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Abstract
Surface plasmons (SPs) are surface charge density oscillations occuring at a metal/dieletric 
interface and are highly sensitive to refractive index variations adjacent to the surface. This 
sensitivity has been exploited successfully for chemical and biological assays. In these 
systems, a surface plasmon resonance (SPR)-based sensor detects temporal variations in 
the refractive index at a point. SPR has also been used in imaging systems where the spatial 
variations of refractive index in the sample provide the contrast mechanism. SPR imaging 
systems using high numerical aperture (NA) objective lenses have been designed to image 
adherent live cells with high magnification and near-diffraction limited spatial resolution. 
Addressing research questions in cell physiology and pharmacology often requires the 
development of a multimodal microscope where complementary information can be obtained.

In this paper, we present the development of a multimodal microscope that combines SPR 
imaging with a number of additional imaging modalities including bright-field, epifluorescence, 
total internal reflection microscopy and SPR fluorescence microscopy. We used a high NA 
objective lens for SPR and TIR microscopy and the platform has been used to image live 
cell cultures demonstrating both fluorescent and label-free techniques. Both the SPR and 
TIR imaging systems feature a wide field of view (~300 µm) that allows measurements from 
multiple cells whilst maintaining a resolution sufficient to image fine cellular processes. 
The capability of the platform to perform label-free functional imaging of living cells was 
demonstrated by imaging the spatial variations in contractions from stem cell-derived 
cardiomyocytes. This technique shows promise for non-invasive imaging of cultured cells over 
very long periods of time during development.

Keywords: surface plasmon resonance, plasmon, cardiac, neuron, functional imaging, 
imaging, biosensor
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1. Introduction

Electrically excitable cells, such as cardiomyocytes and neurons, 
have been shown to produce fast optical signals that are the result 
of light scattering and birefringence changes associated with 
membrane depolarization [1–3]. In order to develop an under-
standing of how a population of cells are organized, exchange, 
and process information a new sensing technology is required, 
one that has single cell resolution over a relatively large network. 
Surface plasmon resonance (SPR) sensors possess highly sensi-
tive resonance conditions, which make them capable of detecting 
variations in refractive index with a high spatiotemporal resolu-
tion, label-free thus enabling long-term recording.

SPR occurs when p-polarized light incident on a noble 
metal, at a specific angle of incidence, couples to the free 
electrons in the metal resulting in all the incident energy 
generating surface plasmons (SPs) [4]. At the angle of inci-
dence where the plasmon coupling occurs, the intensity of the 
reflected light drops and an evanescent wave is generated in 
both the metal and dielectric (figure 1(a)). This evanescent 
wave penetrates into the dielectric to a depth of about 150 nm, 
depending on the properties of the metal used [5, 6]. SPR is 
very sensitive to perturbations of refractive index within this 
evanescent field; therefore, when there is a change in the 
refractive index of the dielectric medium, the characteristics 
of the light wave coupled to the surface plasmon changes and 
the resonance conditions are altered (figure 1(b)). This allows 
SPR to be used for label-free imaging of both structural (sen-
sitive to local variations in density) [7–10], and functional 
(sensitive to movements of matter) [11–14] features.

SPs cannot be excited by the incident light directly. At a 
given photon energy (hω) the wave-vector of the incident 
p-polarized light must be increased so the photons can be cou-
pled into plasmons [15]. Passing the illumination light through 
a high refractive index dielectric material, such as glass, can 
shift the wave-vector of the incident light enough to excite 
SPs. Excitation methods based on attenuated total reflection 
(ATR) were demonstrated in the late sixties by Otto [16] and 
Kretschmann and Raether [17]. The Kretschmann ATR con-
figuration is one of the most popular methods for exciting SPs 
and has a thin metal film deposited on top of a prism surface.

The Kretschmann–Raether configuration allows a large 
field of view (FOV) (up to cm). However, this configura-
tion is not well suited to imaging because it requires a very 
shallow angle of incident light. The physical constraint of the 
prism limits the numerical aperture (NA) and magnification 
of the imaging system resulting in the configuration having 
a reduced spatial resolution [18]. Additionally, the FOV is 
angled relative to the objective resulting in an anisotropic dist-
ortion. Using a high NA objective lens instead of a prism to 
shift the wave-vector of the incident light resolves the issues 
of spatial distortion by keeping the object plane parallel to the 
image plane [18, 19]. Using a high NA objective also allows 
higher magnification and, because of the high NA, the spatial 
resolution is much improved and can be diffraction limited 
(~300 nm).

