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Abstract
A potential for the vertex and self-energy correction is derived from the first-
order Born theory. The inclusion of this potential in the Dirac equation,
together with the Uehling potential for vacuum polarization, allows for a
nonperturbative treatment of these quantum electrodynamical effects within
the phase-shift analysis. Investigating the 12C and 208Pb targets, a considerable
deviation of the respective cross section change from the Born results is found
for the heavier target. It is shown that at low impact energies the dispersion
effects play no role. Estimates for the correction to the beam-normal spin
asymmetry and its accuracy at 5 MeV (for 208Pb and 197Au) are also provided.

Keywords: elastic electron scattering, QED corrections, spin asymmetry

1. Introduction

High-precision experiments with polarized electron beams [1–5] require a detailed knowledge
of additional multiple photon processes which modify the Coulombic potential scattering
cross section. In particular, for the planned parity-violation experiment at the new MESA
accelerator, [6, 7] an accurate estimate of the degree of beam polarization, which will be
measured with a Mott polarimeter after the pre-acceleration at 5 MeV, [8, 9] is necessary.
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To the radiative corrections belong, besides dispersion and bremsstrahlung, the vacuum
polarization and the vertex correction, renormalized by the self-energy and made infrared
finite by the soft bremsstrahlung.

For vacuum polarization it is well-known that the addition of the Uehling potential to the
Coulombic target field VT, which arises from the nuclear charge distribution, provides a
nonperturbative consideration of this quantum electrodynamical (QED) effect [10, 11]. It is
the first nonvanishing term in the decomposition of the vacuum loop in powers of VT [12].
Indeed, if the Uehling potential were treated to first order,[13] the respective transition
amplitude would agree with Tsai’s result [14, 15] from the first-order Born approximation.

The relation between the first-order Born amplitude and the underlying potential was
recently applied in the context of the contribution to the beam-normal spin asymmetry, also
known as Sherman function, [16] which results from dispersion. In their method, Koshchii
et al [17] constructed an absorptive potential from the respective Born amplitude, to be
included in the Dirac equation for the electronic scattering states, in order to provide a
nonperturbative representation of the dispersive spin asymmetry.

In the present work this procedure is adopted for generating a potential Vvs for the vertex
and self-energy (vs) correction from the respective first-order Born amplitude. Apart from the
nonperturbative treatment of the cross section modifications induced by adding Vvs to VT in
the Dirac equation, this allows for a consistent estimate of the respective changes in the spin
asymmetry. By considering a light (12C) and a heavy (208Pb) target nucleus and electrons with
energies between 2 and 56MeV, the QED corrections and their dependence on the employed
model are investigated in a large region of momentum transfers.

The paper is organized as follows. In section 2 the vs potential is derived. Results for the
QED modifications of the differential cross section and the spin asymmetry are given in
section 3 for the two target nuclei. Dispersion corrections within the second-order Born
approximation and accuracy estimates are also provided. Concluding remarks follow
(section 4). Atomic units (ÿ=m= e= 1) are used unless indicated otherwise.

2. Theory

In the Born approximation, the differential cross section for the elastic scattering of a spin-
polarized electron into the solid angle dΩf, which includes the QED corrections to lowest
order,[18] is given by
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where it is summed over the final spin polarization σf of the electron. Afi
B1 is the first-order

Born amplitude for potential scattering in the Coulombic target field VT, which can be
represented in terms of the nuclear charge form factor FL(|q|),[19]
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where Z is the nuclear charge number and s s( ) ( )u u,k ki
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f are, respectively, the free 4-spinors of the
initial and final electronic states to the spin polarization σi, σf. Here and in the following ki and kf
denote the moduli of the initial and final electron momenta ki and kf, respectively. In (2.1), Afi

vac

and Afi
vs are the lowest-order amplitudes for vacuum polarization and the vertex and self-energy

correction, respectively. Recoil effects are considered by the prefactor -frec
1 [13].
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In lowest-order Born approximation, the vacuum polarization amplitude reads [15]
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4-momentum transfer to the nucleus. Ei and Ef are the initial, respectively final, total energies
of the scattering electron.

