This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
ACCEPTED MANUSCRIPT The following article is Open access

Migdal-Eliashberg superconductivity in a Kondo lattice

and

Accepted Manuscript online 25 April 2024 © 2024 The Author(s). Published by IOP Publishing Ltd

What is an Accepted Manuscript?

DOI 10.1088/1361-648X/ad43a5

10.1088/1361-648X/ad43a5

Abstract

We apply the Migdal-Eliashberg theory of superconductivity to heavy-fermion and mixed valence materials. Specifically, we extend the Anderson lattice model to a case when there exists a strong coupling between itinerant electrons and lattice vibrations. Using the saddle-point approximation, we derive a set of coupled nonlinear equations which describe competition between the crossover to a heavy-fermion or mixed-valence regimes and conventional superconductivity.
We find that superconductivity at strong coupling emerges on par with the development of the many-body coherence in a Kondo lattice. Superconductivity is gradually suppressed with the onset of the Kondo screening and for strong electron-phonon coupling the Kondo screening exhibits a characteristic re-entrant behavior. Even though for both weak and strong coupling limits the suppression of superconductivity is weaker in the mixed-valence regime compared to the local moment one, superconducting critical temperature still remains nonzero. In the weak coupling limit the onset of the many body coherence develops gradually, in the strong coupling limit it emerges abruptly in the mixed valence regime while in the local moment regime the $f$-electrons remain effectively decoupled from the conduction electrons. Possibility of experimental realization of these effects in Ce-based compounds is also discussed.

Export citation and abstract BibTeX RIS

As the Version of Record of this article is going to be / has been published on a gold open access basis under a CC BY 4.0 licence, this Accepted Manuscript is available for reuse under a CC BY 4.0 licence immediately.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by/4.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected and is not published on a gold open access basis under a CC BY licence, unless that is specifically stated in the figure caption in the Version of Record.

10.1088/1361-648X/ad43a5