Despite these caveats, using SPR for functional imaging 
by detecting refractive index variations within the evanescent 

field is possible. To detect variations in the refractive index 
of the dielectric medium interfaced to the metal surface, a 
number of detection schemes can be employed: (i) by tracking 
the angle of minimum light intensity (angular modulation) 
[20]; (ii) by monitoring the intensity with the angle of inci-
dence fixed at the position with the steepest gradient on the 
SPR curve (intensity modulation) [21, 22] or using differ ential 
intensity detection approaches [23, 24]; (iii) by detecting the 
phase of the reflected light [25]. The detection of small refrac-
tive index changes over a relatively large volume has been 
successful on some sensors based on an intensity modula-
tion scheme down to a sensitivity (Δnmin) of 10−6 refractive 
index units (RIUs) [21, 22]. Better sensitivity levels have been 
achieved using other detection methods down to 10−7 RIUs 
using angular modulation [20], however, it is experimentally 
more complicated to monitor the angle of minimum reflec-
tion at fast sampling rates. A trade-off between sensitivity and 
sampling rate will be necessary if SPR is to be used for fast, 
functional imaging.

The spatial resolution of the SPR imaging system is lim-
ited in the direction perpendicular to the propagation of 
the SP [26]. Therefore, complementary information can be 
obtained from other methods including total internal reflec-
tion microscopy (TIRM). TIRM sees an evanescent wave 

(a)

(b)

Figure 1. (a) SPR on a conductive layer. When resonance occurs 
SPs propagate along the interface between a conductor and 
dielectric. An evanescent field is generated that decays into both. 
(b) Diagram of angular and intensity modulation SPR sensor 
modalities. In SPR sensors with angular modulation, the change in 
resonance conditions, for example, the refractive index of dielectric, 
is detected by monitoring the change in the resonance angle, θsp. 
In SPR sensors with intensity modulation, the angle of incidence is 
fixed and when θsp changes the detector sees an increase or decrease 
in light intensity.

J. Phys. D: Appl. Phys. 52 (2019) 104001
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generated at an interface separating two media with different 
refractive indices when the incident light is totally internally 
reflected (see supplementary information (stacks.iop.org/
JPhysD/52/104001/mmedia)) for discussion on total internal 
reflection). Discontinuities in the refractive index of the cell 
membrane give rise to differences in the reflected light inten-
sity. TIRM has been used to study cell-surface interactions for 
improved drug delivery systems [27].

The evanescent wave generated at the interface is capable 
of exciting fluorophores, and since the intensity of the eva-
nescent field decays exponentially with distance from the 
interface, only fluorophores within ~100 nm are excited. In 
comparison with standard epi-fluorescence the background is 
2000 times lower because no out of focus fluorescence gets 
excited thus resulting in a high signal-to-noise ratio (SNR) 
[28]. Depending on the substrate this technique is known 
as total internal reflection fluorescence microscopy (TIRF) 
[29, 30] or SPR fluorescence microscopy (SPRF). TIRFM 
has not been demonstrated in this study, however, we have 
shown the capability of the imaging system to excite fluo-
rescence using SPR. SPRF takes advantage of the enhanced 
electro magnetic field intensity that occurs when plasmons are 
excited, resulting in amplified fluorescence signals (see [31] 
for a detailed review).

Applying SPR imaging to research questions in cell physi-
ology and pharmacology requires the development of a multi-
modal system where complementary information can be 
obtained. Information acquired from label-free techniques, 
such as SPR and TIRM can be validated with well established 
fluorescent labelling methods. Likewise, the system can be 
used to validate the functional imaging capabilities of SPR.

In this paper, we present a multimodal imaging platform that 
includes SPR microscopy using a high NA objective applied 
to live cell imaging with the following capabilities: (i) the SPR 
system features a wide FOV providing the ability to study ~40 
cells simultaneously, with subcellular resolution. (ii) The SPR 
system is used to image neuronal cells while resolving axons 
and dendrites. We comment on the factors that affect the reso-
lution of fine neuronal processes. (iii) We show that comple-
mentary information on the imaging resolution can be obtained 
from TIRM and demonstrate a combination of microscopy 
systems including bright-field, epi-fluorescence and SPRF that 
can be applied to cell physiology. (iv) We combine a number 
of the imaging techniques to demonstrate a typical experiment 
where structural and functional imaging is desired and in doing 
so we verify the ability of the system to study spatiotemporal 
cellular functions by imaging localized contractions of stem 
cell-derived cardiomyocytes. (v) We describe a detailed design 
of this platform to enable ease of implementation and charac-
terization for use by the cell physiology community.

2. Methods

2.1. Optical system design

The custom-built multimodal imaging system we have devel-
oped combines SPR imaging with a number of microscopy 
sub-systems that include bright-field, epi-fluorescence, 

TIRM and SPRF. Figure 2 shows a schematic of the optical 
system and optical pathways. The system is also capable of 
performing electrophysiological measurements simultane-
ously using microelectrode technology. The rig was mounted 
on a floating optical table  (Thorlabs, Newton, NJ, USA) to 
minimize mechanical perturbations, to which such sensitive 
methods are highly susceptible.

