) for any g ∈ L2 (X,asdν) .

Hence, the operator U(µ−A)U∗ acts on L(X,a−sdν) as pointwise multiplication by µ− a(x)
for any s ∈ R. One can now check that this operator is invertible if and only if |µ− a(x)|> δ
µ-a.e. for some δ > 0, which is equivalent to µ−A being invertible on H.

Let us conclude this section with a distributional version of Stone’s formula (see [28,
theorem VII.13]) that will be useful to establish the maximality of the meromorphic exten-
sions from theorem 2.1 and corollary 2.6.

Lemma 3.2 (Stone’s formula). Let A be a semi-bounded self-adjoint operator and RA(z) =
(z−A)−1 denote the resolvent of A. Then for any f ∈ C∞

c (R) we have

lim
η→0+

ˆ
R
f(µ)(RA (µ− iη)−RA (µ+ iη))dµ= 2π i

ˆ
R
f(λ)dPAλ,

where PAλ is the spectral projection-valued measure of A and the convergence is in the operator
norm on B(Hs(A),Hs+2(A)) for any s ∈ R.

Proof. Since (µ± iη−λ)−1 is uniformly bounded in λ ∈ R for η > 0 fixed, from Fubini’s
theorem we have
ˆ
R
f(µ)(RA (µ− iη)−RA (µ+ iη))dµ= 2i

ˆ
R
( f ∗ pη)(λ)dPAλ = 2i ( f ∗ pη)(A)

where pη(µ) =
η

µ2+η2 is the Poisson kernel. As g(A) commutes with A for any continuous
function g, it is enough to show that

lim
η→0+

‖A( f ∗ pη (A)−π f(A))‖B(H) = 0.

7 with respect to the inductive limit topology on H−∞(A).
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This now follows from the continuity of the spectral calculus and the estimate

|λ|
∣∣( f ∗ pη)(λ)−π f(λ)|≲ η

ˆ
R
|ω|
(
| f̂(ω)|+ |∂ω f̂(ω)|

)
dω (for any λ ∈ R),

which can be shown by using the Fourier transform of the Poisson kernel p̂η(ω) = π e−η|ω|.

3.2. Quadratic forms

Let us now introduce the quadratic form associated to a semi-bounded operator A and present
the KLMN theorem [29, theorem X.17]. For a proof, consult [29].

Definition (quadratic form). For a semi-bounded self-adjoint operator A satisfying A⩾ 1− c
for some c ∈ R, the associated quadratic form is the sesquilinear map qA :H1(A)×
H1(A)→ C defined as

qA (Ψ,Φ) = 〈(A+ c)
1
2 Ψ,(A+ c)

1
2 Φ〉− c〈Ψ,Φ〉.

The Sobolev space of order 1 is also called the form domain of A.

Note that, by definition,

Ψ 7→ qA (·,Ψ) = (A+ c)
1
2 (A+ c)

1
2 Ψ − cΨ = AΨ ∈H−1 (A) .

Next, let β :H1(A)×H1(A)→ C be another symmetric sesquilinear form. Then we say that
β is relatively bounded with respect to qA if there exists some 0< a< 1 and b> 0 such that

|β (Φ,Φ) |⩽ aqA (Φ,Φ)+ b‖Φ‖2 for any Φ ∈H1 (A) . (3.3)

With this definition, we can now state the KLMN theorem, which is essentially a quadratic
form version of the celebrated Kato–Rellich theorem.

Lemma 3.3 (KLMN theorem [29]). Let A be a self-adjoint operator satisfying A⩾ 1− c and
β be a symmetric sesquilinear form on H1(A) satisfying (3.3). Then, there exists a unique
self-adjoint operator B with the same form domain as A and satisfying

qB = qA+β. (3.4)

Moreover, B⩾ (1− a)(1− c)− b.

The proof of the KLMN theorem consists in using inequality (3.3) to show that there exists
α ∈ R such that the norms qB+α〈·, ·〉 and ‖(A+ c)

1
2 ·‖ are equivalent and exploit the one-

to-one relation between semi-bounded closed quadratic forms and semi-bounded self-adjoint
operators. In particular, using interpolation theory one can show that

Hs (A) =Hs (B) and ‖(B+α)
s
2 Φ‖ ∼ ‖(A+ c)

s
2 Φ‖ for any Φ ∈Hs (A) , (3.5)

provided that −1⩽ s⩽ 1. (The identity above means that these are the same subsets ofH for
s⩾ 0, and not simply isometric.)
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3.3. Reducing subspaces and block decomposition

We now recall the definition of reducing subspaces for unbounded self-adjoint operators and
the associated block decomposition. For the proofs of the results presented next, we refer to
[31, section 1.4]. As before, we assume that A : D(A)⊂H→H is self-adjoint.

Definition (invariant and reducing subspaces). We say that some closed subspace V⊂H
is an invariant subspace of A if A maps the intersection D(A)∩V to V. Moreover, we say that
V is a reducing subspace for A if both V and V⊥ are invariant and the decomposition

D(A) = (D(A)∩V)⊕
(
D(A)∩V⊥)

holds.

The main motivation for introducing the notion of reducing spaces is the following well-
known block decomposition.

Theorem 3.4 (block decomposition [31]). Suppose that V is a reducing subspace for A, then

A|V : D(A)∩V→ V and A|V⊥ : D(A)∩V⊥ → V⊥

are self-adjoint operators in V and V⊥, respectively, and we have A= A|V⊕A|V⊥ . In partic-
ular, we have the spectral decomposition

σ (A) = σ (A|V)∪σ (A|V⊥) ,

where σ(A|V) and σ(A|V⊥) are the spectra on V and V⊥, respectively.

While every invariant subspace is also reducing for bounded self-adjoint operators, this is
no longer true for unbounded self-adjoint operators. For the latter, we shall use the following
criterion for reducing subspaces.

Lemma 3.5 (criterion for reducing subspaces [31]). Let V⊂H be a closed subspace. Then
V is reducing for A if and only if V and V⊥ are invariant for A and the orthogonal projection
on V maps D(A) to itself.

4. Proofs

In this section, we present the proofs of the main results of this paper.

