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Abstract
All-dielectric metasurface with ultra-high quality resonances underpinned by bound states in the
continuum (BICs) have attracted lots of attention in recent years for they enable new methods of
wavefront control and light focusing. We study a metasurface composed of one transverse
nanohole (TNs) and two identical vertical nanoholes (VNs) in one lattice, which supports both
symmetry-protected and accidental BICs (at-Γ and off-Γ BICs). Based on the destructive
interference between the surface states from the TN element and the identical VNs element, two
at-Γ BICs emerge, and they turn into quasi-BICs by rotating the electric field polarization
direction of the incident plane wave from x to y. The off-Γ BICs come from destructive
interference from different radiation channels, which are influenced by the in-plane structural
parameters symmetry insignificantly. Two at-Γ BICs and one off-Γ BIC of the metasurface all
have ultra-high Q-factors (exceeding 106, 104, and 106, respectively), which means much in the
application of biosensors. Especially, this nanostructure has outstanding ultra-slow light
properties at BICs, with a group index about 106, which underpin a new generation of flat-optics
slow light devices.

Keywords: bound states in the continuum, metasurface, slow light, Q-factor, photonics crystal

(Some figures may appear in colour only in the online journal)

1. Introduction

Bound states in the continuum (BICs) with ultra-high qual-
ity factor (Q-factor) have gained rapid development in
nanostructure [1]. They are associated with the decoupling
of the resonant mode from the radiative spectrum of the sur-
rounding space [1–4], which is first discovered in quantum
mechanics [5]. Benefiting from the high-Q resonances of
quasi-BICs, the metasurface can be designed to realize

∗
Authors to whom any correspondence should be addressed.

ultra-sharp transmittance/reflectance spectra with an ultra-
high light–matter interaction strength [4, 6, 7]. Thus, BIC-
based lasing [8, 9], beam shifting [10, 11], strong coupling
[12, 13], modulation [14, 15], imaging [16] and sensing [17]
have all then been successfully achieved. BICs in optics due
to their broad potential applications in communications [18,
19], lasing [20–23], filtering [24–26], and sensing [27–29].
Resonant modes inside the continuum with finite lifetimes
that lie within the light cone and consequently can couple to
the extended waves and leak out with a complex frequency
ω = ω0−iγ, in which the real part ω0 is resonance frequency
and the imaginary part γ represents the leakage rate. An
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exception involves this special Fano resonance of a layer of
photonic crystal (PhC) slab, in terms of BICs, which is found
residing inside the continuum with zero leakage and infinite
lifetimes (γ = 0, and Q-factorQ= ω0/2γ). The periodic struc-
ture (in x and y) can support a BIC (in z direction) as a result
that the symmetry of the modes determined by this structure
mismatching and completely decoupling from the radiating
waves. The physical mechanisms of BICs are abundant in dif-
ferent material systems and waves. In this paper, we introduce
a novel highly tunable BICs nanostructure consisting of one
transverse nanohole and two identical vertical nanoholes (TN-
VNs) in one lattice. Our approach provides new insights into
the spectral feature of the spectral line shape. We describe two
types of BICs of a periodic structure with three nanoholes in
one lattice. One type is the at-Γ BICs protected by symmetry
[9], under a normal incident wave, and the other type is the off-
Γ BICs achieved through parameter tuning (with coupled res-
onances or with a single resonance) [10] leading by an oblique
incidence.

In this paper, we investigate the BICs of the all-dielectric
nanoholes array with ultra-high quality resonances.We study a
nanostructure composed of TN-VNs in one lattice, which sup-
ports both symmetry-protected and accidental BICs (at-Γ and
off-Γ BICs). Based on the destructive interference between
the surface states from the TN element and the identical VNs
element, two at-Γ BICs emerges, and they can be modu-
lated from modes with infinite Q-factor to Fano modes with
finite Q-factor by rotating the electric field polarization direc-
tion of the incident plane wave from x to y. The off-Γ BICs
come from the destructive interference from different radi-
ation channels, which can be affected by the in-plane struc-
tural parameters insignificantly. Two at-Γ BICs and one off-Γ
BIC of the nanostructure with three nanoholes all have ultra-
high Q-factors (more than 106, 104, and 106), which means
much in the application of biosensors. Especially, this nano-
structure has outstanding ultra-slow light properties at BICs,
which underpin a new generation of flat-optics slow light
devices.

