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Abstract
We report on numerical calculations of the spontaneous emission rate of a Rydberg-excited
sodium atom in the vicinity of an optical nanofibre. In particular, we study how this rate varies
with the distance of the atom to the fibre, the fibre’s radius, the symmetry s or p of the Rydberg
state as well as its principal quantum number. We find that a fraction of the spontaneously
emitted light can be captured and guided along the fibre. This suggests that such a setup could be
used for networking atomic ensembles, manipulated in a collective way due to the Rydberg
blockade phenomenon.

Keywords: Rydberg atoms, optical nanofibres, spontaneous emission rates

(Some figures may appear in colour only in the online journal)

1. Introduction

Within the last two decades, the strong dipole–dipole inter-
action experienced by two neighbouring Rydberg-excited
atoms [1] has become the main ingredient for many of the
atomic quantum information protocol proposals (see [2] and
references therein). In particular, this interaction can be so
large as to even forbid the simultaneous resonant excitation of
two atoms if their separation is less than a specific distance,
called the blockade radius [3], which typically depends on the
intensity of the laser excitation and the interaction between

the Rydberg atoms [4]. The discovery of this ‘Rydberg
blockade’ phenomenon [3, 5–9] paved the way for a new
encoding scheme using atomic ensembles as collective
quantum registers [5, 10–12] and repeaters [13–15]. In this
novel framework, information is stored in collective spin-
wave-like symmetric states, which contain fully delocalized
atomic excitations. Qubits are more easily manipulated and
more robust in this collective approach than in the usual
single-particle paradigm.

Scalability is one of the crucial requirements for quantum
devices [16] and interfacing atomic ensembles into a quantum
network is a possible way to reach this goal. Photons naturally
appear as ideal information carriers and the photon-based
protocols considered so far include free-space [17], or guided
propagation through optical fibres [13]. The former has the
advantage of being relatively easy to implement, but presents
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the drawback of strong losses. The latter requires a cavity
quantum electrodynamics setup, which is experimentally
more involved. An alternative option would be to resort to
optical nanofibres. Such fibres have recently received much
attention [18, 19] because the coupling to the evanescent
(resp. guided) modes of a nanofibre allows for easy-to-
implement atom trapping [20, 21] (resp. detection [22]). This
coupling increases in strength as the fibre diameter reduces
and the atoms approach the fibre surface. It was also even
shown that energy could be exchanged between two distant
atoms via the guided modes of the fibre [23]. This strongly
suggests that optical nanofibres could play the role of a
communication channel between the nodes of an atomic
quantum network consisting of Rydberg-excited atomic
ensembles.

In this article, we make a first step towards this goal and
investigate the emission rate of a highly-excited (Rydberg)
sodium atom in the neighbourhood of an optical nanofibre
made of silica. In the perspective of building a quantum
network, we are particularly interested in quantifying how
much spontaneously emitted light can be captured and guided
along the fibre. Here, we study the influence of the atom to
fibre distance, the radius of the fibre, and the symmetry of the
Rydberg state, on the emission rates into the guided and
radiative fibre modes. Extending the treatments of [24, 25],
we find that up to ≈13%, of the spontaneously emitted light
can be captured and guided along both directions of the fibre,
which is comparable with the ratio of ≈30% obtained with a
cesium atom initially in its lowest excited state P6 3 2 and
located on the surface of a 200 nm diameter nanofibre [25].
Although the theoretical framework we use here is the same,
numerical calculations are more complex than in [25] due to
the larger number of transitions considered. Contrary to [25],
we do not take into account the atomic hyperfine structure in
the excited state, which is very small for Rydberg states [26].

The article is organized as follows. In section 2 we briefly
present the system and introduce the expressions of the
spontaneous emission rates. In section 3, we present the
results of our numerical calculations and discuss the different
behaviours observed when the atom is initially in an s or p
Rydberg state. Finally, in section 4, we conclude and give
perspectives of our work. Appendices A and B provide details
about the guided and radiative electromagnetic modes,
appendix C sketches the derivation of the spontaneous
emission rates of the atom in the presence of the nanofibre
and appendix D displays the atomic data we used in our
calculations.

