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Abstract
We employ the Polyakov-loop enhanced Nambu–Jona-Lasinio model incor-
porating the quark anomalous magnetic moment to investigate the anisotropy
structure and the renormalized magnetization of magnetized quark matter at
finite temperature. The ultraviolet divergences and nonphysical oscillatory
behavior are eliminated by the vacuum magnetic regularization scheme. With
a parametrization of the anomalous magnetic moment that is proportional to
the square of the chiral condensate, the renormalized magnetization is enlarged
by the strong magnetic field so that the anisotropy becomes more apparent.
The inflection point of the renormalized magnetization indicates the pseudo-
critical temperature for the chiral crossover. We find that the results with the
anomalous magnetic moment are closer to the lattice quantum chromody-
namics data. The connection between the paramagnetism and the chiral
transition provides new insight into a magnetohydrodynamics description of
hot and dense QCD matter produced in heavy-ion collisions.

Keywords: anisotropy, paramagnetism, QCD matter, anomalous magnetic
moment, polyakov loop enhanced nambu- jona-lasinio model

1. Introduction

In recent years, there has been great interest in the nature of the phase diagram of quantum
chromodynamics (QCD) matter, especially the thermodynamic and magnetic properties in the
presence of both a heat bath and strong magnetic fields. Neutron stars are widely believed to
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possess strong magnetic fields and can exhibit surface magnetic fields reaching magnitudes of
1014∼ 1015 Gauss [1–6]. In the early Universe, primordial magnetic fields even as high as
1023 Gauss may have arisen during electroweak phase transition driven by a chiral anomaly
[7, 8]. Strong magnetic fields with strengths around 1019 Gauss can be produced in heavy-ion
collision experiments. A comprehensive understanding of the bulk and microscopic properties
of magnetized QCD matter becomes crucial for revealing various physical phenomena,
including the magnetars and the heavy-ion collision experiments. Recently, extensive
attention has been devoted to numerical simulations of lattice QCD (LQCD) and analytical
model approximations [9–20]. These investigations primarily focus on the influence of
magnetic fields on the equations of state of the matter composing the star, encompassing
hadronic matter, quark matter and hybrid stars matter [21–26].

Due to the spatial asymmetry introduced by the magnetic field in the z-direction, the
pressure becomes different in the parallel and perpendicular directions, corresponding to
the spatial components of the energy-momentum tensor [27]. In reality, depending on the
magnitude of the magnetic field, the parallel pressure becomes much smaller than
the perpendicular pressure. The anisotropy was first introduced by Ferrer et al [28] and is
related to the magnetization of the magnetized matter [29]. Therefore, many studies have
aimed to investigate the effects of magnetic fields on the anisotropic equation of state of
compact stars, such as neutron stars, quark stars and hybrid stars [9, 30–34].

The investigation of the quark anomalous magnetic moment (AMM) has received con-
siderable attention. The study goes through several important stages in the literature. In the
1980s, it was first shown that the larger light-quark AMM is significant when checking the
experimental consequences for the quark mass generation in the dynamical breaking of chiral
symmetry [35]. In the massless current quark mass, the breaking of chiral symmetry could
trigger the generation of a quark AMM [36]. The AMM correlated to the transversity was
large enough not to be ignored. By including the AMM, the magnetization would have a
different form [37]. In further exploration of the complete portrait of the QCD diagram, the
inverse magnetic catalysis (IMC) effect was observed for a larger AMM [38]. In a strong
magnetic field, the AMM was found to decrease with the increasing Landau level and would
make an insignificant contribution to the equation of state [33]. Later, numerous studies were
dedicated to exploring the influence of the AMM on the chiral restoration and deconfinement-
phase transition of QCD matter in strong magnetic fields [39–42]. The AMM is widely
accepted to account for the IMC, as initially proposed by LQCD results [43]. Recently, the
constant AMM and the AMM that is proportional to the chiral condensate have been proven
to be inappropriate forms [44]. The AMM that is proportional to the square of the chiral
condensate was suggested to yield the chiral condensate as functions of the temperature and
magnetic field, which is in excellent agreement with LQCD results [44]. It is believed that the
scale of the AMM plays a significant role in introducing the IMC effect in the vicinity of the
critical temperature [39, 45].