2. Design of structure of the BICs

To demonstrate the BICs phenomenon based on Si3N4 with
refractive index n1 = 2.02, we consider a two-dimensional
PhC slab perforated with nanohole arrays (figure 1(a)). The
simplest configuration of the unit cell is a nanohole trimer
arranged in a square lattice, as shown in figure 1(b). It is com-
posed of TN lying along the x direction and VNs lying along
the y direction in a lattice. All notations and parameters related
to the geometry of the nanohole array under study are summar-
ized in figure 1. The PhC slab with a thickness ofH = 0.18 µm
is immersed in a surrounding medium with a refractive index
n2 = 1.46.

We excite a model with a p-polarization incident plane
wave polarized in x direction propagating from the top and
impinging onto the nanostructure in -z direction. For the tri-
mer nanohole array under study, we can recognize the BIC
modes by using S4 [30]. Additionally, the temporal coupled

mode theory model (CMT) [31, 32] that accounts for the pres-
ence of guided leaky resonance in the Si3N4 layer is also used
to demonstrate the study in order to gain deeper physics insight
into the resonances.

The reflectance properties of the nanostructure with three
nanoholes in one lattice can be simulated by CMT. In one
lattice, TN and VNs are two elements exciting two equival-
ent theoretical coupled modes set as B and D. The incoming
and outgoing waves in the system are marked by superscripts
in and out. The subscript ± represents two wave propagat-
ing directions, as shown in figure 1(c). Therefore, we can get
the complex amplitude for the harmonic time dependence of
the nth mode (n = 1, 2, representing the surface dark modes
of each element, respectively) from the coupled equations as
follows:(

γ1 − iµ12

−iµ21 γ2

)
·
(

a1
a2

)
=

(
−τ

−1/2
e1 0

0 − τ
−1/2
e2

)

·
(

Bin+ +Bin−
Din

+ +Din
−

)
(1)

where γn = (iω− iωn− τ−1
in − τ−1

en ), (n= 1, 2), ωn (n= 1,2)
is the resonance angular frequency of the nth resonator mode,
andµ12(µ21) is the coupling coefficient between them. 1/τin =
γin = ωn/(2Qen) and 1/τen = γen = ωn(2Qen) are the decay
rates associated with intrinsic loss and energy escaping into
outside space from the resonators (n = 1, 2). Qin and Qen are
Q-factors related to the intrinsic loss and the delay rate into
outside space in the nth resonator, respectively. The relation-
ship between them for the nth resonator is 1/Qtn = 1/Qin+
1/Qen, where Qtn is the total Q-factor of the nth resonator.
According to the conservation of energy, the equivalent the-
oretical coupled modes can be given as follows:

Din
+ = Bout+ eiφ , Bin− = Dout

− eiφ (2)

Bout± = Bin± − τ
−1/2
e1 a1, Dout

± = Din
± − τ

−1/2
e2 a2 (3)

where φ = Re(β)d represents the total phase difference (d is
the effective coupling length between the surface modes).