A 640 nm light emitting diode (LED) was used in conjunc-
tion with Köhler illumination to illuminate the back focal 
plane (BFP) of the Nikon Oil Objective lens (CFI Apo TIRF 
60×, NA  =  1.49, oil-immersion lens, Nikon Inc., Tokyo, 
Japan) with a uniform light intensity [32]. The BFP was 
monitored on a complementaty metal oxide semiconductor 
(CMOS) camera (Unibrain, 640  ×  480 pixels, 5.6 µm pixel 
size, Fire-i™, Unibrain Inc., San Ramon, CA, USA), shown 
in figure 3(a).

Reflection microscopy was performed with the 470 nm LED 
uniformly illuminating the BFP of a water-dipping objective 
(60×, NA  =  1.00, Nikon Inc, Tokyo, Japan). The reflected 
light passed through the same objective lens, and was imaged 
on to a CCD camera (Grasshopper3, 1920  ×  1440 pixels, 
4.54 µm pixel size, S3-U3-28S5M-C Point Grey, Richmond, 
BC, Canada). Transmission microscopy was performed using 
the 470 nm LED and the transmitted light was imaged onto a 
second CMOS camera (640  ×  480 pixels, 9.9 µm pixel size, 
SV643M, EPIX Inc., Buffalo Grove, IL, USA). The 470 nm 
and 590 nm LEDs could also be used for exciting fluores-
cence, in combination with appropriate emission filters.

TIRM was achieved using the 640 nm LED, in conjunction 
with Köhler illumination to uniformly illuminate the BFP of 
the objective. The aperture diaphragm (D1) within the Köhler 
illumination was closed so that contrast was obtained in 
reflection by frustration of the critical angle (see supplemen-
tary information for information on the critical angle). The 
reflected light was imaged on the Unibrain camera.

When the objective pupil is filled with plane-polarized light 
from the 640 nm LED (figures 3(a) and (b)), in the sector where 
the azimuthal angle is 0° the polarization state is pure p-polar-
ized light, while pure s-polarized light arrives at the sample 
where the azimuthal angle is  ±90°. The dark arcs visible in 
figure 3(a) show the angle of incidence where the light is cou-
pled into SPs and is therefore no longer being reflected. There 
is no dark band in the vertical direction (±90°) due to the light 
being pure s-polarized, and therefore incapable of exciting SPs.

SPRF was performed by diffusional loading of Alexa 
Fluor®, 680-dextran (3kDa, Invitrogen™, D34681) into the 
cytoplasm of the cell of interest, using a micropipette attached 
to the cell soma. The fluorescent dye was then excited using 
the 680 nm superluminescent LED (SLED, 1 mW, Superlum 
Diodes Ltd, Cork, Ireland) which was tuned to excite plasmons 
beneath the cell of interest. The SPR fluorescence was imaged 
on the Point-grey Grasshopper3 camera. SPRF microscopy 
could be performed to confirm that the cells on the sample 
were in the evanescent field prior to functional SPR imaging.

The SPR imaging system was developed around a high 
NA (NA  =  1.49) objective lens and is able to exploit both 
angular and intensity modulation by either shifting the illu-
mination angle (laterally translating the focal spot in the BFP) 
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or holding this angle constant at the angle of maximum SPR 
gradient and monitoring the resulting intensity.

Angular modulation uses monochromatic light to excite 
the SPs, and the excitation can be seen as a dip in the angular 
spectrum. The detector senses a shift in the angle where the 
reflected light intensity is at a minimum. Angular modulation 
was achieved using the 680 nm SLED, generating light that is 
focused onto the objective BFP, resulting in an illuminating 
beam at the sample of an adjustable, narrow range of angles. A 
SLED was used over a laser or LED because they have a high 

spatial coherence but a low temporal coherence, allowing the 
light to be focused to a very tight spot [33, 34], without suf-
fering from the effects of laser speckling [35]. Additionally, 
SLEDs have extremely low noise [36], which is advantageous 
in the high-speed acquisition of rapid signals such as electrical 
activity in cells.

The output of the fiber-coupled 680 nm SLED was col-
limated using an achromatic lens (f  =  100 mm) and passed 
through a polarizer so that only p-polarized light was inci-
dent on the sample. The polarized light was focused to a 

Figure 2. Schematic of the SPM that was developed. Several imaging modalities can be simultaneously exploited—including bright-field, 
epi-fluorescence, TIRFM, and SPR imaging. Each optical pathway has been diagrammed within the figure. Imaging pathways are shaded, 
while the illumination pathways are shown with bold lines. Electrophysiology micro-manipulators (not shown) are also incorporated to 
provide for validation and calibration of the SPR signal with intracellular electrical activity.