2. The system

We consider a sodium atom, initially prepared in the highly-
excited (Rydberg) level n 10 , in the vicinity of a silica
nanofibre, whose radius is denoted by a and whose axis is
conventionally taken as the z-axis, see figure 1. Our goal is to
investigate how the presence of the fibre modifies the spon-
taneous emission rate of the atom: in particular, we want to
study the influence of the radius of the fibre, the distance of

the atom to the fibre as well as the symmetry of the Rydberg
state nl m,j jñ∣ considered and the principal quantum number n
on the spontaneous emission rate. Note that, though the
configuration is the same as in [25], in this work, the atom is
(relatively) highly excited and, in contrast to [25], several
transition frequencies must therefore be considered which
complicates the numerical work. The choice of the sodium
atom and the maximal principal quantum number nmax=10
is motivated by the fact that, for the relevant transitions

n10 3, , 9 =  , the fibre can be approximately con-
sidered as a non absorbing medium of respective refractive
indices n1=(1.467, 1.450, 1.438, 1.399, 1.112, 1.615,
2.021) [27]. Such constraints may, however, be alleviated by
resorting to the formalism of macroscopic quantum electro-
dynamics and the Greenʼs function approach [28]. These
techniques allow to take the absorption of the medium into
account and therefore to deal with higher Rydberg states. This
formalism and its application to the calculation of energy
shifts will be investigated in a future work. Moreover, the
choice of sodium, rather than rubidium or cesium which are
more commonly used in nanofibre experiments, was made to
allow us to neglect relativistic effects on the electronic
wavefunctions and therefore simplify our treatment. The case
of cesium will also be tackled in a future work.

As recalled in [25], the free electromagnetic field in the
presence of a cylindrical fibre can be decomposed into guided
and radiative modes which respectively correspond to energy
propagation along the fibre and radially to it (see appendices
A and B).

Guided modes are characterized by their frequency
ω>0 and order m, which is a positive integer fixing the
periodicity of the field with respect to j. Due to the continuity
conditions at the core-cladding interface of the fibre, the norm
of the projection of the wavevector onto the z axis, denoted by
β, can only take a discrete set of values which are the solu-
tions of the so-called characteristic equation, equation (A.1)
[29, 30]. The corresponding modes have different cutoff
frequencies. In particular, if ω is sufficiently low, only the (so-
called ‘hybrid’) mode HE11, corresponding to m=1, can
propagate along the fibre. Since a given mode can propagate
either in the positive or negative z-direction, an extra index
f=±1 is introduced, such that β×f is the (algebraic)

Figure 1. Sodium atom in the vicinity of an optical nanofibre with a
radius a. The refractive index is n1=1.45 for silica and n2=1 for
vacuum. The axis of the nanofibre is arbitrarily chosen as the z-axis.
The cylindrical coordinates r z, ,j( ) and frame e e e, ,r zj

  ( ) are
introduced.
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projection of the wavevector onto the z-axis. To complete the
description, one also allows for two different polarization
directions labelled by p=±1. For simplicity, we gather the
characteristic numbers m f p, , ,w( ) into one symbol μ and
replace the discrete/continuous sums dmfp 0ò wå

¥
by åm.

Finally the general form of the quantized guided field
component is

E r a e r ei
4

, h.c.g
f z p

0

i
å wb

p
j=

¢
+

m
m

m b j+
  ( ) ( )( ) ( )

In this expression, β′ stands for the derivative d

d

b
w( ), em


is the

electric-field profile function of the mode m( ) whose expres-
sion is given in appendix A, while aμ is the annihilation
operator of the mode, satisfying the bosonic commutation
rules a a, mm ff ppd w w d d d= - ¢m m¢ ¢ ¢ ¢[ ] ( )† .