On the basis of equations (2) and (3) and only one incident
wave (Din

− = 0), the coefficient r of this system:

r=
Bout−
Bin+

= (τ−1
e1 γ2 + τ−1

e2 e2iφγ1 +(τe1τe2)
−1/2eiφχ 1

+(τe1τe2)
−1/2eiφχ 2)(γ1γ2 −χ 1χ 2)

−1 (4)

where χ 1 = τe1τe2)
−1/2eiφ + iµ12, χ 1 = τe2τe1)

−1/2eiφ + iµ21.
Hence, reflectance can be obtained as:

R= |r|2. (5)

The BIC modes can be distinguished from the other ones
by their real-valued eigenfrequencies. We consider the BIC
modes in the visible and near-infrared part of the spectrum
(0.5µm–0.9µm). From the known set of modes, we select sev-
eral BIC modes, which appear in the chosen frequency band
for the given parameters of the structure.
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Figure 1. (a) Schematic of the periodic 3D structure view of the all-dielectric nanohole array. (b) Top view of a lattice of the periodic
structure, and the parameters of this designed structure are as follows: P = 0.336 µm, L1 = 0.2 µm, W1 = 0.06 µm, L2 = 0.12 µm,
W2 = 0.06 µm, D1 = 0.036 µm, D2 = 0.05 µm, H = 0.18 µm. (c) The theoretical model of an imaginary resonator, where B and D
represent two resonant modes in the CMT.

3. Results and discussion

It is known that guided resonance would be excited and sharp
Fano features formed in the reflectance spectrumwhen a plane
wave illuminates on the PhC slab [33]. For a symmetry sys-
tem, the at-Γ modes completely decouple from the far-field
radiation as a result of symmetry incompatibility. The incid-
ent plane wave is the only radiating states in the normal dir-
ection (z direction) which has different symmetry distributions
from the surface band states of the structure [1]. Therefore, the
Fano resonance peak narrows to zero, the Fano resonance with
a zero width here is the at-Γ BIC, and it would be leaky modes
if the symmetry protection is broken.

In order to understand the origin of the BICs in a struc-
ture composing three nanoholes in one lattice, we consider the
uncoupled objects with only TN, only VNs, and TN-VNs in
one lattice, respectively. Figure 2 are reflectance for the peri-
odic structure in one lattice with (a) only TN, (b) only VNs,
and (c) TN-VNs, respectively. Single at-Γ BIC is observed in
figure 2(a) locates at 0.5758 µm and figure 2(b) that locates at
0.5759 µm for the structure with only TN and only VNs in one
lattice.

When we combine TN and VNs into one lattice, two at-Γ
BIC states at 0.5551µm, 0.5693µmcan be obtained obviously
in the considered wavelength range (as shown in figure 2(c)).

These phenomena mean when the elements of TN and VNs
are combined into one lattice, with a separation smaller than
the illumination wavelength, their resonant modes interact and
form into two new hybridized modes. These hybridized modes
are referred to as superradiant mode (bright mode) and a sub-
radiant mode (dark mode) in terms of molecular orbital theory.
The bright mode exhibits in-phase oscillations of both dipolar
modes, resulting in a large total dipole moment which makes
the mode highly radiative. On the contrary, the dark mode has
only a small total dipole moment due to the out-of-phase align-
ment of the dipoles and is a subradiant mode [34].

In the coupled system under study, when the single-
nanohole array and the two identical nanohole arrays have
different resonances, there are some regions of the spectrum
where their phases are matched, forming a bright mode with
higher radiance because of constructive interference. On the
other hand, in the spectral region where they are out-of-phase,
because of destructive interference, two low radiant or subradi-
ant modes are formed (dark modes). The Fano resonance res-
ults from the interference of these adiabatic modes that overlap
both spectrally and spatially [34].

The dark modes, whose position is determined by a max-
imum in the reflectance spectrum, are then mainly suppor-
ted by the three nanoholes and a weak interaction between
them. Especially, the two BIC modes of the structure with
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Figure 2. Reflectance spectra of the periodic structure in one lattice for (a) TN (the inset shows Ez component of the near filed distributions
of an incident angle near the BICs modes), (b) VNs (the inset shows Ez component of the near filed distributions of an incident angle near
the BICs modes), (c) TN-VNs, and (d) with the polarization direction rotating from x to y for the TN-VNs structure, at incident angle θ = 0
degree. The Ez components of the near-field distribution at θ = 0.01 degree near the two BICs modes at (e) λ = 0.5551 µm and (f)
λ = 0.5693 µm of the TN-VNs structure.