The lowest-order Born amplitude for the vertex correction, after eliminating the UV
divergence by renormalizing with the help of the self energy, is given in terms of two parts,

+( ) ( )A Afi fi
vs 1 vs 2 , by [20, 21]
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where Li ò= - -( ) ∣ ∣x td
x t

t0

ln 1 is the Spence function [21, 22]. IR denotes the infrared
divergent term.

The second part of the vertex correction, ( )Afi
vs 2 , is of magnetic origin and hence reduced by a

factor 1/c (the fine-structure constant in atomic units). The magnetic form factor is given by[20]
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where α and γ0 refer to Dirac matrices.
The differential cross section for the soft bremsstrahlung reads in Born approximation
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where the cutoff frequency ω0 of the soft photons and the following abbreviations are
introduced,
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The validity of (2.9) for W fi
soft is subject to the requirement that ω0 is not too small

(
p

w∣ ∣ln 1
c c

1 0
2  [12]). Due to mutual cancellations in (2.9), a very large integration step

number for the Spence functions is necessary. For −q2/c2 100, the much simpler
asymptotic formula forW fi

soft can be used, as e.g. given in [15] or [13]. Hard bremsstrahlung is
disregarded in (2.1), since it is assumed that the resolution ΔE of the electron detector (which
defines the upper limit of the photon frequency by ω0=ΔE) is below 1MeV.

For the construction of a nonperturbative theory, the IR contributions in (2.5) and (2.9) are
omitted because it is known that they cancel to all orders [22, 23]. In order to derive the
potential Vvs for the vertex and self-energy process we note that there is a simple connection
between the first-order Born amplitude and the potential by which it is generated. This is
exemplified for the scattering amplitude Afi

B1 in (2.2) by relating the form factor to the Fourier
transform of the target potential VT,
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between the first-order Born amplitude and the underlying potential,
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For the determination of the desired potential Vvs only the first term, ( )Afi
vs 1 , of Afi

vs is
considered, which usually is dominating by several orders of magnitude. Due to the pro-
portionality of ( )Afi

vs 1 to the scattering amplitude Afi
B1, formula (2.12) can be applied, defining
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When performing the angular integration, the weak dependence of F1
vs on Ei− Ef (and hence

on the scattering angle ϑf) by means of recoil has been disregarded.
For the nonperturbative consideration of vacuum polarization and the main part of the vs

correction, the Dirac equation with the additional potentials is solved,

a g y y- + + + + =[ · ( ) ( ) ( )] ( ) ( ) ( )r rc c V r U r V r Ei , 2.14T e0
2
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where Ue is the Uehling potential [24].
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3. Results

The Coulombic target potentials of 12C and 208Pb are generated from the Fourier-Bessel
representation of the respective ground-state charge densities [25]. The electronic scattering
state ψ is expanded in terms of partial waves which, together with their phase shifts, are
determined with the help of the Fortran code RADIAL of Salvat et al [26]. Since the two
additional potentials Ue and Vvs are of long range (as compared to the nuclear radius), they
require matching points between the inner and outer radial solutions of the Dirac equation of
the order of 2000 fm. The determination of the scattering amplitude involves weighted
summations of the phase shifts,[18] which are performed with the help of a threefold
convergence acceleration [27]. Hence it is sufficient to take up to 25 000 partial waves into
account. Recoil is included in the phase-shift analysis in terms of a reduced collision energy

- -( )( )E c E ci f
2 2 , in a similar way as done for excitation [28].