The Nambu–Jona-Lasinio (NJL) model offers a framework for describing nucleons and
mesons as a low-energy effective theory of QCD. It has also been proposed as a valuable
model for describing the QCD chiral symmetry and the vacuum spontaneous breakdown in
the presence of strong magnetic fields at finite density and/or temperature [46, 47]. However,
the NJL model cannot describe the deconfinement-phase transition of QCD matter. Therefore,
in the Polyakov-loop enhanced NJL (PNJL) model, the Polyakov loop can be used as an
approximate order parameter for the deconfinement transition associated with the spontaneous
symmetry breaking of the center symmetry. The presence of four-fermion interactions in the
PNJL model leads to nonrenormalizability, and an appropriate regularization scheme is
needed to avoid ultraviolet divergences. Recently, a new method called the vacuum magnetic
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regularization (VMR) scheme has been proposed [48–50], offering a successful description of
the thermomagnetic properties of QCD matter. This scheme separates the potential diver-
gences in pure vacuum from the finite magnetic contributions. The VMR scheme is not only
able to eliminate the unphysical oscillatory behavior in chiral quark condensate or tachyonic
neutral pion masses that are observed when using the non-magnetic-field independent reg-
ularization (non-MFIR) scheme [51], but can also achieve the paramagnetism of QCD matter
[52]. In our present work, we employ the VMR scheme to regularize the thermodynamic
potential divergence. Our goal is to investigate the effect of the quark AMM on the anisotropy
pressures and paramagnetism of QCD matter at finite temperatures. Specifically, the effect of
the AMM on the renormalized magnetization of QCD matter will be studied using different
AMM scales.

The paper is organized as follows. In section 2, we present the thermodynamics of the
three-flavor PNJL model at finite temperature in a strong magnetic field. In section 3, the
numerical results are shown with a detailed analysis of the influence of the AMM on
anisotropy pressures and paramagnetism. The last section is a short summary.

2. Thermodynamics of the SU(3) PNJL model at finite temperature

In the SU(3) version of the PNJL model under a strong magnetic field, the Lagrangian density
is given by

( )

¯ ( ˆ ) [( ¯ ) ( ¯ ) ] [ ¯ ( )

¯ ( ) ] ( ¯ )

/ åy g m s y yl y y g l y y g y

y g y

= - + + + + - +

+ - - F F
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U T
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2

det 1
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0
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2
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2
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5



where ψ is the quark field and carries three flavors (u, d and s quarks), and
( )l = ¼ -a N1, 1a f

2 represents the SU(3) Gell-Mann matrices in the three-flavor space.
The covariant derivative with the magnetic field is introduced as / g~ mD Dμ and

ˆ= ¶ -m m mD ieQA . The charge matrix is given by ˆ ( ) ( )º = - -Q q q qdiag , , diag 2 3, 1 3, 1 3u d s .
The abelian gauge field Aμ stands for the external magnetic field B aligned along the
z-direction. The AMM is introduced by the σμν= i[γμ, γν]/2 coupling with the
electromagnetic field strength Fμ ν= ∂μA ν−∂νAμ. The metric tensor used in this work is
gμ ν = diag(1, − 1, − 1, − 1). The factor ˆ ˆk̂=a Q is defined, where k̂ = diag(κu, κd, κs) is a
3× 3 matrix in the flavour space, and κi are the AMMs of the different flavors. The more
recent results suggested that the proper form of the AMM would change with the chiral
condensate, since it involves the behavior related to the condensate [44]. The potential

( ¯ )F FU T, , in the Lagrangian equation (1) governs the dynamics of the traced Polyakov loop
and its conjugate and is given by
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The coefficients are given in table 1 [53]. Following the argument in [54], we have chosen the
critical Polyakov temperature T0= 187MeV.
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The thermodynamic potential for a three-flavor PNJL model is expressed as

( ¯ ) ( )å å s s s sW = W + - + F FG K U T2 4 , , , 4
i

i
i

i u d s
2

where W = W + W + W + Wi i i i i
vac field mag med. The contributions Wi

vac and Wi
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regularized and the following expressions are given by [50]
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where the ultraviolet divergence is regularized by the 3D sharp cutoff scheme. The definitions
k= +K M Bi i i0