three nanoholes in one lattice can be influenced by the elec-
tric field polarization direction of the incident plane wave. As
is shown in figure 2(d), with the electric field polarization dir-
ection rotating from x to y, the resonance line reappears with
a linewidth wider gradually, which means the BIC modes at
normal incidence turn into Fano resonances with losses with
electric field polarization direction from x rotating away to y
(φ = 0 degree to φ = 90 degree). As a result, we can adjust
the two at-Γ BICs by rotating the incident plane wave (electric
field polarization) or the direction of the structure symmetry
line.

In order to clarify the mechanism of the BIC modes at the
Γ points, the near-field distribution of the Ez component of the
incident angle is plotted near the BICs modes at the x-y cross-
section. The insets in figure 2(a) show the near-field distribu-
tion Ez components of the incident angle near the BICs mode
at the x–y cross section at z= 0 µm and at the x–z cross section
at y = 0.078 µm, respectively. The insets in figure 2(b) show
theEz components of the near-field distribution of the incident
angle near the BICs mode for the x–y cross section at z= 0 µm
and the x–z cross section at y = −0.048 µm, respectively. A
slight deviation from the normal incidence introduces a phase
shift at the surface of the structure and excites the modes. It

can be found that the Ez dipole is symmetrically distributed
around the x-direction in the x–y cross section and around the
x–z plane in the z-direction. The insets in figures 2(e) and (f)
show the near-field distribution of the Ez component of the
incident angle near the BICs mode in the x–y cross section at
z = 0 µm, respectively. It can be seen from figures 2(e) and
(f) that the Ez dipole is symmetrically distributed in the x–y
cross section in the x direction in both at-Γ BIC modes, and
the x–y cross section shows a quadrupole associated with the
hybridization effect.

The resonant reflectance spectra for the nanostructure are
also simulated at a little deflection from normal incidence, as
shown in figures 3(a) and (b), by using simulation and theory,
respectively, and the results agree well. Figure 3(a) plots the
reflectance spectra at an incident angle a small value depar-
ture from normal incidence (θ = 0.5 degree), for the structure
with only TN (the solid red line) and only VNs (the solid blue
line) respectively, while they support independent dipolar res-
onances with narrow linewidths. For the structure with TN-
VNs in one lattice, two hybridized Fano resonance modes
come out and they redshift accompanied by the linewidth nar-
rowing with the incident angle approaching zero degree (as
shown in figure 3(b)). When the incident angle approaches to
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Figure 3. Reflectance spectra by both simulation and theory, (a) at incident angle θ = 0.5 degree of the structure with only TN and only
VNs in one lattice respectively, (b) at incident angle θ = 0.5 degree, θ = 1.0 degree, θ = 1.5 degree of the structure with TN-VNs in one
lattice. Q-factors (c) around BIC-I at about λ= 0.5551 µm, (d) around BIC- II at about λ= 0.5693 µm of the structure with TN-VNs in one
lattice from simulation and theory.

zero, the two dark modes completely decouple from the con-
tinuum of free space mode by their symmetry incompatibility,
which means the width of Fano resonant modes gets zero at
normal incidence, that enables their lifetime approach to infin-
ity. Therefore, more BICs can be obtained by combining TN
array and VNs arrays. As a result, we can control the number
of the BICs at normal incidence by tuning the structural para-
meters, which is helpful in the design of novel ultra-high Q-
factor sensors. Additionally, we depict the calculated Q-factor
of the structure with TN-VNs in one lattice. It reveals that the
Q-factor approaches infinite of the structure in figures 3(c) and
(d). The Q-factor at the BICs of the structure with three nano-
holes in one lattice can exceed 106 at incident angle 0 degree in
figure 3(c) at λ = 0.5551 µm. Figure 3(d) shows the Q-factor
at λ= 0.5693 µm around 0 degree is a little lower than that in
figure 3(c) but high enough (about 104), and Q-factors of the
nanohole structure accord well from both methods. The ultra-
high Q-factors of the structures at-Γ points are meaningful in
many novel potential optical applications.