4.1. Proof of theorem 2.1

The first step in the proof of theorem 2.1 is to show that the operators B :HN → L21
ρ0

and

B∗ : L2ρ0
→HN are bounded. For the boundedness of B, we can use the estimate

BΦ(r) = N
ˆ
ΩN−1

Ψ0 (r,r2, . . .,rN)Φ(r,r2, . . .,rN)dµ(r2) . . .dµ(rN)⩽
√
ρ0 (r)

√
ρΦ (r) (4.1)
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for any Φ ∈ {Ψ0}⊥, and the fact that BΨ0 = 0. Moreover, by identifying L2ρ0
∼= (L21

ρ0

)⋆ via the

Riesz map on L2(Ω,dµ) and using the identity

〈BΦ,g〉L2(Ω,dµ) = 〈Φ,B∗g〉HN ,

we conclude that B∗ ∈ B(L2ρ0
,HN) by duality. Hence, recalling that

´
ρΦ(r)dµ(r) = N for any

normalised Φ, we have just proved the following proposition.

Proposition 4.1 (boundedness on weighted density spaces). The operators B and B∗

satisfy

‖B‖B
(
HN,L21/ρ0

) = ‖B∗‖B(L2ρ0 ,HN) ⩽ N.

In particular, χH : R→B(L2ρ0
,L21

ρ0

) is bounded and strongly continuous.

We can now complete the proof of theorem 2.1

Proof of theorem 2.1. Since χH is bounded and strongly continuous, its Fourier transform is
well-defined as a tempered distribution. Moreover, since χH is causal (i.e. χH(t) = 0 for t⩽ 0),
the Fourier transform is analytic on the upper half-plane {z ∈ C : Im(z)> 0}. From the spectral
Theorem and straightforward computations (see [15, section 2]), this analytic continuation is
given by

χ̂H (z) = B
(
(z−H#)

−1 − (z+H#)
−1
)
B∗.

Nownote that, since the single-particle excitation spectrumσ1(H#) is closed (thus Borelmeas-
urable), we can decompose the resolvent of H# in two terms:

(z−H#)
−1

= PH# (σ1 (H#))(z−H#)
−1

+PH# (R \σ1 (H#))(z−H#)
−1
.

From the definition of σ1(H#), the second term vanishes when multiplied by B on the left. In
particular, the spectral theorem yields

χ̂H (z) = B
ˆ
σ1(H#)

2λ
z2 −λ2

dPH#

λ B∗. (4.2)

Next, observe that the spectral gap assumption on H implies that the set {z ∈ C :±z 6∈
σ1(H#)} is open and connected. Thus the right-hand side of (4.2) defines the unique analytic
extension of χ̂H to this set. Moreover, for any isolated point λ0 ∈ σ1(H#), we have

χ̂H (z) =
2λ0

z2 −λ20
BPH# ({λ0})B∗ +B

ˆ
σ1(H#)\{λ0}

2λ
z2 −λ2

dPH#

λ B∗,

where the second term is analytic around λ0. In particular, χ̂H is meromorphic on

D := {z ∈ C :±z 6∈ σess
1 (H#)} . (4.3)

From the identity rank S= rank SS∗, we also obtain the rank equality

rank λ0 (χ̂H) = rank BPH# ({λ0})B∗ = rank BPH# ({λ0}) for any λ0 ∈ σdisc
1 (H#) .
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To conclude the proof, we need to show that D is the maximal domain of meromorphic con-
tinuation of χ̂H. So suppose that χ̂H is analytic around some λ0 ∈ R, then it is enough to show
that λ0 6∈ σ1(H#). Moreover, since χ̂H(z) = χ̂H(−z), we can assume (without loss of general-
ity) that λ0 ∈ R+. Then, define

T(z) := χ̂H (z)−B(z+H#)
−1B∗.

As the right-hand side is continuous close to λ0, Stone’s formula (see lemma 3.2) yields

0= lim
η→0+

ˆ
R
f(λ)(T(λ− iη)−T(λ+ iη))dλ= 2π iB

ˆ
R
f(λ)dPH#

λ B∗

for any f ∈ C∞
c (R) with support in Bϵ(λ0) for ϵ> 0 small enough. Choosing a sequence

fn converging monotonically to the indicator function on Bϵ(λ0)∩R and using the strong
convergence property of the spectral calculus (see [28, theorem VIII.5.(d)]), we find that
BPH#(Bϵ(λ0))B∗ = 0. Therefore, λ0 6∈ σ1(H#), which completes the proof.

Remark (regularity of χ̂H along the continuous spectrum). IfH has compact resolvent (e.g.
a Schrödinger operator with a trapping potential), then the maximal domain of meromorphic
continuation is the whole complex plane. However, for typical Hamiltonians in electronic
structure theory (e.g. the atomic and molecular Hamiltonians), the spectrum is divided into
discrete and continuous parts [30]. In some special cases, and for suitable f and g, the regular-
ity of the map ω 7→ 〈g, χ̂H(ω)f〉 along the continuous spectrum can be rigorously studied (see
[16]) via the celebrated limiting absorption principle [3, 17].

4.2. Proof of theorem 2.3

We split the proof of theorem 2.3 into two parts. In the first part, we properly define the Casida
operator and relate its resolvent to the inverse of the operator

C# (z) = z2H−1
# −H# − 2B∗FB.

In the second part, we show that χ̂H is given by the conjugation of B with C#(z)−1 via the
convolution property of the Fourier transform and a well-known resolvent identity.

4.2.1. The Casida operator. To properly define the Casida operator, we consider the quad-
ratic form β : D(H#)×D(H#)→ C defined as

(Ψ,Φ) 7→ β (Ψ,Φ) = 〈H
1
2
#Ψ,2B

∗FBH
1
2
#Φ〉.

Recall that we assumed F ∈ B(L21
ρ0

,L2ρ0
) to be symmetric, and

H# = H−E0
∣∣
{Ψ0}⊥ : D(H#) = D(H)∩{Ψ0}⊥ →{Ψ0}⊥ ,

whereΨ0 and E0 are the ground state and ground state energy of H. Therefore, we can use the
KLMN theorem to prove the following proposition.
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Proposition 4.2 (the Casida operator). There exists a unique self-adjoint operator C :
D(C)⊂ {Ψ0}⊥ →{Ψ0}⊥ such thatH1(C) = D(H#) and

qC (Ψ,Φ) = 〈H#Ψ,H#Φ〉+β (Ψ,Φ) for any Ψ,Φ ∈ D(H#) .

Moreover, we have

C ⩾
{
ω1 (ω1 − 2‖B∗FB‖) if ω1 ⩾ ‖B∗FB‖,
−‖B∗FB‖2 otherwise,

(4.4)

where ω1 = inf σ(H#)> 0.

Proof. Note that qH2
#
= 〈H·,H·〉 is the quadratic form of the positive operator

H2
# :H4 (H#)⊂ {Ψ0}⊥ →{Ψ0}⊥ .