J. Phys. D: Appl. Phys. 52 (2019) 104001
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diffraction-limited spot on the BFP of the objective lens with 
a second achromat lens (f  =  75 mm). The diffraction-limited 
spot, along with the polarizer, reduces the level of background 
caused by the s-polarized light that is unable to excite SPs. The 
radial position of the illumination spot in the BFP dictates the 
angle of incidence at the sample. The light scattered off refrac-
tive index discontinuities in the sample when cells are cultured 
on the gold coverslips returns from the same elevation angle 
but all azimuthal angles. This illustrates that momentum is 
conserved during plasmon scattering, as shown in figure 3(d). 
To change the angle of incidence at the sample the focused 
SLED beam was scanned across the BFP of the sample using a 
stepper motor traveling at 0.1 mm s−1. The reflected light was 
imaged on the EPIX camera at 24 fps, with an exposure time of 
0.124 ms to provide reflection values as a function of the angle 
of incidence. Regions of interest were selected on the surfaces 
using Image-J and the z-axis profile was exported to MATLAB 
(figure 3(c)).

SPR sensing with intensity modulation (IM) works by 
fixing both the angle of incidence and wavelength and meas-
uring the strength of the coupling between the light wave and 
the SP; detection is achieved by measuring the change in the 
intensity of the reflected light (figure 1(b)). Therefore, for IM 
detection the angle of incidence (θ) was fixed at the angle with 
the steepest gradient, ΔR/Δθ (around 30% of the minimum 
intensity recorded at the trough of the SPR dip, marked on 
figure 3(c)) and the variation of the reflected light intensity 
was monitored on the EPIX camera.

2.2. SPR sensor preparation

The glass coverslips (19 mm, Karl Hecht GmbH and Co KG, 
Sondheim, Germany) were treated with (3-mercaptopropyl) 
tri-methoxysilane (MPTS, Sigma Aldrich, 174617) to present 
thiol groups prior to thermal metal evaporation [37]. MPTS 
was used instead of the usual chromium or titanium adhesion 
layer to preserve the surface plasmon quality [38]. Silanisation 
was performed immediately after solvent and plasma cleaning. 
The plasma cleaned coverslips were immersed in a boiling 
solution of 50:1:1 isopropanol: MPTS: deionised water for 
10 min, then rinsed with isopropanol, dried under nitrogen 
and transferred to an oven at 100 °C for 10 min. The boiling, 
rinsing and baking steps were repeated three times.

The MPTS glass coverslips were coated with ~50 nm thick 
gold by thermal metal evaporation. Gold evaporation was 
carried out using a thermal evaporator (E306A, Edwards, 
Burgess Hill, UK). Gold wire was placed in a filament and the 
chamber was pumped down to 10−1 mbar with a rotary pump, 
then to 10−7 mbar with an oil diffusion pump, while being 
cooled with liquid nitrogen. A current of ~30 A was passed 
through the filament, so the metal melted and evaporated onto 
the glass coverslips held above the source with rare earth mag-
nets. An Intellemetrics IL100 quartz crystal microbalance was 
used to estimate the evaporation rate and film thickness. The 
thickness of the gold coverslips was measured with a spectro-
scopic ellipsometer (Alpha-SE, J.A. Woollam, Lincoln, NE, 
USA) at a fixed incident angle (70°) and with a wavelength 
range between 380 to 900 nm.

2.3. Sensitivity experiments

The sensitivity of the planar gold surfaces was experimentally 
determined using sodium chloride (NaCl) salt-water solu-
tions. Different concentrations of salt solutions were manu-
ally added to a chamber on top of a gold-coated coverslip 
using a 1 ml pipette whilst the reflected SPR light intensity 
response was measured. Deionized water was added as the 

(a) (b)

(c)

(d)

Figure 3. Images of a uniformly illuminated BFP, with the gold 
sample in air (a) and water (b). The dark arcs indicate the angles at 
which plasmon resonance occur. Note that only p-polarized light 
can excite plasmons, which is why arcs appear and not a ring. (c) 
Theoretical angular SPR response for p- and s- polarized light with 
air and water as the dielectric. S-polarized light is not capable of 
exciting SPs. Using p-polarized light and increasing the refractive 
index of the dielectric increases the angle where resonance occurs. 
The angle where the gradient (ΔR/Δθ) is greatest is marked on 
each curve. (d) Images of the BFP imaged through a polarizer 
with cells growing on a gold SPR surface. Note that light scattered 
off refractive index discontinuities in the sample returns from the 
same elevation angle but all azimuthal angles. This illustrates that 
momentum is conserved during plasmon scattering.