3.1. Differential cross sections

The Born QED results, based on (2.1), do not account for the Coulomb distortion in the
amplitude Afi

B1. This deficiency, crucial for the heavier nuclei, can easily be remedied by

replacing Afi
B1 with the phase-shift result fcoul for potential scattering in the Coulomb field, but

nevertheless retaining the first-order treatment of the QED effects. Following the suggestion
of Maximon,[29] this is achieved by profiting from the explicit dependence of

= +( ) ( )A A A A,fi fi fi
vs

fi
vsvac vs 1 2 and dσsoft/dΩf on Afi

B1 and therefore making this replacement not
only in the leading term of (2.1) but also in these QED contributions. Their respective change
is denoted by a tilde, so that one is now dealing with ˜ ˜A A,fi fi

vac vs
and s W˜d d f

soft , replacing
A A,fi fi

vsvac and dσsoft/dΩf in (2.1). This leads to the distortion-modified Born cross section,
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By using (3.1) in the actual calculations, Coulomb distortion effects are reduced in the
comparison with the nonperturbative QED results. Noting that Ãfi

vac is, like Ãfi
vs, proportional

to fcoul, the expression on the rhs of (3.1) is proportional to the Coulombic cross section,
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This cross section is shown in figure 1 at 5MeV and 40MeV collision energy for both targets.
For the extended 208Pb nucleus the angular distribution at 40MeV differs in shape from the one
at 5MeV (in contrast to the behaviour of 12C) due to the onset of the diffraction structures.

On the other hand, the nonperturbative treatment of vacuum polarization and the main part
of the vs process (leading to the scattering amplitude fvac+vs) results in the following
expression for the differential cross section,
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The second term of Afi
vs has been included within the Born approximation as given in (2.4),

since it cannot be turned into a potential because Rfi depends explicitly on the initial and final
electronic states. Its perturbative consideration is justified by its insignificance except at very
low impact energies.
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In the prescription (3.3) of the soft-bremsstrahlung cross section the fact has been
accounted for that the cross section for emitting an additional soft photon during a certain
scattering process is given by the cross section for this scattering process times a factor which
describes the attachment of one soft-photon line to the respective diagram [30]. This fac-
torization holds as long as the scattering process is undisturbed by this photon emission. In
particular, the photon energy has to be sufficiently low (ω0= Ei− c2) and the change δ|q|/|q|
of momentum transfer sufficiently small. This restricts the scattering angle by means of
[18, 31]

J w ( )c

E
sin

2 4
. 3.4

f

i

0
4

3


For the present cases of interest, both conditions are well satisfied. In particular, one has for
Ei− c2 1MeV and an energy resolution of at most 1% the requirement of ϑf 3°. By using
the Born factorW fi

soft in (3.3) the approximation is made that this soft-photon line corresponds
to a free electron, in the same spirit as the free-electron representation is used in the second-
order Born theory of dispersion.

The effect of the QED processes is illustrated by considering the cross section change,
defined with respect to the Coulombic cross section,

s
s

s
D =

W

W
- ( )

d d

d d
1, 3.5

f

fcoul

where in the two cross sections occurring in (3.5) an additional averaging over the initial spin
polarizaton σi is implemented. The relative cross section changes from the individual QED
processes are additive, such that

s s s sD = D + D + D- ˜ ˜ ˜ ( ), 3.6B C1 vac vs soft

and

s s sD = D + D+ ( ), 3.7C vac vs soft

where the summands in (3.6) and (3.7) correspond to the contributions to Δσ from the
individual terms in (3.1) and (3.3), respectively. It should be noted that ΔσB1−C is

Figure 1. Differential cross section s
W

d
d f

coul as a function of scattering angle ϑf for

electrons of 5 MeV (——–) and 40 MeV (−−−−− ) colliding with 208Pb. Included
are results for electrons colliding with 12C at 5 MeV (− ·− ·− ) and 40 MeV (LL ).
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approximately target-independent, since the Coulombic cross section drops out and recoil
effects in vacuum polarization, in F1

vs, F2
vs and in W fi

soft are small.
The angular variation of the cross section change for 5 MeV electrons is displayed in