Consequently, to apply the KLMN theorem, we just need to check that β is relatively bounded
with respect to qH2

#
. For this, we can use Cauchy–Schwarz and Young’s inequality to obtain

|〈H
1
2
#Ψ,2B

∗FBH
1
2
#Ψ〉|⩽ 2‖H 1

2Ψ‖2‖B∗FB‖⩽ 2‖H#Ψ‖‖Ψ‖‖B∗FB‖

⩽ a‖H#Ψ‖2 + a−1‖B∗FB‖2‖Ψ‖2

= aqH2
#
(Ψ,Ψ)+ a−1‖B∗FB‖2‖Ψ‖2 (4.5)

for any a> 0. To prove equation (4.4) we note that by equation (4.5),

qC (Ψ,Ψ) = ‖H#Ψ‖2 +β (Ψ,Ψ)⩾ ‖H#Ψ‖2 − 2‖H#Ψ‖‖B∗FB‖

for anyΨ ∈ D(H#)with ‖Ψ‖= 1. Thus by minimising the above expression over ‖H#Ψ‖⩾
ω1, we obtain equation (4.5).

The next step is to relate the Casida operator to the operator

C# (z) = z2H−1
# −H# − 2B∗FB with domain D(C# (z)) = D(H#) . (4.6)

Since H# is self-adjoint and the operators H−1
# and B∗FB are both bounded and symmetric,

the operator C#(z) is closed and normal. Formally, the operator C is given by

H2
# + 2H

1
2
#B

∗FBH
1
2
#.

We thus expect that

z2 −C = H
1
2
#C# (z)H

1
2
#

in an appropriate sense. Rigorously clarifying this statement is the goal of the next lemma.

Lemma 4.3 (the resolvent of C). Let C be the Casida operator defined according to proposi-
tion 4.2 and C#(z) be the operator defined above. Then z2 −C is invertible if and only if C#(z)
is invertible. In this case, the operator (z2 −C)−1 mapsH−1(H#) ontoH3(H#) and we have

C# (z)−1
= H

1
2
#

(
z2 −C

)−1
H

1
2
# ∈ B

(
{Ψ0}⊥ ,H2 (H#)

)
(4.7)
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Proof. LetH1(C) be the first Sobolev space associated with C. Then by lemma 3.1, a point z2

is in the resolvent set of C if and only if the extension z2 −C :H1(C)→H−1(C) is invertible.
Since H1(C) = D(H#) =H2(H#) (by proposition 4.2), this is equivalent to the map

z2 −C :H2 (H#)→H−2 (H#)

Φ 7→ z2〈·,Φ〉− qC (·,Φ) = z2〈·,Φ〉− 〈H#·,H#Φ〉− 〈H
1
2
#·,B

∗FBH
1
2
#Φ〉

being bijective (by the closed graph theorem). However, the right-hand side of the above is
equal to

qC#(z)

(
H

1
2
#·,H

1
2
#Φ
)
= H

1
2
#C# (z)H

1
2
#Φ,

where C#(z) is the unique extension of C#(z) in B(H1(H#),H−1(H#)). In particular, we
have

z2 −C = H
1
2
#C# (z)H

1
2
# as a map fromH2 (H#) to H−2 (H#) . (4.8)

Thus since H
1
2
# :Hs(H#)→Hs−1(H#) is an isomorphism for every s ∈ R, we conclude

that z2 −C is invertible on B(H2(H#),H−2(H#)) if and only if C#(z) is invertible on
B(H1(H#),H−1(H#)).

To show (4.7), we note that if either C#(z) or z2 −C is invertible, then from (4.8) we obtain

(
z2 −C

)−1
= H

− 1
2

# C# (z)−1H
− 1

2
# in B

(
H−2 (H#) ,H2 (H#)

)
. (4.9)

Since H
− 1

2
# C#(z)−1 maps {Ψ0}⊥ bijectively toH3(H#), equation (4.9) implies that(

z2 −C
)
Φ ∈H3 (H#) for any Φ ∈H−1 (H#) .

Equation (4.7) now follows by multiplying equation (4.9) by H
1
2
# on the left and on the right.

4.2.2. Proof of theorem 2.3. We are now in position to prove theorem 2.3. For this, we shall
use the following well-known resolvent identity.

Lemma 4.4 (first resolvent identity). Let C#(z) be the operator defined in (4.6). Then, if the
operators C#(z) and (z2H−1

# −H#) : D(H#)→{Ψ0}⊥ are both invertible, we have

C# (z)−1 −
(
z2H−1

# −H#

)−1
= 2C# (z)−1B∗FB

(
z2H−1

# −H#

)−1
(4.10)

= 2
(
z2H−1

# −H#

)−1
B∗FBC# (z)−1

. (4.11)

Proof of theorem 2.3. First, note that from the Dyson equation (1.1), the simple estimate
supt∈R‖χH(t)‖⩽ ‖B‖‖B∗‖= ‖B‖2, and Gronwall’s inequality we have

‖χF (t)‖⩽ ‖B‖2e∥B∥
2∥F∥t fort⩾ 0.
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In particular, the Fourier transform is well-defined and analytic for Im(z)> ‖B‖2‖F‖. In this
case, by the convolution property of the Fourier transform, we have

χ̂F (z) = χ̂H (z)+ χ̂H (z)Fχ̂F (z) , (4.12)

which is the frequency version of the Dyson equation.
The idea now is to find a representation formula for the inverse of the dielectric operator

ε(z) := 1− χ̂H (z)F= 1− 2B
(
z2H−1

# −H#

)−1
B∗F,

where the second equality comes from the expression

χ̂H (z) = B
(
(z−H#)

−1 − (z+H#)
−1
)
B∗ = 2B

(
z2H−1

# −H#

)−1
B∗.

For this, we can now use the resolvent identities from lemma 4.4. Precisely, let C#(z) be defined
as in equation (4.6). Thus since C is self-adjoint and bounded from below by −‖B∗FB‖2,
lemma 4.3 guarantees that C#(z) is invertible for any z with |Im(z)|⩾ ‖B∗FB‖. Similarly, the
operator

z2H−1
# −H# = H

− 1
2

#

(
z2 −H2

#

)
H

− 1
2

#

is invertible for any z with z2 6∈ (0,∞). We now claim that

ε(z)−1
= 1+ 2BC# (z)−1B∗F for any z with Im(z) large.

Indeed, from (4.10) we have(
1+ 2BC# (z)−1B∗F

)
ε(z)

= 1+ 2B

(
C# (z)−1 −

(
z2H−1

# −H#

)−1
− 2C# (z)−1B∗FB

(
z2H−1

# −H#

)−1
)

︸ ︷︷ ︸
=0

B∗F= 1.

