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Abstract
Inevitable for the basic principles of skyrmion racetrack-like applications is not only their
confined motion along one-dimensional channels but also their controlled creation and
annihilation. Helical magnets have been suggested to naturally confine the motion of skyrmions
along the tracks formed by the helices, which also allow for high-speed skyrmion motion. We
propose a protocol to create topological magnetic structures in a helical background. We
furthermore analyse the stability and current-driven motion of the skyrmions in a helical
background with in-plane uniaxial anisotropy fixing the orientation of the helices.

Supplementary material for this article is available online
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(Some figures may appear in colour only in the online journal)

1. Introduction

Magnetic skyrmions are topologically nontrivial textures that
arise in magnetic materials [1–6]. They are typically con-
sidered to be vortex-like solitons in a ferromagnetic back-
ground. Owing to their small size and high stability against
thermal fluctuations, they are considered as possible candid-
ates for information units with applications in devices such
as logic gates [7, 8] and racetrack memory devices [9–11].
The latter have gained considerable attention as candidates
for low-input non-volatile memory. A major challenge for
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skyrmion-based racetracks is that the magnetic whirls typic-
ally not only move along the tracks but additionally experi-
ence current-induced forces in a perpendicular direction [12,
13]. This skyrmion Hall effect [14, 15] might lead to the
annihilation of a skyrmion as it moves towards the edges
of the racetrack. Several studies have been proposed to sup-
press or eliminate the skyrmion Hall effect which can basic-
ally be grouped into two categories. One exploits the coupling
between two skyrmions of opposite polarity, as they arise for
example in (artificial) antiferromagnets [16–18], such that the
Magnus forces acting on the individual skyrmions effectively
cancel each other. The other exploits an additional symmetry
breaking which eliminates the skyrmion Hall effect along cer-
tain directions or by engineered material properties [19–24].
Another approach to avoid the annihilation of the skyrmion
at the edge of the nanowire is to engineer the potential at the
edges. The latter creates a repulsive force that counteracts the
current-induced perpendicular force on the skyrmion [25–34].
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The essential goal for racetrack memories is to devise
a mechanism to constrain skyrmions to certain well-defined
lanes. While all of the suggested methods above counteract
the Magnus force in some form, they often require fine-tuned
material engineering and restrict the motion of the skyrmions
along tracks only by means of geometrical confinement of the
nanowire. A different suggestion to obtain a skyrmion trans-
port along 1D channels, which so far has not received much
attention, is to exploit the tracks that are naturally formed in
helical states [35–37]. In particular, it has been proposed that
currents perpendicular to these formed tracks allow for high-
speed skyrmion motion in materials with low damping. Fur-
thermore, skyrmions and antiskyrmions can coexist in helical
magnets, and move along different tracks in the helical back-
ground. Any application, however, first requires the controlled
creation of the topological objects.

In this work, we propose a protocol to create skyrmions
in the helical background by electrical means. We show by
numerical simulations that skyrmion-antiskyrmion pairs are
nucleated at impurities, exploiting a concept that has pre-
viously been applied for ferromagnetic states [38–42]. The
generated topological structures immediately enter ‘lanes’
that act as a natural confining potential along which the
(anti)skyrmions can be driven.

The manuscript is organized as follows. In section 2, we
consider the helical state in a thin film helimagnet with an in-
plane easy axis. We discuss the helical ground state and dif-
ferent skyrmion solutions on top of the helical ground state. In
section 3, we analyse the current-induced dynamics of helical
states and derive current-driven instabilities. Furthermore, we
discuss the current-driven motion of skyrmions in the helical
background. In section 4, we present an all-electrical protocol
for creating skyrmions in the helical background. The manu-
script ends with a discussion and conclusion in section 5.