Radiative modes are characterized by their frequency
ω>0, their (positive integer) order m and the projection of
the wavevector on the nanofibre axis β which can now vary
continuously between −ω n2/c and ω n2/c. Here, the negative
or positive sign indicates the direction of the propagation of
the radiation mode along the z-axis. A last number is needed
to fully determine a radiative mode, i.e. the polarization
number p=±1. The two values of p correspond to two
modes of orthogonal polarizations, see appendix B. For
simplicity, we gather the characteristic numbers m p, , ,w b( )
into one symbol ν and replace the discrete/continuous sums

d dmp kn

kn

0 2

2

ò òw bå
¥

-
by ån . The general form of the quan-

tized radiative field component is

E r a e r ei
4

, h.c.r
z m

0

i
å w

p
j= +

n
n

n b j+
  ( ) ( )( ) ( )

In this expression en


is the electric-field profile function of the
mode n( ) whose expression is given in appendix B, while aν
is the annihilation operator of the mode, satisfying the
bosonic commutation rules a a, mm ppd w w d d= - ¢n n ¢ ¢ ¢[ ] ( )† .

In the presence of the nanofibre, the spontaneous emis-
sion rate ΓM of an atom from a state Mñ∣ is the sum of the rates
γMN from Mñ∣ to all lower states Nñ∣ , i.e. M N M MNgG º å <
with

G2 . 1MN MN MN
2åg p d w wº -

l
l l∣ ∣ ( ) ( )

In the expression above, the sum is performed over all
electromagnetic modes denoted by λ, whether they be guided
l m=( ) or radiative l n=( ); we moreover introduce the
quantities

G d e e

G d e e

4
,

4
,

MN MN
f z p

MN MN
z m

0

i

0

i

 

 

wb
p
w

p

º-
¢

º-

m
m b j

n
n b j

+

+

 

 

( · )

( · )

( ) ( )

( ) ( )

characterizing the coupling of the different electromagnetic
modes to the atomic transition M Nñ  ñ∣ ∣ of frequency

E EMN M N w º -( ) and dipole matrix element dMN


.

Finally the decoherence rate between states Mñ∣ and Nñ∣ is

given by

1

2
. 2MN M NG º G + G( ) ( )

For a detailed derivation of equations (1), (2), see appendix C.

3. Numerical results and discussion

In this section, we present the numerical results we obtained for
the spontaneous emission rate of a sodium atom Z 11=( )
initially prepared either in ns m, j1 2 ñ∣ or np m,j jñ∣ states with
n 10 and j=1/2 or 3/2. We study the influence of the
principal quantum number, n, and the distance from the atom to
the fibre surface on the emission rate. We also show how the
fibre’s radius modifies the relative weights of the different tran-
sitions’ contributions to the total rate. For simplicity, we consider
the contributions of the guided and radiative modes separately.
The atomic data we used can be found in appendix D.

3.1. Guided modes

Figure 2 displays the spontaneous emission rates, g
s10G and

g
p10G , of an atom initially prepared in the states s m10 , j1 2 ñ∣

and p m10 ,j jñ∣ with j=1/2 or 3/2, respectively, into the
guided modes as a function of the distance r to the fibre axis,
see figure 1. Note that the rates are presented relative to the
spontaneous emission rates s

0
10G , p

0
10G in vacuum and r is

expressed in units of the fibre radius with a=100 nm. As
expected, in both cases, the influence of the guided modes
vanishes as r increases, and therefore , 0g

s
g

p10 10G G  when

Figure 2. Spontaneous emission rate of a sodium atom into the
guided modes of a nanofibre of radius a=100 nm. The rate is
plotted as a function of the distance r of the atom to the fibre axis:
(top) atom initially prepared in the state s m10 , j1 2