(4.13)

On the other hand, equation (4.11) implies that ε(z)(1+ 2BC#(z)−1B∗) = 1 as well, which
proves our claim. To conclude, we note that from the (frequency) Dyson equation (4.12) we
have

χ̂F (z) = ε(z)−1 χ̂H (z) =
(
1+ 2BC# (z)−1B∗F

)
2B
(
z2H−1

# −H#

)−1
B∗

= 2B

((
z2H−1

# −H#

)−1
+ 2C# (z)−1B∗FB

(
z2H−1

# +H#

)−1
)
B∗

(4.10)
= 2BC# (z)−1B∗.

Thus theorem 2.3 follows from the equation above and lemma 4.3.
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4.3. Proof of corollaries 2.4–2.6

We now present the proofs of the corollaries from theorem 2.3. We start with the proof of
corollary 2.4.

Proof of corollary 2.4. First, note that the power series of the sinc function is composed only
of even terms. Thus the function

λ ∈ C 7→ f(λ) := sinc
(√

λ
)

defines an analytic function in the whole complex plane. Moreover, this function is bounded
on any half-line {λ ∈ R : λ⩾−c} for c> 0. In particular, the operator f(t2C) defined via the
spectral theorem belongs to B({Ψ0}⊥) for any t ∈ R. In fact, by taking any function g : R→
[1,∞) satisfying g(λ)∼

√
λ for λ big we can re-write

f
(
t2C
)
= g(C)−

1
2 h(t,C)g(C)−

1
2 , (4.14)

where h(t,λ) = g(λ)f(t2λ) is bounded on σ(C). So by recalling thatHs(C) =H2s(H#) for any
−1⩽ s⩽ 1 (because H1(C) = D(H#) with equivalence of norms), equation (4.14) implies
that

f
(
t2C
)
∈ B

(
H−1 (H#) ,H1 (H#)

)
.

Therefore, the operator-valued map

t ∈ R 7→ χ̃(t) :=−2θ (t) tB∗H
1
2
#f
(
t2C
)
H

1
2
#B (4.15)

defines a strongly continuous family of operators in B(L2ρ0
,L21

ρ0

). To conclude the proof, we

can use the identity

ˆ ∞

0

sin(λt)
λ

ei(ω+iη)tdt=
−1

(ω+ iη)2 −λ2
(valid for any η > |Im(λ)|)

to show that the Fourier transform of χF(t)e−ηt and χ̃(t)e−iηt coincide for η large enough, and
therefore, χ̃(t) = χF(t) for every t ∈ R. (Note that equality holds everywhere because both
functions are strongly continuous.)

Next, let us turn to the proof of the stability criterion.

Proof of corollary 2.5. First, note that

M= H# + 2B∗FB=−C (0) ,

where C#(z) is the operator defined in (4.6). In particular, by lemma 4.3 we have 0 ∈ σ(C) if
and only if 0 ∈ σ(M). Moreover, from the proof of lemma 4.3 we know that

qC (Ψ,Ψ) = qM
(
H

1
2
#Ψ,H

1
2
#Ψ
)

for any Ψ ∈ D(H#) . (4.16)

Since a self-adjoint operator is non-negative if and only if its quadratic form is non-negative,

the above identity (and the fact that H
1
2
# : D(H#)→H1(H#) is bijective) implies that C ⩾ 0

if and only ifM⩾ 0, which completes the proof.
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Remark (quantitative stability). To prove estimate (2.21), one can directly use (4.16). To
prove estimate (2.22), we let C ⩾ δ and note that from (4.16) and the definition ofM we have

qM (Ψ,Ψ)⩾max
{
δ‖H− 1

2
# Ψ‖2,‖H

1
2
#Ψ‖2 − 2‖B∗FB‖‖Ψ‖2

}
.

Combining this estimate with the inequality

‖H
1
2
#Ψ‖⩾

(
‖H− 1

2
# Ψ‖

)−1
〈H

1
2
#Ψ,H

− 1
2

# Ψ〉= ‖H− 1
2

# Ψ‖‖Ψ‖2

and minimising over ‖H− 1
2

# Ψ‖ ∈ R+ for normalised ‖Ψ‖= 1 yields (2.22).

Lastly, we present the proof of corollary 2.6.

Proof of corollary 2.6. Let us define

χ̃(z) := BH
1
2
#

ˆ
σ1(C)

2
z2 −λ

dPC
λH

1
2
#B

∗.

Then by multiplying and dividing by g(C) 1
2 as we did in equation (4.14), we see that χ̃(z) is

bounded on B(L2ρ0
,L21

ρ0

) for any z2 6∈ σ1(C). Moreover, χ̃(z) is meromorphic on

DF =
{
z ∈ C : z2 6∈ σess

1 (C)
}
, (4.17)

and its poles are located at {z ∈ C : z2 ∈ σdisc
1 (C)}. From the spectral gap assumption on σ1(C),

the open set DF is connected. Thus since χ̂F(z) = χ̃(z) for Im(z) big enough, the function χ̃
is the unique meromorphic extension of χ̂F to DF.

To show that this extension is maximal, we can now use Stone’s formula as we did in the
proof of theorem 2.1. Precisely, let µ0 ∈ Cwith µ2

0 ∈ R and suppose that χ̂F can be analytically
extended to a neighbourhood U of µ0. Then it suffices to show that µ2

0 6∈ σ1(C). In the case
µ2
0 > 0, we can assume that U does not intersect the imaginary axis and define

α± (µ,η) =−µ+
√
µ2 ± iη, (4.18)

where we choose the branch of the square root such that limη→0α
±(η,µ) = 0. Note that α±

is continuous in a neighbourhood of η= 0 and µ ∈ U. Thus from the continuity of χ̂F on U
and Stone’s formula in lemma 3.2 we have

0= lim
η→0+

ˆ
R+

2µf
(
µ2
)(
χ̂F
(
µ+α+ (µ,η)

)
− χ̂F

(
µ+α− (µ,η)

))
dµ

= lim
η→0+

BH
1
2
#

ˆ
R+

2µf
(
µ2
)((

µ2 + iη−C
)−1 −

(
µ2 − iη−C

)−1
)
dµH

1
2
#B

∗

= BH
1
2
#

ˆ
R
f(µ)dPCµH

1
2
#B

∗

for any f ∈ C∞
c (R) with support on {λ2 ∈ U∩R}. As in the proof of theorem 2.1, we can

now use the strong-convergence property of the functional spectral calculus to conclude that
µ2
0 6∈ σ1(C).
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In the case µ2
0 < 0, we can choose the neighbourhoodU so thatU does not intersect the real

axis. By defining α±(µ,η) via (4.18) with the opposite branch of the square root, and using
similar arguments, one can prove that µ2

0 6∈ σ1(C). Finally, if µ0 = 0, then µ0 is at most an
isolated point in σ1(C) by the preceding arguments. In this case, however, µ0 would be a pole
of χ̂F, which is not possible because we assumed that χ̂F is bounded around µ0. Therefore,
µ2
0 6∈ σ1(C), which concludes the proof.