J. Phys. D: Appl. Phys. 52 (2019) 104001
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first sample to find the reflection gradient maximum and the 
SLED was positioned here for the entirety of the experiment. 
While keeping all other parameters fixed, the refractive index 
of the media was adjusted using different concentrations of 
salt solution. The change in refractive index was calibrated 
with an Abbe Refractometer (Abbemat 200, Anton Paar, 
Graz, Austria). The reflected light from the sample plane was 
recorded using the EPIX camera (12-bit) at ~286 Hz. To allow 
the solution to stabilize, 30–60 s was left between each step. 
The resulting intensities were exported using Image-J and fur-
ther analysis was performed in MATLAB.

2.4. Substrate preparation

For cell-based experiments on glass, the coverslips were 
treated with poly-L-lysine (PLL, Sigma Aldrich, P4707). The 
PLL coated glass coverslips were prepared by immersion in 
PLL solution for 5 min followed by thorough rinsing with 
deionized water.

For cell-based experiments on planar gold, the coverslips 
were treated with 11-Amino-1-undecanethiol (AUT, Sigma 
Aldrich, 674397), to generate a self-assembled monolayer 
[39]. First, the gold coverslips were solvent cleaned, followed 
by an oxygen plasma treatment.

The AUT was dissolved in ACS grade Ethanol at 1 mM, 
which was then poured into an immersion cylinder to com-
pletely cover the gold. Immersion time was not less than 18 h. 
Following immersion, the solution was drained from the cyl-
inder and the gold was thoroughly rinsed, first with ethanol to 
remove the bulk AUT solution, and then with distilled water 
to remove the cytotoxic ethanol. The coverslips were dried 
thoroughly with N2 before cell plating.

2.5. Cell culture

The 3T3 fibroblast cell line was maintained in Dulbecco’s 
Modified Eagle Medium (DMEM, Gibco, 11960) with 10% 
fetal bovine serum (FBS, Gibco, 10270). Cells were subcul-
tured and seeded on to AUT treated gold coverslips at a den-
sity of 0.3  ×  106 cells.

The stem cell-derived cardiomyocytes were differentiated 
on AUT treated gold coverslips from human embryonic stem 
cells (hESC-CM) following the protocol in [40].

Cultures of primary hippocampal neurons were dissected 
from E18 Wistar rat embryos following a standard protocol 
[41]. The primary rat hippocampal neurons were plated on the 
functionalized coverslips with ~150 000 dissociated cells in 
500 µl media.

3. Structural imaging

3.1. Optical system characterisation

3.1.1. Field of view (FOV). Functional imaging of excitable 
cells using SPR microscopy requires performing measure-
ments from a number of single cells to inspect the cell–cell 
interactions and to replicate single cell measurements. There-
fore, the system has been designed with a wide-FOV to allow 

imaging of multiple single cells with subcellular resolution. 
This has been achieved by deliberately reducing the magnifi-
cation of the imaging system.

The FOV was increased by mismatching the objective and 
tube lens to reduce the effective magnification of the 60×  oil-
objective. The Nikon objective lens is designed for a tube lens 
with a focal length of 200 nm, however, we used a 60 mm 
tube lens. This reduces the effective magnification to 18×  and 
enlarges the FOV to up to 500 µm, depending on the size of 
the camera sensor.

The number of pixels in the EPIX camera sensor is 
640  ×  480, at 9.9  ×  9.9 µm each, so the FOV has been 
increased to 350  ×  250 µm from 105  ×  80 µm. However, the 
back aperture of the objective lens restricts the usable FOV to 
a circular diameter of 320 µm. Figure 4 shows SPR images 
of mouse fibroblast cells (3T3) seeded on gold coverslips, 
showing the wide FOV and the potential to image relatively 
large populations of cells, for example, there are ~40 cells 
within figure 4.

3.1.2. Spatial resolution. The resolution of a conventional 
light microscope is limited by the diffraction limit [42]. The 
theoretical diffraction-limited resolution of the optical imag-
ing modalities presented (transmission and reflection micros-
copy) for a 60×, 1.49 NA microscope objective with 680 nm 
incident light given by the Abbe limit is 0.28 µm. However, 
by under magnifying to 18×, the minimum resolvable feature, 
magnified onto a 2  ×  2 region of the sensor in accordance with 
the Nyquist criteria, is 1.1 µm. The average measured size 
of a typical cultured mammalian neuronal soma is ~16 µm  
(data not shown) [43] and a typical cardiomyocyte cell is 
about 100 µm long and 10–25 µm in diameter [44]. Even 
after undersampling the resolution is still more than adequate 
for imaging both cardiomyocytes and networks of neurons 
including many of the larger dendritic and axonal processes 
which are typically 1–2 µm in size [45].