1
2

=  ,

(bottom) atom initially prepared in the states p m10 , j1 2
1
2

=  ,

p m10 , j3 2
1
2

=  and p m10 , j3 2
3
2

=  . The rates ,g
s

g
p10 10G G

are presented relative to the spontaneous emission rates s
0
10G , p

0
10G in

vacuum.
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r  +¥. The maximal value is obtained for r=a, i.e. when
the atom is on the fibre surface. More precisely, we have

0.18g
s s10

0
10G » G for an atom initially prepared in s10 1 2∣ ,

mj
1

2
=  ñ and 0.027, 0.035, 0.044g

p10G » ( ) p
0
10´G for an

atom initially prepared in p10 3 2(∣ , mj
1

2
=  ñ, p10 1 2∣ , mj =

1

2
 ñ, p10 3 2∣ , mj

3

2
=  ñ). In these calculations we assumed

that the electronic wave-function of the Rydberg atom is not
affected by the nanofibre, which deserves further study. As a
more realistic configuration, we shall consider that the Ryd-
berg atom is located at a distance from the fibre surface which
is much larger than its radius r 5 nmNa

a

20
» = . For r =

a r a10 1.5Na+ » ´ , we obtain the spontaneous rate
0.066g

s s10
0
10G » ´ G for an atom initially prepared in s10 1 2∣ ,

mj
1

2
=  ñ and 0.006, 0.011, 0.015g

p p10
0
10G » ´ G( ) for an

atom initially prepared in p10 3 2(∣ , mj
1

2
=  ñ, p10 1 2∣ , mj =

1

2
 ñ, p10 3 2∣ , mj

3

2
=  ñ). Moreover, we note that in general,

g
p

g
s10 10G G , and g

p m
g

p
g

p m10 , 10 10 ,j j3 2
1
2 1 2 3 2

3
2G < G < G= = . The

latter relation can be qualitatively understood by geometric
arguments on the coupling of guided modes with the atomic
orbitals. The more a state is polarized along z, the less it
couples to the guided modes which are essentially polarized
orthogonally to the fibre axis. This is consistent with what we

observe, since the states p m10 , j3 2
1

2
=  are better aligned

along z than the states p m10 , j1 2
1

2
=  which themselves

are more aligned along z than p m10 , j3 2
3

2
=  . This can be

seen on their relation with the decoupled basis states7.
Figure 3 shows the influence of the principal quantum

number n on the spontaneous emission rate g
nsG into the

guided modes for an atom initially prepared in the state

ns m, j1 2
1

2
=  for n=5–10. The higher the value of n,

the more g
nsG is peaked as a function of r/a around 1.

Moreover, the plots get closer and closer as n increases: the
curves n=9, 10 cannot be distinguished and for clarity, the
curve n=8 has not been plotted.

Finally, figures 4 and 5 illustrate the influence of the fibre
radius, a, on the spontaneous emission rate from the state

ns m, j1 2
1

2
=  into the guided modes. More precisely,

figure 4 displays the partial spontaneous emission rates along
the specific transition s p10 3 (Note that n=3 corresponds
to the ground state of the sodium atom) into different guided
modes HEmn, EHmn, TEmn and TMmn. Two cases are con-
sidered: (i) the atom is located on the fibre surface, i.e. at a

Figure 3. Spontaneous emission rate of a sodium atom initially
prepared in ns m, j1 2

1
2

=  , for n=5, L, 10, into the guided

modes of a nanofibre of radius a=100 nm. The rate is plotted as a
function of the distance r of the atom from the fibre axis. The rate,

g
nsG , is renormalized by the spontaneous emission rate in vacuum,
ns
0G , and the distance r is expressed in units of the fibre radius, a.

Figure 4. Partial spontaneous emission rates of a sodium atom along
the specific transition s p10 3 into different guided modes of the
nanofiber, as functions of the fibre radius, a: (top) the atom is on the
fibre surface; (bottom) the atom is located at a distance 150 nm from
the fibre surface. The rates are presented relative to the spontaneous
emission rate in vacuum, s

0
10G .