2. Topological excitations in helical states

We consider a model for a smooth thin film helimagnet with
an in-plane easy axis. The energy functional for this system is
given by

E[m(r)] =
ˆ

d2r

[
J
2
(∇m)2 +Dm · (ŷ× ∂xm− x̂× ∂ym)

−K(m · ŷ)2
]
, (1)

where m(r) characterizes the normalized magnetization
at position r= (x,y). The first term corresponds to the
exchange interaction with strength J. Note that here J/2=
Aex where Aex is the exchange stiffness. The second term
is the chiral interaction corresponding to an interfacial
Dzyaloshinskii–Moriya interaction (DMI) with strength D.
The third term is the uniaxial anisotropy along the in-plane
direction ŷ. By choosing appropriate units, equation (1) can
be transformed to a single-parameter theory. For this, we

reparametrize energy and length by J and J/D, respectively, to
obtain

E[m(r)] =
ˆ

d2r

[
1
2
(∂xm− ŷ×m)

2
+

1
2
(∂ym+ x̂×m)

2

+
1
2
m2
x +

(
1
2
−κ

)
m2
y

]
, (2)

with the effective parameter κ= JK/D2. Note that we have
rewritten the expression in such a way that the squares are
completed. This representation shows the chirality induced by
the Néel DMI and the existence of an effective anisotropy. For
large κ > κc ≈ π2/8≈ 1.23, the model is dominated by the
uniaxial anisotropy and the ground state corresponds to ferro-
magnetic domains oriented along±ŷ. In the following, we will
focus on the region κ < κc where the ground state is a helical
configuration.

2.1. Helical ground state

For κ < κc the ground state of the model of equation (2) is
given by a helical state of the form

m(r) = cos[θ(r− r0)] q̂+ sin[θ(r− r0)] ẑ. (3)

Here the normalized vector q̂ characterizes the orientation
of the helix, the function θ(r) describes the profile of the
helix, and r0 its spatial displacement. As the consideredmodel,
equation (2) is translational invariant, in the following we will
choose r0 = 0. In the absence of anisotropy (κ= 0), the min-
imal energy configuration is described by the profile function

θ(r)≡ θ0h(r) = q̂ · r. (4)

This corresponds to a helix withwavelengthλ0 = 2π in the res-
caled units. Notice that no orientation of the helix is favoured,
i.e. q̂ is only specified to be in the xy plane. In the pres-
ence of a small easy-axis anisotropy (0< κ < κc), the helical
wave vector is favoured to be parallel to the easy axis, i.e.
q̂ || ŷ. In this case, the lanes are oriented along the x̂-direction,
see figure 1(a), and the profile function only depends on the
y-coordinate5. Furthermore, the helix deforms and its profile
is given by

θ(r)≡ θh(y) = am

[√
2κcy,

1
c

]
, (5)

where am(u,m) is the Jacobi amplitude [35, 46]. The constant
c characterizes the conserved linear momentum corresponding
to the translational symmetry along ŷ-direction6. It is bound
by 1< c< 1+ 1/(2κ) due to the DMI-induced open bound-
ary condition ∂yθh(y) = 1 while enforcing that at somewhere

5 Note that a perpendicular magnetic anisotropy favours no particular orient-
ation of the helix, and thus potentially results in current-driven reorientations
of the helix direction at boundaries and impurities [43–45].
6 The conserved linear momentum c= (∂yθ)2/(2κ)+ sin2 θ is independent
of the coordinate y.
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Figure 1. (Meta-) stable magnetic states in helimagnets. (a)–(c) show the magnetic configurations of (a) the helical ground state, (b) for the
H-shaped skyrmion (HSk) and (c) for the interstitial skyrmion (iSk) for κ= 0. The out-of-plane component is shown by the contrast mz= 1
(mz=−1) corresponds to white (black). The different colours encode the in-plane component of the magnetization as shown by the colour
wheel on the right and indicated additionally by the small white arrows. (d) Rescaled energy as a function of the effective anisotropy κ for
the two different metastable localized topological states and their skyrmion number density ρsk distribution (encoded in colour) is shown in
(e) and (f), respectively. The white arrows indicate the in-plane component of the magnetization at this point, to better compare with the
corresponding panels above.