4.4. Proof of theorem 2.7

For the proof of theorem 2.7, it is more convenient to work with the single-particle excitation
spectrum of H2

# than of H#, where the former is defined as

σ1
(
H2

#

)
:=
{
λ ∈ R : BPH

2
# (Bϵ (λ)) 6= 0 for any ϵ > 0 small

}
.

More precisely, note that from the definitions of D and DF (see (2.13) and (2.23)), the proof
of theorem 2.7 is done if we show that

σess
1 (C) = σess

1

(
H2

#

)
, (4.19)

where the essential part of σ1(H2
#) is defined in the same way as forH#. For this, the first step

is the following lemma.

Lemma 4.5 (reducing subspaces of H2
# and C). Let

VH := PH
2
#
(
σ1
(
H2

#

))
and VC := PC (σ1 (C)) . (4.20)

Then VH and VC are reducing subspaces for both H2
# and C and we have

σ1 (C)⊂ σ (C|VH) and σ1
(
H2

#

)
⊂ σ

(
H2

#|VC

)
. (4.21)

Proof. From the spectral theorem, VH and VC are clearly reducing subspaces for H2
# and C,

respectively. Let us then show that VH is reducing for C. First, we claim that

D
(
H2

#

)
∩V⊥

H = D(C)∩V⊥
H and H2

#|D(H2
#)∩V⊥

H
= C|D(H2

#)∩V⊥
H
. (4.22)

To prove this claim, first note that there exists a sequence {(λj, ϵj)}j∈N ⊂ R× (0,1] such that

BPH
2
#
(
Bϵj (λj)

)
= 0 for any j and lim

m→∞

m∑
j=1

PH
2
#
(
Bϵj (λj)

)
= PH

2
#
(
R \σ1

(
H2

#

))
=: PV⊥

H

in the strong sense. As a consequence,

BPV⊥
H
= 0 and PV⊥

H
B∗ = 0. (4.23)

Next, recall that

qC (·, ·) = qH2
#
(·, ·)+ 2〈H

1
2
#·,B

∗FBH
1
2
#·〉.
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Thus since PV⊥
H
= PH

2
#(R \σ1(H2

#)) commutes with H
1
2
#, equation (4.23) implies that

qC
(
Ψ,PV⊥

H
Φ
)
= qH2

#

(
Ψ,PV⊥

H
Φ
)
= qH2

#

(
PV⊥

H
Ψ,Φ

)
= qC

(
PV⊥

H
Ψ,Φ

)
(4.24)

for anyΨ,Φ ∈ D(H#). From the first identity in (4.24), we see that (4.22) holds. From the last
identity in (4.24), we find that PV⊥

H
maps D(C) to itself and VH and V⊥

H are invariant subspaces
for C. We thus conclude from lemma 3.5 that VH is a reducing subspace for C.

To prove the first identity in (4.21), we now let λ 6∈ σ(C|VH) and show that λ 6∈ σ1(C). So
first, as σ(C|VH) is closed, we can find ϵ> 0 such thatBϵ(λ)∩σ(C|VH) = ∅. Thus from the block
decomposition in theorem 3.4, we must have ran PC(Bϵ(λ))⊂ V⊥

H . But since PV⊥
H
commutes

with H#, we find that

BH
1
2
#P

C (Bϵ (λ)) = BH
1
2
#PV⊥

H
PC (Bϵ (λ)) = BPV⊥

H
H

1
2
#P

C (Bϵ (λ))
(4.23)
= 0,

which implies that λ 6∈ σ1(C) by definition.
Finally, to prove that VC is reducing for H2

# and that the second inclusion in (4.21) holds,
we can reverse the roles of C and H2

#. More precisely, we let α> 0 be big enough (e.g. α >
‖B∗FB‖2 + 1 will do) and note that

qH2
#
(·, ·) = qC (·, ·)−〈(C+α)

1
4 ·, B̃∗FB̃(C+α)

1
4 ·〉,

σ1
(
H2

#

)
=
{
λ ∈ R : B̃(C+α)

1
4 PH

2
# (Bϵ (λ)) 6= 0 for small ϵ > 0

}
, and

σ1 (C) =
{
λ ∈ R : B̃PC (Bϵ (λ)) 6= 0 for small ϵ > 0

}
,

where

B̃ := BH
1
2
# (C+α)

− 1
4 (4.25)

is bounded on {Ψ0}⊥ because H 1
2 (C) =H1(H#). So repeating the same steps from before

with the roles of C and H2
# exchanged, the result follows.

Next, we use the compactness assumption from theorem 2.7 to show that the essential
spectrum of C|VH ,respectively, C|VC is equal to the essential spectrum of H2

#|VH , respectively,
H2

#|VC .

Lemma 4.6 (invariance of essential spectrum). Suppose that B∗FB ∈ B∞(D(H#),{Ψ0}⊥),
then

σess (C|VH) = σess
(
H2

#|VH
)

and σess
(
H2

#|VC

)
= σess (C|VC ) . (4.26)

Proof. First, note that from lemma 4.3 and the resolvent identity in lemma 4.4 we have

(µ+ C)−1
=
(
µ+H2

#

)−1
+(µ+ C)−1H

1
2
#B

∗FBH
1
2
#

(
µ+H2

#

)−1
(4.27)

as a bounded operator from H−1(H#) to H3(H#) for any µ> 0 big enough. In particular,
by recalling the chain of inclusions in equation (3.2), identity (4.27) holds in B({Ψ0}⊥).
Furthermore, from lemma 4.5 we have the block decomposition

(µ+ C)−1 =

(µ+H2
#

)−1|V⊥
H

0

0
(
µ+H2

#

)−1|VH +(µ+ C)−1H
1
2
#B

∗FBH
1
2
#

(
µ+H2

#

)−1|VH

 .
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Since B∗FB ∈ B∞(D(H#),{Ψ0}⊥), the second term in (4.27) is compact in B({Ψ0}⊥).
Therefore, from Weyl’s criterion, we conclude that

σess
(
(µ+ C)−1|VH

)
= σess

((
µ+H2

#

)−1|VH
)
.

Moreover, a similar argument shows that

σess
(
(µ+ C)−1|VC

)
= σess

((
µ+H2

#

)−1|VC

)
.