7 We recall the relations of the coupled basis states with the decoupled basis
states:

j m l m s m

j m l m s m

l m s m

j m l m s m

l m s m

j m l m s m
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l m s m

j m l m s m
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3

2
,

3

2
1, 1;

1

2
,

1

2
,

3

2
,

1

2

2

3
1, 0;

1

2
, ,

1, 1; , ,

, 1, 1; , ,

1, 0; , ,

, 1, 1; , ,
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distance r=a from the z-axis, and (ii) the atom is placed at a
fixed distance of 150 nm from the fibre surface, i.e. at a dis-
tance r=a+150 nm from the z-axis. As expected, case
(ii) gives rise to much weaker relative rates than case (i), since
the atom is further away from the fibre and therefore the guided
modes are strongly attenuated. Moreover, as a increases, the
cutoff frequencies of higher modes become smaller: when the
cutoff frequency of one mode passes below the frequency of
the transition s p10 3 , this mode starts to contribute to the
spontaneous emission rate. The peaked structure observed on
the different plots results from the peaked shape of the mode
intensity profile itself with respect to a.

Figure 5 displays the partial spontaneous emission rates

g
s np10g  into the guided modes along the respective transitions

s np10  as well as the total rate g
s

n g
s np10

3 10
10

  gG = å  as

functions of the fibre radius, a, in the same two cases (i, ii) as
above. One observes that, due to the range chosen for a, only
the transitions s np10  for n 3, 4, 5= give relevant
contributions to the total rate. It also appears that only the
transition s p10 3 substantially couples to higher-order
guided modes, while the other transitions couple only to the
fundamental guided mode HE11. On the range chosen for a,
the peak structure observed for the total emission rate is
therefore mainly due to the partial rate g

s p10 3g  , while the

other transitions smoothly modify the value of g
s10G . Note that

the intensity profiles of the guided modes relative to the

different transition frequencies are expected to coincide up to
a rescaling of the a-axis: this scaling factor is given by the
ratio of the frequencies. The positions of the peaks of the
different partial rates g

s np10g  should therefore also coincide
up to a simple scaling. The heights of the peaks, however, are
expected to be different since, for instance, the dipole matrix
element is not the same for the different transitions.

3.2. Radiative modes

We now turn to the contribution of the radiative modes to the
total spontaneous emission rates. Figure 6 displays the
spontaneous emission rates r

s10G and r
p10G of an atom initially

prepared in the states s m10 , j1 2 ñ∣ , p m10 , j1 2,3 2 ñ∣ , respec-
tively into the radiative modes as a function of the distance r
to the fibre axis, see figure 1. Note that the rates are renor-
malized by the spontaneous emission rates in vacuum s

0
10G ,

resp. p
0
10G , and r is expressed in units of the fibre radius

a=100 nm. As expected, in both cases, the influence of the
fibre vanishes as r increases, i.e. , 1r

s
r

p10 10G G  for r  +¥.
The maximal value is observed for r=a, i.e. when the atom is
on the fibre surface. More precisely, we have 1.24r

s10G » ´
s

0
10G for an atom initially prepared in s m10 , j1 2

1

2
=  and

1.19, 1.23, 1.29r
p p10

0
10G » ´ G( ) for an atom initially pre-

pared in p10 3 2(∣ , mj
1

2
=  ñ, p10 1 2∣ , mj

1

2
=  ñ, p10 3 2∣ ,

mj
3

2
=  ñ). For an atom at r≈1.5×a, i.e. at a distance from

the fibre surface, we obtain the spontaneous rate
1.041r

s s10
0
10G » ´ G for an atom initially prepared in s10 1 2∣ ,

mj
1

2
=  ñ and 1.028, 1.044, 1.062r

p p10
0
10G » ´ G( ) for an

Figure 5. Partial, g
s np10g  , and total, g

s10G , spontaneous emission rates

of a sodium atom initially prepared in s m10 , j1 2
1
2

=  into the

guided modes of a nanofibre. The rates are plotted as a function of
the fibre radius, a: (top) the atom is on the fibre surface; (bottom) the
atom is located at a distance 150 nm from the fibre surface. The rates
are presented relative to the spontaneous emission rate in
vacuum, s

0
10G .