Figure 2. Characteristics of the helical state as a function of the effective parameter κ. (a) The helical wavelength increases as a function of
κ . Insets show a section of the helical state for κ= 0 and close to the critical value κc indicated by the grey dashed line. Besides the
wavelength, the profile of the helices also changes as a function of κ, which is shown explicitly in panel (b). The magnetization component
along the helical wave vector, here my, changes from a regular cosine behaviour for κ= 0 towards a domain wall-like profile for κ→ κc.

along the helix the magnetization is in-plane7. The natural
wavelength of the distorted helix is λh = 4F(π/2,1/c)/

√
2κc,

where F(π/2, 1/c) is the elliptic integral of the first kind
[35, 46]. As a disclaimer, note that contrary to the ferromag-
netic state, the helical state is very much affected by geomet-
rical and boundary effects as well as impurities. Thus, the pre-
cise helical structure and its wavelength is, in general, quite
complicated for confined samples.

7 The non-linearity of the solution equation (5) is an obstacle to obtain an
approximate analytical expression for the c dependence on κ that minimizes
the energy density.

Analytically, we can consider two limits for infinite
samples i) κ= 0 and ii) κ→ κc. The limit κ→ 0 corresponds
to c→∞ for which F(π/2,1/c)→ π/2 and

√
2 κc→ 1.With

this, one obtains the helical configuration with the profile
described in equation (4). In the limit κ→ κc the constant c
approaches 1, the wavelength λh diverges and the magnetic
configuration described by equation (3) turns into a single

domain wall with θh(y) = arccos
(
tanh

√
2κy

)
.

Our numerical results obtained by simulations with MuMax3

are shown in figure 2, for details see the appendix. In
figure 2(a) we show the wavelength dependence on the effect-
ive parameter κ and in figure 2(b) the profiles of the helices
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for different values of κ. The numerical simulations repro-
duce the main qualitative features from the analytics: (i) for
κ→ 0, the domain wall profile obtains a regular cosine pat-
tern as described by equation (4) and (ii) that for κ→ κc,
the wavelength diverges and the profile converges to that of
a domain wall.

2.2. Skyrmions in the helical ground state

It has been shown that, on top of the helical ground state, local-
ized metastable topological magnetic structures exist [35, 36].
In a ferromagnetic state, a local configuration with unitary
topological winding number

Nsk =
1
4π

ˆ
Ω

d2rρsk ≡
1
4π

ˆ
Ω

d2rm · (∂xm× ∂ym) , (6)

is typically associated to a magnetic skyrmion. In the hel-
ical background, there are two distinct configurations associ-
atedwith the topological chargeNsk = 1: interstitial skyrmions
(iSks) and ‘H-shaped’ skyrmions (HSks), see figures 1(b) and
(c). The former resemble skyrmions in ferromagnets, around
which the helical background bends [36]. The latter are bound
meron pairs, where each meron has a half-integer topological
charge [35, 36, 42]. Their corresponding skyrmion densities
ρsk are shown in figures 1(e) and (f). In agreement with [36],
we find that HSk are energetically favourable compared to iSk,
see figure 1(d).

3. Current-driven dynamics in helical states

In the following, we discuss the current-induced dynamics of
helical states subject to spin-transfer torques [47, 48], which
is well described in the framework of the Landau–Lifshitz–
Gilbert equation

ṁ=−m×Beff − (vs ·∇)m+αm× ṁ+βm× (vs ·∇)m.
(7)

Here, Beff =−δE[m]/δm and α,β are the damping paramet-
ers. Time has been rescaled by τ = JMs/γD2 where γ is the
(positive) gyromagnetic ratio and Ms is the saturation mag-
netization. The strength of the spin-transfer torque is charac-
terized by the effective spin velocity vs which is proportional
to the electrical current density je as vs =−jePµB/(eγD(1+
β2)), where P is the polarisation, µB is the Bohr magneton,
and e> 0 is the electron charge.