2 2 2 and ( )L = + LKi i
2

0
2 2 are adopted to include the AMM with the

parameter Bi defined as Bi = qieB. The magnetic field contribution Wi
mag is [50],
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with the notation αi= 2Mκi. The contribution of the medium Wi
med at finite temperature is

[50],
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The quantities g+ and g− are defined as
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The quark energy eigenvalue Enis is influenced by the AMM in the effective quantity as
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2 2

and Mnis is defined as
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where Ti= κiBi includes the AMM according to the Schwinger linear ansatz [55], n is the
Landau level (LL) number and s=±1 stands for the spin of the quark. The AMM separates
the energies of the up and down spin in the LL (n≠ 0), in addition to the lowest Landau level
(LLL) (n= 0).

Table 1. The parameter set for the Polyakov potential.

a0 a1 a2 a3 b3 b4

6.75 −1.95 2.625 −7.44 0.75 7.5
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By using the following stationary conditions,

¯ ( )¶W
=
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we can obtain the following sets of coupled gap equations
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where the chiral condensate equals s s s s s= + + +i i i i i
vac field mag med. The terms si

vac, si
field

and si
mag represent the vacuum, the field and the magnetic field to the quark condensate,

respectively. The regularized vacuum contribution reads [50]
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The finite magnetic-field-dependent contributions are given by [50]
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And si
med is the contribution of the thermal medium in the following expression [50]
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where the fermion distribution function is defined as
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According to the LQCD evaluations, the QCD vacuum is paramagnetic at T= 0. Due to
the quantization, the magnetization cannot be determined as the partial derivative of the
parallel pressure with respect to the B. Therefore, it has shown the paramagnetism by
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introducing the renormalized magnetization r as [27],

· · ( ) ·
( )

∣ ( )= -


=eB eB eB
eB

eB
lim , 23

eB
T

r 2

0 2 0 


where the magnetization is defined as =
¶

¶

P

B
 , the parallel pressure is the negative

thermodynamic potential P∥=−Ω, and the transverse pressure is subjected to the extra
contribution = -P̂ P B due to the quantization of the charged particles in Landau levels.
In the PNJL model, the evaluations with  cannot be consistent with the paramagnetic
feature from the LQCD results. To address this shortcoming, the renormalized magnetization
is presented in the VMR scheme as [48],

( )
=

¶

¶

P

B
, 24r

r



where P r is the renormalized pressure, which is defined as [48],

( )
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= -


=P P eB
P

eB
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eB
T

r 2

0 2 0

It has been shown that the paramagnetism can be reproduced by introducing the renormalized
magnetization r in the PNJL model.

3. Numerical results and discussion

In this section, the AMM effect on the anisotropy at finite temperature is studied in the strong
magnetic field. The paramagnetism of the bulk matter is reproduced and influenced by the
scale of the AMM. In the present calculation, the following parameters are adopted:
mu=md= 5.5 MeV, ms= 135.7MeV, Λ= 631.4 MeV, G= 1.835/Λ2 and K= 9.29/Λ5

[56]. The AMMs for u, d and s quarks are used: k us=i i
2 (i= u, d, s) [44]. The quark

dynamical mass M as a function of magnetic fields at different temperatures can be obtained
by solving the gap equations: equations (14), (15) and (16). Then we can obtain the aniso-
tropic pressure and renormalized magnetization of magnetized quark matter by substituting
the  into equation (24). In our calculations, we assume a scenario in that the chemical
potential for both the up, down and the strange quark (μu, μd and μs) are zero.