Figure 6. Total spontaneous emission rate of a sodium atom into the
radiative modes of a nanofibre of radius a=100 nm. The rate is
plotted as a function of the distance r of the atom to the fibre axis:
(top) atom initially prepared in the state s m10 , j1 2

1
2

=  ,

(bottom) atom initially prepared in the states p m10 , j1 2
1
2

=  ,

p m10 , j3 2
1
2

=  and p m10 , j3 2
3
2

=  . The rates ,r
s

r
p10 10G G

are presented relative to the spontaneous emission rates s
0
10G , p

0
10G in

vacuum and the distance r is expressed in units of the fibre radius, a.
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atom initially prepared in p10 3 2(∣ , mj
1

2
=  ñ, p10 1 2∣ ,

mj
1

2
=  ñ, p10 3 2∣ , mj

3

2
=  ñ). This allows us to compute the

proportion of light which is emitted into the guided and radia-
tive modes. For instance, for an atom initially prepared in the
state s10 1 2∣ , mj

1

2
=  ñ, 13%g g rG G + G »( ) when the atom

is located on the fibre surface r a=( ), and g g rG G + G »( )
6% when the atom is located at 50 nm from the fibre surface
r a1.5= ´( ). Since light is mostly spontaneously emitted into
the radiative modes, it seems quite challenging to efficiently
interface a Rydberg atom with a guided mode of the nanofibre
and, thence, to build a valuable quantum network. The use of
atomic ensembles might alleviate this concern, since, as already
demonstrated in free-space, their spontaneous emission could be
made highly directional and their coupling strength is enhanced
[17]. These issues and the perspectives they offer will be
addressed in a future work.

Finally, in figure 6, one observes a damped semi-oscil-
latory behaviour for r

s10G and r
p10G as functions of r, and for

r
p10G the oscillations of the different contributions j=1/2, 3/2

are not in phase. These features result from the behaviour of
the different transition components nl n lg  ¢ ¢ shown in figure 7

for nl np m, j3 2
1

2
= =  , which is itself due to the oscillatory

behaviour of the radiative field. For a transition of frequency
ω, the frequency of oscillation with r is approximately given
by 2ω/c.

4. Conclusion

We have investigated the influence of an optical nanofibre on
the spontaneous emission rate of a sodium atom prepared in a

Rydberg state. The respective contributions of the guided and
radiative modes to the total rate were numerically determined,
for different principal quantum numbers and different sym-
metries, and their remarkable features were physically
discussed.

Though the radiative modes’ contribution is dominant, a
small fraction of the spontaneously emitted light is transferred
into the guided mode of the nanofibre. This effect might be
enhanced by resorting to atomic ensembles which could offer
stronger and more directional collective coupling. Using
thicker fibres, with more than one guided mode, may also
yield for a higher ratio of spontaneous emission into the
guided modes. This potentially paves the way towards the
implementation of a quantum network based on Rydberg
atomic ensembles linked by nanofibres, which will be further
addressed in a future work.
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Appendix A. Guided modes

A guided mode is characterized by a set m º
m f p, , , ,w b =  = ( ). β is the projection of the wave-

vector onto the axis of the nanofibre whose value is deter-
mined by the eigenvalue equation
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Here we introduced n k1
2 2 2k bº - , n k2