To analyze the effects of spin-transfer torques, which
couple only to gradients of the magnetic structure, one
has to consider several regimes. In a real sample, pinning
forces favour static equilibrium configurations while spin-
torques inject energy into the system and drive the system
away from equilibrium. Their interplay divides the dynamical
phase-space into three regimes ordered by increasing driving
strength. For (i) vs < vpin, i.e. the depinning drive, the mag-
netic configuration is static; (ii) vpin < vs < vC the magnetic
configuration evolves controllably; (iii) vs > vC the magnetic
configuration is unstable and there is no long-range magnetic

order. While the strengths of vpin and vC depend on the partic-
ular system, more specifically on the magnetization configur-
ation, geometry and potential disorder, a few general remarks
can be made. In homogeneous systems an example of dynam-
ics in region (ii) is the steady translation of rigid configura-
tions, which can be described by a Thiele equation [13, 49].
For non-homogeneous systems the magnetization dynamics
becomesmore complex [38–40, 50–52] and gives rise to inter-
esting phenomena such as the shedding of topological textures
[38–40, 52].

3.1. Instabilities of the helical state

We consider first the pure helical state with open boundary
conditions in the absence of disorder and at zero temperature.
In this case, the magnetization gradient only couples to the
ŷ-component of the driving. Furthermore, vpin = 0, and spin-
transfer torques lead to a global translation of the helices along
the ŷ-direction. For driving above a strength vC ≡ vW, the hel-
ical state becomes unstable, and the magnetization may start to
precess, leading to a Walker-breakdown instability [45], sim-
ilar to the one for a domain wall8.

In a typical experiment, however, the helical phase is very
sensitive to geometry, boundary effects and disorder. There-
fore, vpin can only be determined for the specific considered
configuration. Below we will consider a regime where we pre-
vent the global translation of the helices along the ŷ-direction
by pinning the helices at the boundaries, as the key idea is to
work in a regime where only local structures, i.e. the skyrmi-
ons, move along the tracks and not the full helical system, see
section 3.2. For such pinned helical states with wave vector
along ŷ, the y-component of the drive will deform the profile
of the helices while the x-component couples with any perturb-
ations of the helical background. It turns out that this pinned
helix regime splits further into two cases, one in which the
applied drive is small in the sense that perturbations only act
locally on a size much smaller than the helical wavelength λh

and one where perturbations are on the order of λh. The lat-
ter allows to change the structure of the helical state and pro-
duce metastable local excitations such as the HSk and iSk. We
denote the drive above which a local excitation modifies the
helical state by vc.

Analytically we can obtain an estimation of vc for κ≲ κc,
where the helical state is distorted in such a way that it can be
interpreted as a sequence of ferromagnetic domains periodic-
ally separated by domain walls, see inset of figure 2(a) for κ
close to κc. The lowest excitation modes of such a state can be
interpreted as a local translation of a domain wall with a rigid
profile [53] within the length scale of a helical period to not
shift the full helical state. Therefore, we consider the magnet-
ization locally given in terms of the spherical angles as

m(r) = sinθ(r)ẑ+ cosθ(r) [cosϕ(r) x̂+ sinϕ(r) ŷ] , (8a)

8 In the absence of anisotropy vW = 1 and the Walker breakdown of the helix
is the transition from driven conical to polarized.
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with θ(r) = arccos
[
tanh

(√
2κ [y− y0(x)]

)]
,

and ϕ(r) =
π

2
+φ(x), (8b)

in a region y− y0 ≪ λh/2. Here y0(x) and φ(x) describe the
fluctuations along the tracks that might arise due to some local
perturbation in this region. We consider the magnetization to
be static everywhere else corresponding to the helical back-
ground. In this approximation, we claim that the energy asso-
ciated to perturbations of the helical background is equival-
ent to the energy associated to a perturbation of a domain
wall in a confining potential, i.e. Ecp[m(r)]≈ E[mDW(r)]+´
dx2y20/λ

2
h, and yields

E[m(r)]≈
ˆ

dx

[
1√
2κ

(∂xφ)
2 +

√
2κ(∂xy0)

2 − π

2
φ∂xy0

+
(π
2
+
√
2κ

)
φ2 +

2y20
λ2
h

]
. (9)

The last two terms correspond to confining potentials that
fix the helicity and position of the domain wall, respectively.
Notice that the potential for φ is positive for κ < κc, and the
constraining potential for y0 vanishe as κ approaches the crit-
ical value.