Figure 1. M (left panel) and Φ (right panel) as a function of temperature for the same
magnetic field at the AMMs κi = 0 and k s= 0.9i i

2.
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Figure 1 shows the quark dynamical mass M as an order parameter for the chiral-phase
transition (left panel) and the expectation value of the Polyakov loop Φ as an order parameter
for the deconfinement-phase transition (right panel). Chiral restoration and the deconfine-
ment-phase transition happen at high temperatures. There are two different AMM values,
κi= 0 and k s= 0.9i i

2, at a fixed magnetic field, Bm= 0.4 GeV2. The quark dynamical mass
M of u and s quarks are manifested as decreasing smooth functions of temperatures at κi= 0
and k s= 0.9i i

2, which indicates a chiral crossover. The quark dynamical mass M is appar-
ently enhanced by increasing AMMs. The data indicate a 20% increase for Mu and a 7%
increase for Ms compared to the zero AMM at T= 0.05 GeV. As the temperature increases,
the effect of the AMM gradually weakens until it almost disappears. This means that there is a
more obvious impact on quark dynamical mass at low temperatures. In the right panel, we
observed a 6% increase in deconfinement temperatures compared to the κi= 0.

In figure 2, the anisotropic pressure is shown as a function of the magnetic field at different
temperatures, respectively, in three panels: (a) T= 0.04 GeV for the chiral symmetry breaking
phase, (b) T= 0.14 GeV near the phase transition point, and (c) T= 0.187 GeV in the chiral
restoration. For the convenience of comparison, the two different AMM values κi= 0 and
k s= 0.9i i

2 are marked by the red and black curves, respectively. In panels (a) and (b), it is
obvious that the presence of the nonzero AMM slightly enhances the growth of the transverse
pressure, inversely leading to a reduction in the longitudinal pressure. It exhibits a change of
approximately 5% at Bm= 0.3 GeV2. Although the change seems insignificant, it is con-
cluded that the AMM enhances the splitting of the pressures parallel and transverse to the
magnetic field direction. The anisotropy of the quark matter is consistent with the results
reported in [37, 51]. However, in panel (c), the two AMM cases are nearly indistinguishable
in the chiral restoration due to our ansatz that the AMM is proportional to the square of the
quark condensate. The high temperature results in a decrease in the quark condensate as well
as the value of the AMM. Consequently, it can be concluded that the effect of the AMM is
more prominent and observable in lower-temperature regions.

In figure 3, the longitudinal pressures in the left panel and the transverse pressures in the
right panel are shown as functions of the temperature at a fixed magnetic field Bm= 0.15
GeV2. The different scales of the AMM are indicated by the different coefficients 0, 0.5 and
0.9. By comparing the data at T= 0.05 GeV, we found a change of approximately 0.06% at
k s= 0.5i i

2 and 0.1% at k s= 0.9i i
2. It is shown that the AMM increases, and the value of the

longitudinal pressure decreases as the coefficient increases. Conversely, for the transverse
pressures, the transverse pressure increases as the coefficient increases. This observation
indicates that the presence of the AMM can indeed enhance the pressure anisotropies in quark
matter. Furthermore, it is noteworthy that the larger the value of the AMM, the more

Figure 2. The behavior of the longitudinal pressure and the transverse pressure for
different temperatures as a function of the magnetic field with and without AMMs at (a)
T= 0.04GeV, (b) T= 0.14GeV and (c) T= 0.187GeV.
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pronounced the level of pressure anisotropies becomes. Similarly, in the two panels, we can
clearly observe that the effect of the AMM on the pressure anisotropies becomes less
important as the temperature increases. In general, for a fixed magnetic field and at low
temperatures, it can be concluded that a larger AMM value leads to a more visible change in
the anisotropic pressures.

As discovered in [48], the renormalized magnetization within the VMR scheme is
demonstrated as an effective approach to account for the magnetic characteristics of QCD
vacuum. In figure 4, the renormalized magnetization is shown as a function of the magnetic
field in three panels: T= 0.04, 0.14 and 0.187 GeV. The AMM values κi= 0 and s0.9 i

2 are
marked by the solid and dashed curves, respectively. The paramagnetism is displayed by the
positive renormalized magnetization r , which is in agreement with the results of LQCD [27].
The renormalized magnetization increases with the magnetic field strength. The difference
between the solid and dashed curve is becoming larger as the magnetic field increases. It is
apparent that the increasing magnetic field leads to the more pronounced effect of the AMM. At
Bm= 0.3 GeV2, the presence of the nonzero AMM will increase the renormalized magneti-
zation up to one time in panels (a) and (b), and one half in panel (c). It is concluded that as the
temperature goes up to the critical value, the influence of the AMM on the renormalized
magnetization becomes less pronounced. Moreover, the ascendant trend of r with the
magnetic field behaves like a linear increasing function for the chiral symmetric matter.