figure 2. Apart from showing the combined influence of vacuum polarization and the vs
effect, they are provided separately. This is done by retaining only their respective potential in
(2.14) besides VT. Bremsstrahlung is included by setting the detector resolution to 1% of the
collision energy (ω0= 0.05MeV). For both targets it is seen that the effect of vacuum
polarization is positive and very small, while the vertex and self-energy correction is basically
negative and considerably larger at the backward angles. This confirms the earlier result of a
partial cancellation of these two QED effects, obtained from exact bound-state calculations
[12, 32]. However, the ratio of the absolute values of the vs and the vacuum-polarization
correction is often beyond the factor of 2.5 predicted by these investigations. The inclusion of
bremsstrahlung increases |ΔσC| considerably, the more so, the smaller ω0 (caused by the
logarithmic dependence on ω0 in (2.9)). The inclusion of the magnetic vs contribution is
unnecessary even for an energy as low as 5MeV, except at ϑf 150° where it leads to a
modification by up to 10% for 208Pb and 30% for 12C. When comparison is made with the
Born results for the modifications by vacuum polarization and vs correction, there are large
deviations from the nonperturbative results for the lead target, particularly in the backward
hemisphere. For 12C, the differences are much less perceptible, due to the smaller nuclear
charge.

Figure 3 shows the energy dependence of the cross section change at a backward angle.
Since the Coulombic cross section and hence its modifications are basically dependent on the
momentum transfer (see, e.g. (2.2)), the angular and energy distributions of ΔσC are much
alike. This is based on the fact that J»∣ ∣ ( ) ( )q E c2 sin 2i f , such that increasing either Ei or ϑf
result both in an increase of |q|. The magnetic vs contribution is well below 0.5% for all
energies 20MeV even at this large scattering angle.

Figure 2. Relative cross section change ΔσC in 5 MeV (a) e+12C and (b) e+208Pb
collisions as a function of scattering angle ϑf. Shown are the results for vacuum
polarization (− ·− ·− ), vertex and self-energy correction (−−−− ) and the
consideration of both (———-), as well as the additional inclusion of the soft-
bremsstrahlung contribution for ω0 = 0.05 MeV (−L−L− ). The respective results
if ( )Afi

vs 2 is omitted are indicated by (◦). Included are the Born results sD˜ vac for vacuum

polarization (LL , upper line) and sD˜ vs for the vs correction (LL , lower line).
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3.2. Spin asymmetry

For incident electrons polarized perpendicular to ki× kf, the Sherman function S is defined as
the relative cross section difference when the initial spin is flipped from up ( ↑) to down ( ↓),

s s
s s

=
W  - W 

W  + W 

( ) ( )
( ) ( )

( )S
d d

d d

d d

d d
. 3.8

f f

f f

The reference quantity is the Coulombic Sherman function Scoul, calculated from (3.2) and
displayed in figure 4 at a collision energy of 5MeV for both targets. A logarithmic scale is
used (and hence −Scoul is shown) to demonstrate the strong increase of the spin asymmetry
with scattering angle. It should be noted that |Scoul| is much larger for 208Pb, since the spin
asymmetry increases with nuclear charge due to the stronger relativistic effects in the elec-
tron-nucleus encounter. The steep decrease of |Scoul| for

208Pb at forward angles is due to a
zero at 31.5°, caused by the diffraction effects.

Calculating S from (3.3) and noting thatW fi
soft is spin-independent, the factor +( W1 fi

soft) in

dσC/dΩf drops out (if ˜ ( )
Afi

vs 2
is omitted), such that S becomes independent of bremsstrahlung,

hence independent of the cut-off frequency ω0 and therefore independent of the detector
resolution. This was already stated by Johnson et al [33] who calculated the QED corrections
to S within the second-order Born approximation in the Coulomb field. Numerical investi-
gations indicate that the independence of bremsstrahlung holds even despite the consideration
of the magnetic vs contribution. It should also be noted that S, when obtained from the
distortion-modified Born cross section, is approximately equal to Scoul, since
dσB1−C/dΩf ∼ dσcoul/dΩf, and the only additional dependence on the electron spin polar-
ization is due to Rfi.