For a current applied along the x̂-direction and in the
absence of non-adiabatic damping (β= 0), we deduce from
equations (7) and (9) the linearized equations of motions for
y0 and φ,

∂tφ=
(
vx+

π

2

)
∂xφ−

√
2κ∂2

x y0 +
2
λ2
h

y0 −
√
2κα∂ty0,

(10a)

∂ty0 =
(
vx+

π

2

)
∂xy0 +

1√
2κ

∂2
xφ−

(π
2
+
√
2κ

)
φ

+
1√
2κ

α∂tφ. (10b)

Analysing the stability of the system, in the limit of small
damping α, we find that for κ≲ κc perturbations in the system
damp out for drives below

vκ≲κc
c ≈

√
2
λ2
h

+
π

2
+
√
2κ− π

2
, (11)

which in the limit κ= κc yields vκc
c ≈ 0.20. Moreover, in this

approximation, one notices that as κ→ 0 the helical state
becomes unstable at any non-zero drive, |vs|> 0 [45]. Above
this critical current, any perturbation tends to grow exponen-
tially. Depending on the detailed energy landscape, such per-
turbations span a great variety of possible magnetic configura-
tions and may allow for the creation of metastable states. This
regime, for example, allows for the creation of HSk or iSk and
will be explored in section 4.

To numerically study the critical current density above
which the helical state significantly deforms, we consider an
impurity as a circular region of radius Ri with an easy-axis

anisotropy along n̂ perpendicular to ŷ. The energy contribution
for the impurity to the functional in equation (2) is given by

Ei[m(r)] =−
ˆ

d2rκi(n̂ ·m)2Θ
[
R2
i − (x− xi)

2 − (y− yi)
2
]
,

(12)

where κi is the strength of the local easy-axis anisotropy along
n̂, Θ(x) is the Heaviside step function being 1 for x⩾ 0 and 0
for x< 0, the coordinates xi,yi are the position of the inhomo-
geneity region. The inhomogeneity leads to a local deforma-
tion of the helix in this region, see figures 3(a) and (d). When
applying a current, the deformation enhances and above a cer-
tain drive vc does no longer allow for a statically stable solu-
tion. In figure 3 we show the results obtained with MuMax3 for
systematically computing the critical drive vc as a function of
the ratio of the local and global anisotropy strengths κi/κ, the
radius Ri and for n̂ along ±x̂ and ±ẑ. The results shown in
figure 3 are computed for κ= 0.31, α= 0.05 and β= 0, for
details see appendix.

The presence of the inhomogeneity modifies the magnet-
ization locally as the magnetization inside the inhomogeneity
tends to rotate towards n̂ see figures 3(a) and (d). The stronger
the inhomogeneity, the more the magnetization aligns with
the anisotropy direction of the impurity, and the domain wall
stripes are pushed out of the inhomogeneity region. As the ini-
tial perturbation is a bit stronger for a larger κi/κ, the crit-
ical current decreases as a function of κi/κ. The most import-
ant factor for the deformation of the helical state, however,
is the size of the inhomogeneity, which essentially determ-
ines the curvature of the domain wall. We find that the critical
drive generally decreases with an increasing size since a big-
ger impurity typically produces a large initial perturbation that
couples more strongly to the spin-transfer torque.