The resolution in SPR sensors, however, is determined by 
the propagation length of the SPs. The plasmons propagate 
along the metal/dielectric interface for a distance decided by 
the propagation length before they decay back into photons. 

Figure 4. SPR image of cultured fibroblasts indicating high 
contrast over a wide FOV (350  ×  250 µm). The scale bar is 40 µm.

J. Phys. D: Appl. Phys. 52 (2019) 104001
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This limits the resolution of the system in the direction par-
allel to the propagation of SP waves. So, when the propa-
gating plasmon reaches a refractive index boundary it is no 
longer supported and is re-radiated as a photon. This means 
that even though in theory the plasmon propagation length in 
water on a 50 nm gold film is typically ~3.1 µm [18], fine 
details, such as neuronal axons and dendrites can be resolved. 
Figure 5(c) shows a primary, hippocampal neuron cultured on 
a gold sensor imaged at 5 d in vitro (DIV). The fine, elabo-
rating features visible in the figure demonstrate that axons and 
dendrites can be clearly resolved using SPR imaging in this 
regime. However, cell processes that are perpendicular to the 
propagation of the SPR are hardly resolved, due to the resolu-
tion limit of the SPR system, while they are clearly visible 
when they are parallel to the propagation of the SP wave [26].

To demonstrate the resolution limitations of the SPR 
microscopy, we explored an alternative evanescent wave 
microscopy technique that is based on total internal reflection 
(figure 5(b)). Primary hippocampal neurons were cultured on 
glass coverslips treated with PLL. The glass surface was illu-
minated with a uniform disc of light from the 640 nm LED 
source objective BFP. This disc of light was stopped down 
using the aperture diaphragm (D1) to just above the total 
internal reflection critical angle to gain contrast.

Figure 5(b) shows that TIRM can resolve dendrites in both 
directions demonstrating a superior resolution compared to 
SPR. Although TIRM provides resolution and contrast based 
on the frustrated total internal reflection, it has a limited ability 

to resolve functional time-resolved information compared to 
SPR.

3.1.3. Refractive index mapping. In biological samples, spa-
tial differences in the lipids and proteins present result in a 
variation of the refractive index. These differences provide the 
contrast in an SPR image because as previously explained, 
refractive index discontinuities in the sample result in the 
propagating plasmons being re-radiated as photons.

To assess the spatial variation of the refractive index on our 
gold surfaces, the refractive index of each pixel in the FOV 
of figure  5(d) was determined by scanning the illumination 
angle, figure 6(a) and finding the angle of the minimum reflec-
tion for each pixel, figures 6(b) and (c). Then by solving the 
Fresnel equations for reflection and transmission in a multi-
layer device, the refractive index was calculated (see supple-
mentary information).

Figure 6(a) shows the full image at various angles during 
the scan. The reflection as a function of scan angle at one 
x-position and one y-position was determined and shown in 
figure 6(b). The dark line in the projections represents the SPR 
dip and corresponds to the angle of incidence at the gold layer. 
The complete angle scan is shown at various points on the 
sample in figure  6(c). Note that at different angles of inci-
dence plasmons are excited successively either under the cells 
or on cell-free background areas.

Figure 6(d) shows that the effective refractive index is rea-
sonably homogeneous underneath the soma indicating the cell 
has adhered to the surface uniformly. The effective refrac-
tive index in a multilayer system is a function of the gap dis-
tance between the SPR sensor and the cell membrane and is 
weighted with an exponential decay [8, 10]. A larger effective 
refractive index indicates that the cell membrane has closely 
adhered to the surface, conversely a smaller measured refrac-
tive index indicates that the cell membrane is further away 
from the surface. Cell membranes are composed mostly of 
lipids and proteins which have refractive indices in the range 
of 1.46–1.54, so the refractive index we have measured here 
of 1.40 for the cell structure is less than previously reported 
values [46, 47]. The lower RI can be attributed to the lower RI 
cytosol (n  =  1.35 [46]) reducing the effective RI alongside the 
gap distance. It is important that the gap distance is less than 
the evanescent field distance and this will be addressed next.