In an oblique incidence, the reflectance spectrumwidth dis-
appears at a non-zero angle of 24 degree, 25 degree, and 22
degree, for TN array, VNs array, and TN-VNs arrays, as shown
in figures 4(a)–(c), respectively. It is proved that light can be

perfectly confined in a periodic nanostructure, and the radi-
ation amplitudes vanish simultaneously as a result of destruct-
ive interference [10], which is also a type of BICs always
happening at a non-zero incidence angle, and it is associated
with the radiation of the constituting waves canceling each
other.

Different from two BICs in two reflectance resonant lines
in figure 2(c), in figure 4(c), we can see only one resonance
line with an off-Γ BIC for the periodic three-nanohole struc-
ture composed by TN-VNs in a lattice, off-Γ BIC are robust
to small variation of the structure in-plane parameters, and it
is not sensitive to the change of the symmetry or shape of the
nanoholes in the structure [1]. For the off-Γ BIC mode, when
rotating the electric field polarization direction of the incid-
ent plane wave from x to y. The BIC mode at incident angle
θ = 22 degree, similar to that at incident angle θ = 0 degree,
it comes into a Fano resonance with finite Q-factor, which
means that off-Γ BIC is also influenced by the electric field
polarization direction of the incident plane wave (as shown in
figure 4(d)). Additionally, the reflectance spectra behave sym-
metrically about the rotational angle φ = 45 degree.

In order to clarify the mechanism of the BIC modes at
the off Γ points, the near-field distribution Ez components of
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Figure 4. Reflectance spectra of the periodic structure in one lattice with (a) TN, (b) VNs, (c) TN-VNs, and (d) the electric field
polarization direction rotating from x to y for the periodic structure with TN-VNs in one lattice, at incident angle θ = 22 degree. The inset
shows Ez component of the near filed distributions of incident angle (a) θ = 24.01 degree, (b) θ = 24.9 degree, (c) θ = 22.01 degree.

the incident angle are plotted near the BICs mode of the x-y
cross-section at z = 0 µm, as shown in figures 4(a)–(c),
respectively. The comparison between the three structure
cases in the figure shows that the off-Γ BIC are transmitted
wave interfering and canceling from different channels [35].

In order to clarify the law of transformation of the off-Γ
BIC, we plot the reflectance spectra at 10 degree, 20 degree,
and 40 degree of the quasi-BIC peaks of the TN-VNs struc-
ture, respectively, and the results from the simulation agree
very well with that by theory, as shown in figures 5(a)–(c).
It is obvious that the linewidth almost narrows to zero with
incident angle approaches to the value (θ = 22 degree) where
off-Γ BIC happens. Additionally, we depict the calculated Q-
factor of the TN-VNs in figure 5(d). We can observe the Q-
factor at an incident angle of θ = 22 degree is of an ultra-
high value more than 106. Q-factors of the nanohole structure
accord well from both methods. The ultra-high Q-factors of
the structures are meaningful in many novel potential optical
applications.

The BICs modes with infinite Q-factors are ultra-high sens-
itive to the change of the nearby or surrounding dielectric
medium. The figure of merit (FOM) is used for evaluating the
performance of a refractive index sensor [36]:

FOM=
∆f/∆n(THz/RIU)
FWHM(THz)

. (6)

Figure 6(a) shows the FOM of the nanostructure with three
nanoholes in one lattice. Where FWHM is the full width at
half maximum of the resonant frequency. The corresponding
FOM is about 104 RIU−1 around the at-Γ BICs and more than
105 RIU−1around the off-Γ BIC, which means this nanostruc-
ture can have an ultra-high sensibility, much higher than those
plasmonic structures [37, 38]. This type of nanostructure with
ultra-high FOM to the dielectric environment is of import-
ant potential applications such as sensors. Particularly, we can
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Figure 5. Reflectance spectra at incident angle (a) θ = 10 degree, (b) θ = 20 degree, and (c) θ = 40 degree of the structure with TN-VNs in
one lattice from simulation and theory. Q-factor (d) around θ = 22 degree for the wavelength reflectance peak at about λ = 0.7199 µm of
the structure with TN-VNs in one lattice from simulation and theory.

control the number of the BIC modes of this kind of sensor by
modulating the structural parameters.