For the impurity region with n̂= ẑ, the set-up is still axial
symmetric and therefore a current along +x̂ or −x̂-direction
yields the same critical drive. For n̂= x̂, the impurity breaks
the axial symmetry and it induces the magnetization to align
perpendicularly to the plane defined by the helical config-
uration, generating an extra gradient component. Therefore,
reversing the current direction alters the size of the critical
current.

3.2. Current-driven motion of skyrmions in the helical
background

A key prerequisite of spintronic-based racetrack memories
is the possibility to move the rigid localized magnetic con-
figurations by applying a current. To obtain the motion of
the skyrmions in the helical background, we consider that in
the current-driven steady motion the magnetization is given
by m(r, t)≡m(r− vst). Given this assumption and projecting
equation (7) along m× ∂xm and m× ∂ym leads to the Thiele
equation [13, 49]

G× (v− vs)+D(αv−βvs)−F= 0, (13)

where G = 4πẑ is the gyrovector, Dij =
´
d2x∂im · ∂jm is the

dissipative tensor, andF= ∂xE[m(r)]x̂+ ∂yE[m(r)]ŷ is a force

5
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Figure 3. Current-induced instability of the helical phase due to an inhomogeneity. (a) and (d) show an example magnetiszation
configuration around the impurity region for n̂= x̂ and n̂= ẑ, respectively. (b), (c), (e), (f) show the critical drives vc as a function of
inhomogeneity radius and relative anisotropy strength κi/κ. For all panels κ≈ 0.31, α= 0.05 and β= 0 and in (a) and (d) we used 2 Ri = λ0

and κi/κ= 10. We note that the graphs (e) and (f) are identical due to the mirror symmetry along x̂ for the case of an impurity along ẑ.

Figure 4. Properties of HSk and iSk subject to an applied drive vs along the ŷ-direction. (a) and (b) show the skyrmion speed v as a function
of driving strength vs and inverse damping 1/α, respectively. For small drives the corresponding relation is linear and becomes sub linear for
larger drives. High skyrmion speeds can be obtained in the regime of small damping and large drives. Note that because of the HSk being
more stable it generally allows for higher drives than the iSk. For large drives, both skyrmions deforms as exemplarily shown in the insets.
The dotted data points have been obtained by numerical simulations and the cross-shaped data points have been obtained using
equation (14) while micromagnetically computing the dissipative tensor D, the drive dependence of which is shown in (c). For this plot we
used κ≈ 0.31, and β= 0. In (a) and (c) α= 0.1, and in (b) vs ≈ 2.1 × 10−3.

due to spatial variations of the energy density functional. The
first term in the equation is responsible for the skyrmion Hall
angle, it produces a movement of the skyrmion that is perpen-
dicular to the perturbation. The second term is a dissipative
term whose direction of motion depends on the shape of the
skyrmion. The third term pushes the skyrmion towards a stable
position in the energy landscape. The helical background has
a significant impact on the last two terms by producing a non
vanishingF and deforming the skyrmion as it is displaced from
a path of minimal energy. The helical state also confines the
motion of the skyrmions along the helical tracks, i.e. v ∥ x̂ in
a steady motion. Solving equation (13) for the velocity of the
skyrmion thus yields for the steady motion

v=
(
4π(vs · ŷ)
αDxx

+
β

α
vs ·

(Dxxx̂+Dxyŷ)
Dxx

)
x̂. (14)

For small drives where this equation holds, the velocity grows
linearly with the applied current. Note that equation (14)
holds for all metastable magnetic structures in the helical
background, including the HSk and iSk. Furthermore, in the
absence of non-adiabatic spin-transfer torques, i.e. β= 0, only
a current along ŷ will induce a motion of the skyrmion.