The modification of the spin asymmetry by the QED corrections, relative to Scoul, is
calculated from

= - ( )S
S

S
d 1. 3.9

coul

This means that in the Born approximation, the QED changes of Scoul are close to zero. In this
context our previous Born results for dSvsb [13] should only be considered as qualitative

Figure 3. Relative cross section changeΔσC in (a) e+12C and (b) e+208Pb collisions at
160° as a function of collision energy Ei,kin = Ei − c2. The same line shapes are used as
in figure 2. For the bremsstrahlung results, a detector resolution of 1% is used (i.e.
ω0 = 0.01 Ei,kin).
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estimates, since Coulomb distortion was not included in the contributions from vs and from
soft bremsstrahlung.

When the phase-shift analysis is applied to the calculation of the cross section (which is the
case when ( )Afi

vs 2 is omitted), S can be expressed in terms of the direct (A) and spin-flip (B)
parts of the respective scattering amplitude [16, 18],

*
=

+
{ }

∣ ∣ ∣ ∣
( )S

AB

A B

2Re
. 3.10

2 2

Figure 5 depicts the change dS for 12C and for 208Pb at 5 MeV by means of the QED
effects. Like in the case of the cross section modifications, the effect of vacuum polarization is
small, at most 1%. The vs contribution is again of opposite sign and considerably larger in
magnitude. The influence of the magnetic vs contribution on the spin-asymmetry change is
negligibly small (<0.1% for ϑf 140°, up to 0.5% at ϑf∼ 170°). The strong increase of |dS|
for 208Pb below 40° is caused by the zero in Scoul where the definition (3.9) is no longer
meaningful.

The energy dependence of dS at the angle corresponding to the extremum of Scoul at
5 MeV impact energy (170° for 12C, 173° for 208Pb) is displayed in figure 6. For 208Pb,
|dSvac+vs|, resulting from vacuum polarization and the vs correction, increases with
Ei,kin= Ei− c2 up to 30° and then decreases, eventually oscillating with energy due to the
onset of diffraction. In contrast, for the 12C nucleus where diffraction starts only well above
100MeV, there is a monotonous increase of |dSvac+vs| with energy. Due to numerical
instabilities for the low-Z 12C nucleus in the backward hemisphere (leading to wiggles), an
energy above 40MeV was not considered.

3.3. Dispersion effects

Dispersion effects result from the transient excitation of the target nucleus during the col-
lision. For obtaining the transition amplitude Afi

box for dispersion, calculated in the second-
order Born approximation according to the Feynman box diagram [19], the sum over the
excited nuclear states is in early work [34–36] evaluated with the help of a closure
approximation.

Figure 4. Coulombic Sherman function −Scoul for 5 MeV electrons colliding with 12C
(− ·− ·− ) and 208Pb (———–) as a function of scattering angle ϑf.
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A more refined approach takes the dominant excited states explicitly into account [37]. The
required transition densities are obtained from the Hartree–Fock random phase approximation
(HF-RPA [38]) and from the quasiparticle phonon model (QPM [39, 40]). In both pre-
scriptions, the respective one-phonon states are calculated from the RPA equations pertaining
to some nuclear model Hamiltonian. The QPM provides a refinement by accounting for the
additional coupling to multi-phonon states. However, its effect on the excitation cross section
is estimated to be small.

The cross section for elastic scattering, including dispersion to lowest order as well as the
QED effects nonperturbatively, is given by

*å
s
W

= + + +
s

+[ ∣ ∣ ( ) { ( ˜ )}] ( )( )k

k f
f W f A A

d

d

1
1 2 Re . 3.11

f

f

i
fi fi fi

tot

rec
vac vs

2 soft
coul

vs 2 box

f

Figure 5. Relative change dS of the Sherman function in 5 MeV (a) e+12C and
(b) e+208Pb collisions by the nonperturbative QED effects (dSvac+vs, ————) as a
function of scattering angle ϑf. Also shown are the separate contributions from vacuum
polarization (dSvac, − ·− ·− ) and from the vs correction (dSvs, −−−− ).