Equation (4.26) now follows from the relations σ( f(A)) = f(σ(A)) and ker f(λ)− f(A) =
kerλ−A (for injective f ), which is a well-known corollary of the spectral theorem.

Remark (weaker compactness assumption). From lemma 4.3 and the proof above,
the weaker assumption B∗FB ∈ B∞

(
H3(H#),H−2(H#)

)
is actually enough to prove the-

orem 2.7.

We can now complete the proof of theorem 2.7.

Proof of theorem 2.7. Since σ1 is closed, from the spectral theorem and the definitions of VC
and VH we have

σ1 (C) = σ (C|VC ) and σ1
(
H2

#

)
= σ

(
H2

#|VH
)
.

In particular, we have

σess
1 (C) = σess (C|VC )

(4.26)
= σess

(
H2

#|VC

)
and σess

1

(
H2

#

)
= σess

(
H2

#|VH
) (4.26)

= σess (C|VH) .

Hence to conclude the proof, it is enough to show that

σess
1 (C)⊂ σess (C|VH) and σess

1

(
H2

#

)
⊂ σess

(
H2

#|VC

)
. (4.28)

So suppose that λ 6∈ σess(C|VH). Then λ can be, at most, an isolated point in the spectrum of
C|VH , which implies that

PC (Bϵ (λ)) = PC|VH ({λ})+P
C|

V⊥H (Bϵ (λ)) ( for ϵ > 0 small).

From the fact that PV⊥
H
commutes with H# and BPV⊥

H
= 0 (see equation (4.23)), we find that

rank BH
1
2
#P

C (Bϵ (λ)) = rank BH
1
2
#P

C|VH ({λ})⩽ rank PC|VH ({λ})<∞,

which shows that λ 6∈ σess
1 (C). The second inclusion in (4.28) follows from the same arguments

with the roles of H2
# and C interchanged.
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4.5. Proof of proposition 2.9

For the proof of proposition 2.9, we shall use the following version of the Rellich–Kondrachov
(aka compact Sobolev embedding) theorem.

Lemma 4.7 (Rellich–Kondrachov theorem). Let {Ψj}j∈N ⊂H1(∆) = {Ψ : Rn → C :
‖Ψ‖L2(Rn) + ‖∇Ψ‖L2(Rn) <∞} be a bounded sequence. Then we can extract a subsequence
such that for any Ω⊂ Rn with finite (Lebesgue) measure, we have

ˆ
Ω

|Φj (r)−Φk (r) |2dr→ 0 as min{j,k}→∞. (4.29)

Proof. By the standard compact Sobolev embedding (see [18, theorem 1, section 5.7]) and a
standard diagonal argument, we can extract a subsequence such that (4.29) holds for Ω= BM
for any radius M> 0. Thus from Hölder’s inequality,

ˆ
Ω

|Φj−Φk|2dr≲
ˆ
Ω∩BM

|Φj−Φk|2dr+ |Ω \BM|1−
2
p ‖Φj−Φk‖

2
p

Lp for p ∈ [2,∞] .

From the classical Sobolev embedding, the norms ‖Φj−Φk‖Lp are uniformly bounded (in
j,k) for any 2< p⩽ 2n

n−2 . So choosing M> 0 arbitrarily large, the second term can be made
arbitrarily small, which completes the proof.

Proof of proposition 2.9. For the RPA, we have B∗FRPAB= PΨ⊥
0
T, where T is an integral

operator with integral kernel given by

T(r1, ..,rN,r
′
1, . . .,r

′
N) = N

N∑
j=1

Ψ0 (r1, . . .,rN)Ψ0 (r ′1, . . .,r
′
N)

|rj− r ′1|
.

Then from Cauchy–Schwarz,

‖T‖2L2(R3N×R3N) ≲
ˆ
R6

ρ0 (r)ρ0 (r ′)
|r− r ′|2

drdr ′ ≲ ‖ρ0‖2L1∩L∞‖| · |−2‖L1+L∞ <∞,

which implies that T is Hilbert–Schmidt, and therefore compact (even in B∞({Ψ0}⊥).
For the operator Fρ0 , we first note that B

∗Fρ0B= B∗Fρ0SPΨ⊥
0
where

SΦ(r) = N
ˆ
R3N−3

Ψ0 (r,r2, . . .,rN)Φ(r,r2, . . .,rN)dr2. . .drN.

In particular, from the assumption that D(H#) is continuously embedded in H1(∆), it is
enough to show that for any bounded sequence {Φj}j∈N inH1(∆), there exists a subsequence
that satisfies (after re-labelling the indices)

‖Fρ0S(Φj−Φk)‖2L2ρ0 → 0 as min{j,k}→∞. (4.30)

To find such a subsequence, we apply the Rellich–Kondrachov theorem (lemma 4.7). Precisely,
let {Φj} be a subsequence satisfying (4.29) and define

Iϵ :=
{
r ∈ R3 : ρ0 (r)> ϵ

}
.
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Then by the Cauchy–Schwarz inequality (as in (4.1)) and assumption (2.29) we obtain

∥Fρ0S
(
Φj−Φj

)
∥2L2ρ0

≲
ˆ
R3

ρ0 (r)
2δ+1

∣∣∣∣ˆ
R3N−3

Ψ0 (r, r̃)
(
Φj (r, r̃)−Φk (r, r̃)

)
dr̃

∣∣∣∣2dr
≲
ˆ
R3\Iϵ

ρ0 (r)
2δ+2 ρΦj−Φk (r)dr+ ∥ρ0∥2δ+2

L∞

ˆ
Iϵ×BM

∣∣Φj (r, r̃)−Φk (r, r̃)
∣∣2drdr̃

+

ˆ
Iϵ

ρ0 (r)
2δ+1

∣∣∣∣ˆ
R3N−3\BM

Ψ0 (r, r̃)
(
Φj−Φk

)
(r, r̃)dr̃

∣∣∣∣2dr,
where BM ⊂ R3N−3 is the ball of radius M centred at the origin. From the definition of Iϵ, the
first term is bounded by ≲ ϵ2δ+2. Moreover, the R3-measure of Iϵ is finite (because ρ0 ∈ L1)
and the second term vanishes as min{j,k}→∞ by (4.29). Lastly, we can bound the third
term by

ˆ
Iϵ

ρ0 (r)
2δ+1

(ˆ
R3N−3\BM

Ψ0 (r, r̃)(Φj−Φk)(r, r̃)dr̃

)2

dr

⩽max
{
ϵ−2δ−1,‖ρ0‖2δ+1

L∞
}ˆ

Iϵ

ρ0,M (r)ρΦj−Φk (r)dr⩽ C(ϵ,ρ0)‖ρ0,M‖Lp‖ρΦj−Φk‖Lq

for any p−1 + q−1 = 1, where

ρ0,M (r) =
ˆ
R3N−3\BM

|Ψ0 (r, r̃) |2dr̃.