For larger drives, where the skyrmion tends to move
away from the local minimum given by the helical track,
the skyrmion gets deformed with a deformation that depends
on the strength of the applied current. By means of micro-
magnetic simulations we show that, in this case, the relation
of the skyrmion speed and the drive becomes sublinear, see
figure 4(a). In figure 4, we show the speed and deformation
of the HSk and iSk skyrmion as a function of the applied
drive and inverse damping in the absence of non-adiabatic
spin-transfer torques obtained by micromagnetic simulations
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Figure 5. Creation of a Sk/anti-Sk pair in a helical background through the interplay of an inhomogeneity and an applied current. The top
(bottom) row shows the magnetization configuration (skyrmion number density) around the impurity at different times during the creation
process. Panel (e) shows the created HSK/anti-HSk pair. The colour coding is identical to the one used in figure 1. The material parameters
are discussed in the appendix.

Figure 6. All electrical three-step HSk creation protocol. (a) Shows the applied current pulses as a function of time. The labels A–H mark
the times where we show the corresponding magnetization configurations. The details of the HSk/anti-HSk creation (A)–(E) are shown in
figure 5. In (b) we first repeat the configuration of the HSk/anti-HSk after its creation (E) and then we focus on the HSk that has been moved
away from the impurity region with a pulse in ŷ-direction. Under the influence of such a pulse the anti-HSk moves in the opposite direction,
i.e. out of the focus region here. In (c) we show the result of step 3, the restored impurity (G), which then allows for the production of
another HSk/anti-HSk pair. The material parameters are discussed in the appendix. This protocol is shown as a movie in the supplementary
information.

as well as the results of equation (14) when computing the
dissipative tensor D micromagnetically, shown in panel (c).
High-speed skyrmion motion arises for high drives and low
damping. We also find that, as expected, the HSk is more
robust, and thus allows for higher velocities compared to the
iSk which annihilates when pushed too much away from its
minimal energy position. Movies of the current-driven HSk
and iSk motion are available as supplementary information
(available online at stacks.iop.org/JPD/54/404003/mmedia).

4. Shedding of skyrmions in the helical state

For the controllable injection of skyrmions we consider
the design with a localized inhomogeneity in the sample,
as described by equation (12) with n̂= x̂, κi = 10κ and
2 Ri/λ0 = 1.0. Applying a drive along the x̂-direction above
vc deforms the magnetization around the impurity, and, due
to the conservation of topological charge Nsk, not only cre-
ates a HSk but a HSk/anti-HSk pair on opposite sides of

7

https://stacks.iop.org/JPD/54/404003/mmedia


J. Phys. D: Appl. Phys. 54 (2021) 404003 R Knapman et al

the impurity, see figure 5. After the creation of this pair,
the magnetization configuration around the impurity is in a
metastable state which unfortunately does not immediately
allow for another pair creation. Combining this fact with
the current-driven skyrmion motion discussed in section 3.2,
we developed the following all-electrical three-step protocol
for creating skyrmions in the helical background, shown in
figure 6:

• Step1:Create a HSk/anti-HSk pair: Starting from the helical
state with an impurity, use a current pulse along −x̂ with
strength above the critical current.

• Step2: Move HSk and anti-HSk away from the impur-
ity region: Apply a current along ŷ to move the skyrmi-
ons. Notice that the HSk and anti-HSk move in opposite
directions.

• Step3: Restore the impurity configuration: Apply a short
pulse of current along x̂ with a strength above the critical
current in that direction.

Once the magnetization at the impurity is reinitiated to its
lowest energy configuration, the protocol can be repeated to
create another Sk/anti-Sk pair. We note that the size and dura-
tion of the pulses must be tailored for the size and strength of
the impurity as discussed in figure 3. This enhances the con-
trol over the skyrmion creation since different impurities will
not be able to generate and be reset by the same applied cur-
rent pulses allowing for precise creation of skyrmions at the
desired locations. Furthermore, the skyrmions are moved with
much smaller currents applied along the ŷ-direction, allowing
the process of creation and skyrmion transport to be carried
out rather independently from each other.

5. Discussion and conclusion

We studied the stability and current-driven dynamics of hel-
ical states with in-plane uniaxial anisotropy in the presence
of perturbations and inhomogeneities. Compared to the ferro-
magnetic state, the helical state has more degrees of freedom
making its physics richer. Besides naturally providing tracks
for skyrmion motion, advantages of helical phases are that
they exist at room temperature in absence of external magnetic
fields, and that they are very robust to external perturbations
[54, 55].