Figure 3. The P∥ (left panel) and P⊥ (right panel) as a function of temperature for the
same magnetic field at the AMMs κi = 0, k s= 0.5i i

2 and k s= 0.9i i
2.

Figure 4. The behavior of the renormalized magnetization for different temperatures as
a function of the magnetic field with and without AMMs at (a) T= 0.04GeV, (b)
T= 0.14GeV and (c) T= 0.187GeV.
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In figure 5, the renormalized magnetization is shown as an increasing function of temper-
ature at a fixed magnetic field eB= 0.15 GeV2. It can be understood that the more Landau
levels there are at high temperature, the stronger the magnetization. The zero AMM is marked
by the solid line. And the nonzero AMMs κi= 0.5, s0.9 i

2 are marked by the dashed line, the
dotted and the dash-dotted curves, respectively. By comparing the three curves at
T= 0.05GeV, we found a change of approximately 36.8% at k s= 0.5i i

2 and 80.2% at
k s= 0.9i i

2. It is shown that the increase in the AMM coefficient leads to a larger renormalized
magnetization at lower temperatures far away from the critical point. However, as the temp-
erature increases, the effect of the AMM on the renormalized magnetization becomes so weak
that the three lines overlap with the solid line. Moreover, the inflection point of the renormalized
magnetization indicates the pseudocritical temperature for the chiral crossover. This implies that

Figure 5. The renormalized magnetization as a function of temperature for the same
magnetic field at the AMMs κi = 0, k s= 0.5i i

2 and k s= 0.9i i
2.

Figure 6. The renormalized magnetization Mr as a function of the magnetic field for
two sets of temperatures: T= 0.113 GeV (left panel) at the AMMs κi = 0 and
k s= 0.2i i

2, and T= 0.176 GeV (right panel) at the AMMs κi = 0 and k s= 0.9i i
2. The

black dotted line represents the fit for the LQCD results [57].
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the scale of AMM that is proportional to the chiral condensate is so meaningful for revealing a
chiral signal shown by the behavior of the paramagnetic magnetization in quark matter.

For completeness, in figure 6, the results of the comparison with the LQCD data are
shown. The figure displays the magnetic-field dependence of renormalized magnetization Mr

with and without AMM for T= 0.113 GeV (left panel) and T= 0.176 GeV (right panel). In
the left panel, k s= 0.2i i

2 leads to fairly good agreement with the LQCD data. In the right
panel, the ascending trend of the magnetization of k s= 0.9i i

2 with the magnetic field is close
to the LQCD results. It can be concluded that the results of the nonzero AMM show a
tendency approaching the LQCD data at stronger magnetic fields.

4. Conclusions

In this study, the quark AMM proportional to the chiral condensate square (k us=i i
2) has been

utilized in the PNJL model. The longitudinal and transverse pressures demonstrate the aniso-
tropy characteristics of the strong magnetic field. The ultraviolet divergences and nonphysical
oscillatory behavior were eliminated in the VMR scheme. And the renormalized magnetization
of quark matter was numerically shown at finite temperature in the presence of a background
magnetic field, which is crucial to account for the paramagnetism of QCD at finite temperature.
At low temperatures, the presence of an AMM led to a decrease in the longitudinal pressure and
an increase in the transverse pressure. Moreover, this anisotropy is enhanced by the larger scale
of the AMM. However, as the temperature increased, the influence of the AMM on both the
longitudinal and transverse pressures becomes insignificant.

To further explore the effect of AMMs on the paramagnetism of quark matter, we analyzed
its impact on the renormalized magnetization. At low temperatures, the nonzero AMM
increased the renormalized magnetization and consequently enhanced the paramagnetism of
quark matter. However, as the temperature increased, the effect of the AMM on para-
magnetism gradually diminished. The inflection point of the renormalized magnetization
indicates the pseudocritical temperature for the chiral crossover. The comparison with LQCD
data has shown that the results with nonzero AMMs are more reliable. The results are
meaningful for providing the underlying connection between the paramagnetism and the
chiral-phase transition of QCD.
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