3.2. SPR-excited fluorescence imaging

As described in the introduction, the evanescent field gener-
ated at the interface can excite fluorophores placed within 
it. Exploiting this phenomenon, we were able to determine 
whether the neurons were close enough to the gold surface for 
their membranes to lie within the evanescent field by patching 
a microelectrode filled with dye into the cell. The dye within 
the cell was excited using both epi- and SPR-excited fluores-
cence, figures 7(a) and (b), respectively. Figure 7(b) confirms 
that the 680 nm SLED SPR system can excite the dye-labeled 
cell and therefore, the cell is within the evanescent field. This 
is a necessary prerequisite to allow functional imaging using 

(a) (b)

Figure 5. Transmission (a) and (c), TIRM (b) and SPR (d). (a), 
(b) Images of primary hippocampal neurons cultured on glass 
surfaces. (a) The glass surface was illuminated with the 470 nm 
LED and imaged on the EPIX camera. A microelectrode is visible 
in the image. (b) The 640 nm LED uniformly illuminated the 
BFP of the objective. The light was stopped down to close to the 
TIR critical angle to gain TIRM contrast. The scale bar in (b) is 
40 µm long and consistent across (a) and (b). (c), (d) Images of 
primary hippocampal neurons cultured on gold surfaces. (c) The 
gold surface was illuminated with the 470 nm LED and imaged on 
the EPIX camera. (d) SPR image of a neuron cultured on the SPR 
sensor. Arrow indicates the direction of plasmon propagation. The 
scale bars in (c) and (d) are 40 µm long.
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Figure 6. (a) Successive adjustments of SPR excitation by varying the angle of incidence of the SLED—top to bottom: excitation below 
the SPR angle (θ  <  63°), SPR excitation on the coverslip (θ  ≈  71°), middle of SPR dip on the cell (θ  ≈  75°), SPR excitation occurring 
under the cell (θ  ≈  79°), edge of the BFP (θ  ≈  80°), outside the BFP (θ  >  80°) (dark). (b) BFP angle-scan, with vertical and horizontal 
projections of the stack—dark line represents the SPR dip, with the ‘Z’ axis encoding the BFP angle. The scale bar in (a) and (b) is 10 µm 
long. (c) Angle scan at various points across the cell and coverslip, extracted from the projection in (b), indicated by arrows. (d) Pseudo-
color image showing the effective refractive index (in RIU) at each pixel in the FOV. This was created by scanning the illumination angle 
and finding the angle of minimum reflection for each pixel. The effective refractive index is reasonably homogeneous underneath the soma 
indicating the cell has adhered to the surface uniformly.
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SPR. 100% of cells tested (N  =  12) were found to lie within 
the evanescent field. This demonstrates that SPR can be used 
to excite either structural or functional fluorescent dyes in 
studies of neuronal (or other) cultures.

4. Functional Imaging

For label-free functional imaging of dynamic, cellular func-
tions from living cells, a low noise, high sensitvity system is 
required. We characterized this sensitivity by changing the 
bulk refractive index of the dielectric on a gold surface. This 
characterization is followed by results that demonstrate the 
ability of the system to image localized dynamic processes 
by detecting spatial variations in the contraction of stem cell-
derived cardiomyocytes.

4.1. Sensitivity to refractive index changes

The sensitivity of the gold surfaces on the SPM was exper-
imentally determined by altering the bulk refractive index of 
the dielectric on a 50 nm planar gold sample.

The concentration of the solution on the surface on the sub-
strate was changed to either increase or decrease the refractive 
index using NaCl solutions. The concentration values were 
chosen so that the refractive index increase or decrease was 
in step sizes of Δn  =  0.1 × 10–3. To find the sensitivity, the 
angle of incidence was chosen such that the reflection gra-
dient (ΔR) is at its maximum. Practically, it is difficult to set 
this parameter, so the dynamic range was first established 
by angle-scanning across the SPR dip, and setting the SPR 
illumination angle to the location of the greatest gradient 
(figure 3(b)). There is a trade-off between greater sensitivity 
and SNR, as at the angle of the maximum gradient the light 
intensity is much lower, reducing the Poisson-limited SNR. 
Considering this, the angle of incidence was fixed at around 
30% of the dynamic range.

The results from all the experiments are summarized in 
figure  8. Figure  8 shows that the normalized light intensity 
(ΔR) increases linearly with increasing refractive index. The 

sensitivity of the sensor was characterized by the RIU as 
2  ×  10−5.

The experimentally measured sensitivity here is less than 
the value of ~10−6 RIU reported previously from intensity 
modulating SPR techniques in literature [21, 22]. However, 
the level of detection in these sensitivity experiments is lim-
ited by the exposure time because the power of the noise is 
proportional to the bandwidth. So, for the relatively small 
bandwidth used for these measurements (286 Hz), the total 
noise power may be reduced if a lower sample frequency is 
used thus increasing the SNR.