From the previous analysis, in case the incident angle is
around zero, we can treat the structure TN and VNs act as
two elements forming dark modes, which interact between
the elements and create an electromagnetically induced trans-
parency like phenomenon with two new dark modes (subra-
diant modes) and one wide bright mode (superradiant mode)
between the two modes. At normal incidence, as a result of
symmetry incompatibility, the two dark modes change into at-
Γ BICs. At an oblique incidence, an off-Γ BIC is also found
at about 22 degree as a result of the canceling interference
between different channels, which is affected insignificantly
by the in-plane structural parameters.

The surface modes of the nanostructure with TN-VNs in
the system produce interactions around the resonant positions,
leading to dispersion. The dispersion effect can be used to real-
ize the slow light application. Group index has a positive cor-
relation with the slow light effect, we can use it to value the
slow light devices [39]. The group index can be expressed as
equation (7):

ng =
c
H

dη
dω

(7)

where c is the speed of light in vacuum, H = 0.18 µm denotes
the thickness of the metasurface. η = arg(r) can be obtained
from the reflectance coefficient calculated by equation (4)
indicating the reflectance phase.

Because the zero line width at the BICs, we take the quasi-
BICs resonance line to investigate the slow light effect. The
group index and phase shift of the metasurface are shown
in figures 6(c) and (d). It is clear that two ultra-high val-
ues of the group index appear for the two dark modes loc-
ated at 0.5569 µm and 0.5696 µm at an incidence angle of
θ = 0.5 degree. There is also an ultra-high value of the group
index at 0.7055 µm with θ = 20 degree. The quasi at-Γ BIC
mode and the quasi off-Γ BIC mode reach positive values
over 105, which indicates a slow light effect. Meanwhile, the
phase fluctuates as a result of the interaction at the resonant
wavelength, they all transform from high values to low val-
ues. The slow light effect is more significant than that of the
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Figure 6. FOM versus the refractive index of the surrounding medium of the structure with TN-VNs in one lattice at the incident angle (a)
θ = 0.5 degree and (b) θ = 20 degree, respectively. Group refractive index and phase shift versus wavelength of the structure with TN-VNs
in one lattice at the incident angle (c) θ = 0.5 degree and (d) θ = 20 degree, respectively.

plasmonic waveguide device. It proposes a new approach to
designing ultra-slow light devices.

4. Conclusions

In conclusion, an integral nanohole array perforated in a layer
of Si3N4 PhC slab surrounded by silica medium is numerically
and theoretically analyzed by S4 and CMT, respectively. For
the at-Γ BICs, TN array and VNs array have BICs at different
wavelengths. When we compact the two types of nanoholes
as two elements into one lattice, the surface modes in differ-
ent spectra would interfere destructively and two new surface
modes appear, and they form into BICs at theΓ points. The off-
ΓBICs can be affected insignificantly by the in-plane structure
parameters. Both at-Γ BICs of the three-nanohole nanostruc-
ture exhibit high tunability by the polarization direction of the
incident plane wave. Q-factors of two at-Γ BICs and one off-Γ
BIC can exceed 106, 104, and 106, respectively. The slow light
property of the nanohole structure at the BICs is also explored,
and ultra-slow light is obtained with the group index exceed-
ing 106. The proposed design is essential for understanding the
fundamental mechanism of the BICs and the tuning of mul-
tiple BICs. The results could promote practical applications of
all-dielectric devices, including efficient biosensing, perfect
filters, a detector for impurities within a structure, and ultra-
slow light devices.
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