Figure 6. Relative change dS of the Sherman function (a) in e+12C collisions at
ϑf = 170° and (b) in e+208Pb collisions at 173° by the nonperturbative QED effects
(dSvac+vs, ———) as a function of collision energy Ei,kin. Also shown are the separate
contributions from vacuum polarization (− ·− ·− ) and from the vs correc-
tion (−−−− ).
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Without the QED effects, the cross section reduces to

*å
s
W

= +
s

[ ∣ ∣ { }] ( )
k

k f
f f A

d

d

1
2 Re , 3.12

f

f

i
fi

box

rec
coul

2
coul

box

f

leading via (3.9) with (3.8) to the dispersive spin-asymmetry change dSbox.
For 12C, two dominant giant-dipole resonance states (at excitation energies ωL= 23.5MeV

and at 17.7MeV) as well as two quadrupole states (at 4.439MeV and 9.84MeV) and two
octupole states (at 9.64 MeV and 14.8MeV) are considered in the sum over the nuclear
excitations. The nuclear structure of the dipole states and of the +21 state is obtained from the
QPM, and of the higher L= 2 and L= 3 states from the HF-RPA. The separate contributions
of the three lowest states at 160° are shown in figure 7(a). At low impact energies the
4.439MeV state gives by far the largest contribution to dSbox.

For 208Pb, ten excited states with angular momentum L� 3 are included [41]. Except for
the dipole states at 5.512MeV and 14.2 MeV, they were calculated from the HF-RPA. The
separate contributions of the four lowest states (at 5.512MeV (L= 1); 4.085MeV and
10.9 MeV (L= 2); and 2.615MeV (L= 3)) are displayed in figure 7(b).

At impact energies up to 100MeV the dispersive cross section modifications are small (at
most 1%), such that the contributions from the individual excited states to the spin-asymmetry
change are additive,

å w»
w

( ) ( )S S Ld d , . 3.13
L

Lbox
,

box

L

For such small cross section changes the spin-asymmetry modifications from the QED
processes and from dispersion are also additive,

s
» +

+ D
+ ( )S S Sd d d

1

1
, 3.14

Ctot vac vs box

where ΔσC is the cross section change by the QED effects (3.7), and dSvac+vs is the QED-
induced change of the Sherman function.

Figure 7. Relative change dSbox(L, ωL) of the Sherman function (a) in e+12C collisions
and (b) in e+208Pb collisions at ϑf = 160° as a function of collision energy Ei,kin. In (a),
the results for ωL = 4.439 MeV (———-), 9.84 MeV (−−−− , multiplied by a factor
of 10) and 9.64 MeV (− ·− ·− , multiplied by 100), and in (b), the results for
ωL= 2.615 MeV (———–), 4.085 MeV (− ·− ·− ), 10.9 MeV (−−−− ) and
5.512 MeV (LL ) are shown. Included is their sum dSbox (∗ ∗ ∗).
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For collision energies below 12MeV, the dispersive contribution to dS is of the order of
10−5 and thus negligibly small. However, at high energies dispersion can have quite a large
influence on the spin asymmetry. From figure 8, where the angular dependence of the 12C and
208Pb spin-asymmetry change at 56MeV is shown, it follows that the deviation of dStot from
dSvac+vs can be formidable. This is particularly true for the 12C nucleus where dispersion is
largely dominating at the smaller angles.