Therefore, from the inequality

‖∇√
ρΦ‖L2(R3) ≲ ‖∇Φ‖L2(R3N) (see [20] for a proof)

and the classical Sobolev embedding in R3, the norms ‖ρΦj−Φk‖Lq(R3) are uniformly bounded
for any 1⩽ q⩽ 3. Consequently, by dominated convergence (recall that ρ ∈ L1 ∩L∞), the last
term can be made arbitrarily small by choosing M large.

Data availability statement

No new data were created or analysed in this study.

Appendix A. Optimality of weighted density spaces

We have shown that χH(t) ∈ B(E⋆,E) for the spaces E= L21
ρ0

and E= L1(Ω,dµ) (see

equation (4.1)). In addition, if ρ0 ∈ L1 ∩L∞, then we can also choose E= L1(Ω,dµ)∩
L2(Ω,dµ) by Hölder’s inequality. Moreover, in this case we have the inclusions

L21
ρ0

⊂ L1 (Ω,dµ)∩L2 (Ω,dµ)⊂ L1 (Ω,dµ) .

Hence a natural question is whether E= L21
ρ0

is a minimal space for which χH ∈

Cs
(
R,B(E⋆,E)

)
. This question is not only natural but also relevant because a minimal E yields

a maximal space of allowed adiabatic approximations B(E,E⋆).
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We now give a partial answer to this question. The idea is the following. Looking back at
the definition of χH , we see from a duality argument that χH(t) ∈ B(E⋆,E) as long as we can
show that B : {Ψ0}⊥ → E is bounded. Thus a reasonable approach is to look for a minimal
subspace E for which B : {Ψ0}⊥ → E is bounded. It turns out that E= L21

ρ0

is minimal among

a general class of function spaces.

Proposition A.1 (minimality of L21
ρ0

). Let E be a Banach space of µ-measurable functions

such that

(i) ρ0 ∈ E and
(ii) E has the lattice property , i.e. for any measurable g with |g|⩽ | f | a.e. for some f ∈ E, we

have g ∈ E and ‖g‖E ⩽ ‖ f‖E.

Then if B : {Ψ0}⊥ → E is bounded and E⊂ L21
ρ0

, we have E= L21
ρ0

.

Proof. Let f ∈ L21
ρ0

and define Φf := B∗| f | ∈ {Ψ0}⊥. Then the function

BΦf = | f(r) |+N(N− 1)
ˆ
ΩN−1

| f(r2) |
|Ψ0 (r,r2, . . .,rN) |2

ρ0 (r)
dµ(r2) . . .dµ(rN)−N2〈1, f〉ρ0 (r)

belongs to E by assumption. But since ρ0 ∈ E, we have | f |⩽ BΦf+N2〈1, f〉ρ0 ∈ E, which
implies that f ∈ E by the lattice property.

In particular, we see that the space L21
ρ0

is minimal over the large class of Banach function

spaces [26, chapter 6].

Remark (reduced weighted density spaces). The weighted density space L21
ρ0

is in fact the

range of the operator B when extended to the whole tensor product space ⊗N
j=1L

2(Ω,dµ)

via equation (2.8). When restricting this extension to the orthogonal complement {Ψ0}⊥ on
⊗N
j=1L

2(Ω,dµ), the range of B is given by the annihilator of 1 ∈ L2ρ0
, i.e.

1⊥ :=

{
f ∈ L21

ρ0

:

ˆ
Ω

f(r)dµ(r) = 0

}
.

In particular, we could replace the spaces L21
ρ0

and L2ρ0
, respectively, by 1⊥ and the quotient

space

(
1⊥
)⋆

= L2ρ0
/1= {[ f ] : f ∼ g if and only if f(r)− g(r) = constant µ -a.e.}

with the induced norm. This choice of spaces incorporates the fact that possible variations of
the density have zero average, thus preserving the number of particles in the system, and the
fact that potentials differing by a constant give the same variation of the density. The main
reason for working with the spaces L21

ρ0

and L2ρ0
instead is that they simplify the presentation.
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Appendix B. The Casida equations

In this section, we clarify how the Casida operator

C = H2
# + 2H

1
2
#B

∗FBH
1
2
#

is related to the usual Casida matrix equations appearing in the physics literature [11].
For this, let us assume that the Hamiltonian H can be written as

H=
N∑
j=1

1⊗ . . .

jth position︷︸︸︷
h . . .⊗ 1,

where 1 is the identity operator in the single-particle space L2(Ω,dµ) and h is a self-adjoint
operator in L2(Ω,dµ). Let us also assume that h admits an orthonormal basis of eigenfunctions
{ϕj}j∈N with eigenvalues {λj}j∈N. Under these assumptions, the set of Slater determinants

{ΦI = ϕi1 ∧ . . .∧ϕiN}I∈I , where I :=
{
(i1, . . ., iN) ∈ NN such that i1 < i2. . . < iN

}
and ϕi1 ∧ . . .ϕiN denotes the normalised antisymmetric tensor product of {ϕi}i∈I, is an
orthonormal basis on the N-body wavefunction space HN satisfying

HΦI =
N∑
j=1

λij︸ ︷︷ ︸
=:EI

ΦI. (B.1)

As a consequence, the spectral gap assumption on H implies that λN+1 > λN and the unique
(up to phase) normalised ground state of H is given by the Slater determinant

Ψ0 =ΦI0 , where I0 = (1, . . .,N) .

We now want to write down the Casida operator C in the basis of Slater determinants
{ΦI}I∈I . To this end, we first note that any Slater determinant containing at least two eigen-
functions with eigenvalue greater than λN (i.e. two excited orbitals) is on the kernel of the
operator B (see (2.8)). More precisely, if we define

I2 := {I= (i1, . . ., iN) ∈ I : iN−1 > N}

then we have BΦI = 0 for any I ∈ I2. In particular,

〈ΦI,CΦJ〉= 〈ΦI,H
2
#ΦI〉+ 〈BΦI,FBΦJ〉= ωIωJδI,J, if either I ∈ I2 or J ∈ J2,

where δI,J = 1 if I= J and 0 otherwise, and ωI =
∑N

j=1λij −λj = EI−E0 > 0 is the excitation
energy of the state ΦI.

On the other hand, for Slater determinants with a single excited orbital, i.e.