As a central result, we developed a theory to explain for
which current ranges it is possible to produce and manip-
ulate metastable topological structures in the helical back-
ground. Based on these findings we developed an all-electrical
three-step protocol that independently allows for the con-
trolled creation and the controllable motion of HSks. Our res-
ults obtained by micromagnetic simulations are supported by
analytical calculations where the latter are mainly performed
in the limits of small or high in-plane anisotropy. For simpli-
city, we neglected stray fields in our calculations. Generally,
we expect their influence not to be too important, as the hel-
ical state itself has zero net magnetization.We expect that their
main effect is to distort the helical profile mildly, and enhance

the stability of the HSk and iSk, as magnetostatic interactions
favour the formation of twisted structures. Furthermore, our
numerical results were obtained in the absence of damping-
like spin-transfer torques, i.e. β= 0. For β ̸= 0 we expect the
current to couples more effectively to the magnetization and
lead to lower critical currents vc and higher skyrmion speeds,
similar as in [52]. Also, all our simulations are performed at
zero temperature. Temperature induces perturbations in the
well-ordered states, and thus might alter the stability of the
twisted magnetic structures as well as lower the critical cur-
rent densities.

As a final remark, in the absence of a magnetic field, the
helical background does not favour HSk over anti-HSks. Dur-
ing the three-step protocol, the anti-HSk was not in our focus,
as the idea was to show a protocol to create multiple HSks for
a racetrack-like device. But since HSk/anti-HSk pairs are cre-
ated on the opposite side of the impurity andmoved away from
the impurity in opposite directions, this protocol allows for
information to be created andmoved along two directions sim-
ultaneously, going even beyond the concept of a HSk-based
helical magnetization racetrack memory.
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Appendix

The micromagnetic simulations were performed with
MuMax3 [56]. For all simulations we used Ms = 106 Am−1,
J= 20 pJm−1 and D≈ 2.55× 10−3 J m−2, yielding a pure
helical wave length (K = 0 J m−3) of λ0 = 2πJ/D≈ 49.3 nm
and a characteristic time scale of τ = JMs/γD2 ≈ 0.0175 ns.
The choice of the DMI strength is motivated by choos-
ing D= 2Dc, where Dc = 4

√
JK/2/π [57], i.e. a regime

where we found the skyrmions to be metastable. To obtain
D≈ 2.55× 10−3 Jm−2 we used K= 105 Jm−3 for which we
obtain an effective parameter of κ= JK/D2 ≈ 0.31. The effect-
ive parameter κ is only ever varied by varying K, and unless
otherwise specified, K= 105 J m−2. Furthermore, we chose
the damping constants α= 10−3 and β= 0 unless otherwise
specified. For simplicity, we take the spin polarization P= 1
throughout. We remark, however, that the experimental value
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of this is usually significantly lower in real experiments. Note
that wemade sure to adjust the system size to allow for the nat-
ural helical solution avoiding geometrical influence of finite
size samples.

To pin the helical state in the simulations with applied cur-
rent, the spins at the top and bottom of the system were frozen.
To compensate for current-induced effects at the sample
boundaries, we suppressed the spin dynamics at the boundary
by setting a high damping constant at the left and right ends of
the system, α= 5.

The proportionality factor between the drive velocity vs
and the electrical current density is PµB/(eγD(1+β2))≈
1.29 × 10−13 m2 A−1. A typical used drive value of vs =
0.025 to move the skyrmions corresponds to je ≈ 1.94 ×
1011 A m−2, and vc = 0.25 to create the skyrmions corres-
ponds to jc ≈ 1.94 × 1012 A m−2. And a dimensionless
skyrmion speed of v= 0.2 corresponds to the dimensionful
skyrmion speed vd = (γD/Ms)v≈ 89.7 ms−1.
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