3.4. Accuracy of the spin asymmetry for lead and gold at 5 MeV

For the 208Pb nucleus, a collision energy of 5MeV and an observation angle of 173° (the
parameters for the planned spin-asymmery measurement at MESA), the leading-order result
for the Sherman function is = -( )S 0.5391coul

0 and the spin-asymmetry change by the QED
effects (with ( )Afi

vs 2 omitted) amounts to dS(0)=− 8.20× 10−3, which results in

= -( )S 0.5347tot
0 . For 197Au (which is favoured by the experimentalists) under the same

kinematical conditions one has = -( )S 0.5158coul
0 and dS(0)=− 7.28× 10−3, such that

= -( )S 0.5120tot
0 . Let δS0 be the uncertainty of Scoul and δS1 the one of dS for this experimental

setting. Then one has

d d= + =  + ( ) ( )[ ( )]( ) ( )S S S S S S S1 d 1 1 d 1tot coul coul
0

0
0

1

d d d» +   +[ ( )] ( )( ) ( ) ( )S S S S S S1 d d , 3.15coul
0 0

0
0

0 1

such that the total inaccuracy δStot is obtained from equating (3.15) with
d= ( )( )S S S1tot tot

0
tot ,

d d d d d d» + + » +[ ( )] ( )
( )

( )
( ) ( )S

S

S
S S S S S S Sd d . 3.16tot

coul
0

tot
0 0

0
0 1 0

0
1

The following processes contribute to the uncertainty of Scoul.

(i) Numerical accuracy of the phase-shift analysis. Due to the convergence acceleration, the
uncertainty in the backward hemisphere (up to ϑf∼ 179°) is about 10−9.

Figure 8. Relative change dStot of the Sherman function in 56 MeV (a) e+12C and
(b) e+208Pb collisions by the nonperturbative QED effects and dispersion (∗ ∗ ∗) as a
function of scattering angle ϑf. Also shown are the separate contributions
dSvac (− ·− ·−), dSvs (−−−−), dSvac+vs (———-) and dSbox (LL).
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(ii) Recoil. In order to validate the methods for including recoil, the target mass was set to
infinity, thereby excluding any recoil effects. The change in Scoul from proceeding to the
no-recoil results is about 10−5.

(iii) Magnetic scattering (only for 197Au). Since its nuclear spin is 3/2, there exists besides
potential scattering also a contribution to elastic scattering from the current-current
interaction between electron and target nucleus. Due to the low magnetic moment of the
gold nucleus this contribution is, however, completely negligible [8]. Note that its effect
is of the order of the fine structure constant (1/c) as compared to Z/c for potential
scattering. Even for the 207Pb nucleus with magnetic moment a factor of 4 larger, the
magnetic scattering as estimated by DWBA [42] affects Scoul by less than 10−6 at a
collision energy of 5MeV and ϑf= 173°.

(iv) Influence of atomic electrons. This is investigated in detail in [44], and the modifications
of Scoul are estimated to add up to at most 6× 10−4 [8].

(v) Nuclear charge distribution. For lead, a 17-term Fourier-Bessel parametrization is used.
The replacement with a 13-term parametrization[25] induces in the backward hemisphere
a change of less than 10−4. (When compared with the less accurate Fermi distribution
with parameters r= 6.458 fm, a= 0.5234 fm [43], the results at 173° would be modified
by about 6× 10−4).
For 179Au only the Fermi distribution is available. When the parameters used in the
present work (r= 6.38 fm, a= 0.535 fm [25]) are replaced by those from [44]
(r= 6.44 fm, a= 0.5819 fm), the respective change is about 5× 10−4.

For the uncertainty of the spin-asymmetry change the following processes have to be
considered.

(i) Dispersion. This effect contributes less than 5× 10−5 [see figure 7(b)].
(ii) Numerical accuracy of the phase-shift analysis when the QED potentials are present. For

208Pb, this is estimated to be around 4× 10−4, for 197Au it is about 8× 10−4 at 173°.
(iii) Polarization of the nucleus by the impinging electron. This effect will modify the nuclear

charge distribution. We estimate its contribution to be of the same order as when changing
the parametrization of the charge distribution at arbitrary angles (about 2× 10−3).

(iv) Magnetic contribution to Afi
vs. Its effect is small at energies above 20MeV or angles

below 150°. However, at 5 MeV and 173° it affects the spin-asymmetry change by the vs
process by about 5× 10−3, irrespective of nuclear charge.