Φj,k = ϕ1 ∧ ..ϕj−1 ∧ϕj+1. . .∧ϕN ∧ϕk for some j ⩽ N and k> N,

we have

BΦj,k = ϕjϕk. (B.2)
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Therefore, from equations (B.1) and (B.2) we conclude that

〈Φj,k,CΦi,ℓ〉= 〈Φj,k,H
2
#Φi,ℓ〉+ 〈BΦj,k,FBΦi,ℓ〉

=

=:Ωjk,iℓ︷ ︸︸ ︷
ωj,kωi,ℓδj,iδk,ℓ + 2

√
ωj,k

√
ωi,ℓ 〈ϕjϕk,Fϕiϕℓ〉︸ ︷︷ ︸

=:Kjk,iℓ

, (B.3)

where ωj,k = λk−λj > 0 is the (single-particle) excitation energy of the state Φj,k.
The matrices Kjk,iℓ and Ωjk,iℓ are respectively the adiabatic (frequency-independent) ver-

sions of the coupling matrix [11, section 4.1] and of the Ω(ω) matrix [11, equations (4.33)
and (4.35)] appearing in Casida’s original work8. This establishes the connection between the
Casida operator C and the celebrated Casida equations used to compute approximations to the
excitation energies and oscillator strengths of interacting quantum systems.

Appendix C. Local density approximation of exchange–correlation

In this section, we show that estimate (2.28) holds for the adiabatic local density approximation
of the exchange–correlation operator with PW92 correlation.

For the (Dirac) exchange energy density, it is immediate to see that

d2
(
ρεHEGx (ρ)

)
dρ2

∣∣∣∣
ρ=ρ0(r)

=−4C
9
ρ0 (r)

− 2
3 ≲ ‖ρ0‖

1
6
L∞ρ0 (r)

− 5
6 ,

which establishes estimate (2.28) for the exchange part.
For the (PW92) correlation part, we re-write the correlation energy density as

ρεPW92
c (ρ) = α(ρ) log(1+β (ρ)) , (C.1)

where

α(ρ) =−2A
(
ρ+α1ρ

2
3

)
, β (ρ) =

1

β1ρ
− 1

6 +β2ρ
− 1

3 +β3ρ−
1
2 +β4ρ

− 1+P
3

,

and we recall that all constants are positive. Hence, by taking derivatives we find that

α(ρ)≲ ρ+ ρ
2
3 , α̇(ρ)≲ 1+ ρ−

1
3 , α̈(ρ)≲ ρ−

4
3 , (C.2)

and

0⩽ β (ρ)≲ ρmax{ 1
2 ,

1+P
3 }, β̇ (ρ)≲ ρmax{ 1

2 ,
1+P
3 }−1, β̈ (ρ)≲ ρmax{ 1

2 ,
1+P
3 }−2. (C.3)

From the upper and lower bound on β(ρ), we then have

0⩽ log(1+β (ρ))≲ ρmax{ 1
2 ,

1+P
3 } and

1
1+β (ρ)

≲ 1. (C.4)

8 See also [22, equation (4.74)], where the different factor of 4 comes from the closed shell assumption and the spin
degrees of freedom.
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We can now take two derivatives in (C.1), and use estimates (C.2)–(C.4) to conclude that

d2
(
ρεHEGxc (ρ)

)
dρ2

∣∣∣∣
ρ=ρ0(r)

= α̈(ρ0 (t)) log(1+β (ρ0 (r)))︸ ︷︷ ︸
≲ρ0(r)

max{ 1
2
, 1+P

3 }− 4
3

+ 2
α̇(ρ0 (r)) β̇ (ρ0 (t))

1+β (ρ0 (r))︸ ︷︷ ︸
≲
(
1+ρ0(r)

1
3

)
ρ0(r)

max{ 1
2
, 1+P

3 }− 4
3

+
α(ρ0 (t)) β̈ (ρ0 (r))

1+β (ρ0 (t))︸ ︷︷ ︸
≲(1+ρ0(r)

1
3 )ρ0(r)

max{ 1
2
, 1+P

3 }− 4
3

−
α
(
ρ0(t)

)
β̇
(
ρ0(t)

)2
(1+β

(
ρ0(r)

)
)2︸ ︷︷ ︸

≲(1+ρ0(r)
1
3 )ρ0(r)

2max{ 1
2
, 1+P

3 }− 4
3

≲
(
1+ ∥ρ0∥

1
3
L∞ + ∥ρ0∥

max{ 1
2 ,

1+P
3 }

L∞ + ∥ρ0∥
max{ 1

2 ,
1+P
3 }+ 1

3
L∞

)
ρ0(r)

max{ 1
2 ,

1+P
3 }− 4

3 ,

which proves (2.28).
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[26] Pick L, Kufner A, John O and Fučík S 2013 Function Spaces 2nd edn (De Gruyter
Series in Nonlinear Analysis and Applications vol 1) (De Gruyter) (https://doi.org/
10.1515/9783110250428)

[27] Pusateri F and Sigal I M 2021 Long-time behaviour of time-dependent density functional theory
Arch. Ration. Mech. Anal. 241 447–73

[28] Reed M and Simon B 1972 Methods of Modern Mathematical Physics. I. Functional Analysis
(Academic) (https://doi.org/10.1016/b978-0-12-585001-8.x5001-6)

[29] Reed M and Simon B 1975 Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-
Adjointness (Academic, Harcourt Brace Jovanovich, Publishers)

[30] Reed M and Simon B 1978 Methods of Modern Mathematical Physics. IV. Analysis of Operators
(Academic, Harcourt Brace Jovanovich, Publishers)

[31] Schmüdgen K 2012 Unbounded Self-Adjoint Operators on Hilbert Space (Graduate Texts in
Mathematics vol 265) (Springer) (https://doi.org/10.1007/978-94-007-4753-1)

[32] Schwinn K, Zapata F, Levitt A, Cancès E Luppi E and Toulouse J 2022 Photoionization and core
resonances from range-separated density-functional theory: general formalism and example of
the beryllium atom J. Chem. Phys. 156 224106

[33] Simon B 1982 Schrödinger semigroups Bull. Am. Math. Soc. 7 447–526
[34] Sprengel M, Ciaramella G and Borz̀ı A 2017 A theoretical investigation of time-dependent Kohn-

Sham equations SIAM J. Math. Anal. 49 1681–704
[35] Thouless D J 1961 Vibrational states of nuclei in the random phase approximation Nucl. Phys.

22 78–95
[36] Ullrich C 2012 Time-Dependent Density-Functional Theory: Concepts and

Applications (Oxford Graduate Texts) (Oxford University Press) (https://doi.org/
10.1093/acprof:oso/9780199563029.001.0001)
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