4.2. Detection of cardiomyocyte contraction

In order to demonstrate a potential experimental scenario 
where a multimodal system would be beneficial to the user, 
hESC-cardiomyocytes were cultured on gold surfaces. First, 
bright-field microscopy was used to locate a hESC-CM; see 
figure 9(a). The periodic contractions of a living, beating cell 
could be visualized by monitoring the change in SPR intensity 
on the EPIX camera. By taking the difference of each subse-
quent frame with the first frame, a stack was produced that 
shows the area where there is the greatest variation in light 
intensity (‘hot-spot’); see figures 9(c) and (d). The background 
was corrected for by taking the difference of the ‘hot-spot’ 
with a sample of the rest of the cell which was not moving.

Figure 9(e) shows that the SPR intensity changes in time 
with the contractions of the stem cell-derived cardiomyocyte 
(‘signal’) with a high signal-to-noise ratio. Two control ROIs 
are plotted. One on the background and a secondary location 
within the cell. The resulting SPR responses show that only a 
couple of areas are moving within the cell, with the rest being 
uniform. The area where there is the greatest change in light 

Figure 7. Images of a cultured neuron on an SPR sensor. (a) A 
microelectrode filled with a fluorescent dye is patched to a neuron 
and imaged using reflection microscopy, so the excited dye can be 
seen under epi-fluorescent illumination. (b) A neuron filled with 
fluorescent dye illuminated with SPR. This confirms the neurons are 
closely adhered to the gold SPR surface and within the evanescent 
field.

1.333 1.3331 1.3332 1.3333 1.3334 1.3335 1.3336
Refractive Index

0.45

0.455

0.46

0.465

0.47

0.475

N
or

m
al

iz
ed

 In
te

ns
ity

 (
a.

u.
)

Figure 8. The sensitivity of the SPR imaging system. The refractive 
index was adjusted using a series of different concentration 
NaCl solutions. A 1 mW 680 nm SLED light source was used 
with a 12-bit CMOS camera and a 3.5 ms exposure time. The 
sensitivity in RIU was calculated as 2  ×  10−5. The linear fit 
is y = (p1 × RI) + p2 , where p1  =  39.137 and p2  =  −51.72. 
R2  =  0.9913.
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intensity appears to be around the nucleus of the cell (see sup-
plementary video 1). It is possible that the source of the signal is 
from the stress fibres or contractile apparatus within the hESC-
CM pressing on the nucleus causing it to move. The observed 
contraction localized in the centre of the cell is typical for 
hESC-CM’s attached to rigid surfaces [48]. The control ROI 
on the ‘background’ was taken directly next to the beating car-
diomyocyte, which shows no change in relative SPR intensity. 
This demonstrates that the change in SPR intensity is localized 
to the cell of interest and therefore, most likely due to refrac-
tive index changes or localized movement within the cell and 
not from movement causing mechanical waves throughout the 
volume. To fully utilize the multi-modal system, fluorescent 

labelling could be used for comparison of the label-free results 
with well-established labelling techniques.

5. Conclusions

In this paper, we have presented a multimodal platform for 
cell physiology combining SPR imaging with a number 
of ancillary microscopy systems. We have shown that the 
system is capable of both structural and functional imaging 
of cultured cells. Using the system for structural imaging, a 
number of modalities can be exploited including reflection/
transmission microscopy, TIR micrscopy, epi-fluorescence 
and SPR imaging to obtain complementary information. A 

Figure 9. (a) Bright-field image of a stem cell-derived cardiomyocyte taken using reflection microscopy. (b) SPR image of the cell from 
(a). (c) There are two stripes of localized light intensity changes, which can be seen when subtracting the first frame of the SPR response 
from the remaining image stack. The scale bar is 10 µm long and consistent across (b) and (c). (d) Overlay of (c) on (a). The area of the 
greatest light intensity change appears to be around the nucleus of the cell. The scale bar is 10 µm long and consistent across (a) and (d). 
(e) Relative change in the light intensity of the SPR signal from a beating stem cell-derived cardiomyocyte, a control area directly next to 
the cell of interest and a second location within the cell. The ROIs are highlighted in (b) and (c). Each trace was offset for clarity.
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wide field-of-view has been demonstrated with a suitable 
spatial resolution for imaging cardiomyocytes and resolving 
individual axons and dendrites in cultured primary neurons 
label-free.

The ability of the system to study spatiotemporal cellular 
functions was demonstrated by imaging localized contrac-
tions of stem cell-derived cardiomyocytes. To the best of the 
author’s knowledge, this is the first demonstration of func-
tional imaging of the refractive index changes using SPR in 
single cardiomyocytes. Using SPR could allow the localized 
contractions of cardiomyocytes to be imaged in real-time and 
drugs to be tested in vitro providing additional information 
compared to traditional non-imaging techniques [49, 50] and 
less computation compared to video microscopy [51].

In future work, a small network of cultured neurons will be 
grown on the surface of a sensor and any small changes to this 
light that occur during an action potential will be monitored.
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