(v) Detector resolution. This affects theory by means of the cut-off frequency for the soft
bremsstrahlung. The influence of bremsstrahlung results, however, exclusively from the
presence of the magnetic term ( )Afi

vs 2 (since dispersion is basically absent). For detector
resolutions 0.2%ΔE/E 1% its contribution is around 5× 10−4.

An addition of these uncertainties leads for 208Pb to δS0 7.1× 10−4 and
δS1 7.9× 10−3, resulting in a total uncertainty δStot 0.08%. For 197Au, these numbers are
δS0 1.11× 10−3, δS1 8.3× 10−3 and δStot 0.12%. We note that the total uncertainty is
to a large extent due to inaccuracies of the nuclear charge distribution. For 197Au, a somewhat
smaller scattering angle (around 130°−160°) would increase the number from 5× 10−4 to
2× 10−3, resulting in δStot 0.26%, while for 208Pb there would be no change.

4. Conclusion

The QED corrections to the elastic electron scattering cross section and to the Sherman
function were estimated by using a nonperturbative approach in terms of a suitable potential
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for the main part of the vertex and self-energy correction, together with the Uehling potential
for vacuum polarization. The representation of the complete vs correction by a suitable
potential is hampered by the presence of the magnetic contribution. However, this contrib-
ution can safely be neglected for collision energies near and above 30MeV, and even at an
energy as low as 5MeV, the modification of the cross section change is at most 10% for 208Pb
and 20% for 12C.

When investigating electron scattering from the 12C nucleus, the deviations of the non-
perturbative results from the respective Born predictions for the relative cross section change
are mostly not exceeding 5%, such that the Born approximation is basically justified for a
light nucleus like carbon. In case of the lead target, the differences to the Born QED results
are quite large, enhancing the cross section change on the average by 60%.

One has to keep in mind that the size of the total QED corrections to the cross section
depends strongly on the contribution of the soft bremsstrahlung, which in turn is controlled by
the resolution of the electron detector.

The nonperturbative consideration of the vacuum polarization and the vs effect allows also
for a consistent estimate of the QED-modified Sherman function. If the QED corrections were
calculated from the Born approximation, they would not lead to any change in the spin
asymmetry. In fact, the magnetic vs term is irrelevant for the spin-asymmetry change, its
omission affecting the results in general by less than 0.1%, increasing to about 0.5% at the
lowest energies and largest angles considered. For low collision energies, the spin-asymmetry
changes dS by the QED effects increase strongly with energy (as long as diffraction plays no
role). For lead this holds up to about 30MeV at backward angles which are of particular
interest to the experimentalists due to the large values of the spin asymmetry. The numerical
accuracy of dS for carbon is unfortunately quite poor, partly due to the small absolute values
of S (in the forward regime), and partly due to numerical instabilities when solving the Dirac
equation (in the backward hemisphere). It amounts up to 0.5% at 3MeV and 3% at 10MeV,
deteriorating to about 15% at 56MeV. For lead, the results are stable, with an accuracy of
0.25% at 30MeV and 1% at 56MeV. For the determination of the degree of beam
polarization at 5 MeV from experiment, the use of the calculated Sherman function at
maximum spin asymmetry (173° for a gold or lead target) is subject to a total theoretical
uncertainty below 0.15%.

We have also investigated the ratio between the modifications by the vertex and self-
energy correction and those by vacuum polarization. The two processes lead in most cases to
corrections of opposite sign. The vs process is often largely dominating the changes of the
cross section and of the spin asymmetry. However, their ratio is strongly dependent on
collision energy and scattering angle. It ranges mostly between 2 and 7, in contrast to earlier
predictions that it is around 2.5.

Dispersion effects were taken into account by explicitly considering the dominant nuclear
excitations with multipolarity 1,2 and 3. For collision energies up to 56MeV, the cross
section changes are at most 5× 10−4 and 3× 10−3 for 12C and 208Pb, respectively. The spin-
asymmetry changes are tiny up to 10MeV but increase strongly when the high-lying dipole
states come into play, being particularly large for 12C and small scattering angles.
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