2
2 2g bº - and

k
c

º w . a is the radius of the fibre, n1 is the core index, n2≈1
is the index of the surrounding vacuum. Jm and Km denote the
Bessel functions of the first kind and the modified Bessel
functions of the second kind, respectively. Note that, when
the monomode conditions are fulfilled, only the hybrid modes
HE11 with m=1 exist, and are fully characterized by m º

f p, ,w( ).
The polarization vectors of the guided mode m( ) for

r<a are given by

e
C K a

J a
J r ms J r ms

e
p C K a

J a
J r ms J r ms

e C
K a

J a
J r

2i
1 1

2
1 1 ,

,

r
m

m
m m

m

m
m m

z
m

m
m

1 1

1 1

b
k

g
k

k k

b
k

g
k

k k

g
k

k

= - - +

= - + +

=

m

j
m

m

- +

- +

( )
( )

( ( )( ) ( )( ))

( )
( )

( ( )( ) ( )( ))

( )
( )

( )

( )

( )

( )

Figure 7. Spontaneous emission rate of a sodium atom initially
prepared in p10 3 2∣ , mj

1
2

=  ñ into the radiative modes of a

nanofibre of radius a=100 nm: contributions of the different
transitions p10 3 2∣ , mj

1
2

=  ñ ns1 2∣ , mj
1
2

=  ñ, nd5 2∣ , mj
1
2

=  ,
3
2

 ñ, for n=3,L, 6. The rate is plotted as a function of the distance

r of the atom to the fibre axis. The distance r is expressed in units of
the fibre radius, a.
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while, for r>a, they are
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Appendix B. Radiative modes

A radiative mode is characterized by a set s º
m p, , ,w b = ( ), where m is the order of the mode, and the

meaning of p will be explained below.

Defining the quantities n k1
2 2 2k bº - , s º

n k2
2 2 2b- and k≡ω/c, one can write the polarization

vectors of the radiative mode n( ) for r<a:
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where Ym denote Bessel functions of the second kind. The
coefficients C, D, E and F are related to A and B as follows

C
a

n
AL BV

D
a

A V BM

E
a

n
AL BV

F
a

A V BM

2
i ,

i
2

i ,

2
i ,

i
2

i ,

2

0 2
2 2 2

2

0 2 2

2

0 2
2 1 1

2

0 1 1





p s

p s
m

p s

p s
m

=- +

= +

= +

=- +

( )

( )

( )

( )

with

V
m

a
n n J a J a

V
m

a
n n Y a J a

M J a J a J a J a

M Y a J a Y a J a

L
n

J a J a
n

J a J a

L
n

Y a J a
n

Y a J a

,

,

1 1
,

1 1
,

,

.

m m

m m

m m m m

m m m m

m m m m

m m m m

1
0

2 2 2
2

1
2

2
0

2 2 2
2

1
2

1

2

1
0 1

2
0 2

2

2
0 1

2
0 2

2

 

 

b
wm k s

s k

b
wm k s

s k

k
s k

s
s k

k
s k

s
s k

k
s k

s
s k

k
s k

s
s k

= -

= -

= ¢ - ¢

= ¢ - ¢

= ¢ - ¢

= ¢ - ¢

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

In the single-mode approximation, a guided mode is com-
pletely specified by the frequency ω, the direction of pro-
pagation f=±1 and the polarization p=±1. By contrast,
at first glance, this is not the case for the radiative modes
any longer. Once β, ω and m are fixed, we are left with two
constants A and B, and a normalization condition will
only determine one constant. We must therefore separate
these into two modes. For instance, we can just set A=0
for one mode and B=0 for the other one. We want, how-
ever, the two modes to be orthogonal to each other. An
alternative method consists in setting B=piη A with the
parameter p=±1, then imposing an orthogonality condi-
tion between e p 1=+( ) and e p 1=-( ) . Explicitly, this condition
is written:
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If we consider the vacuum surrounding with the index
n2=1, this leads to:
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The second normalization equation allows us to calculate the
form of A∣ ∣
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This shows that m p, , ,n w b= ( ) completely determines a
radiative mode.

Appendix C. Spontaneous emission of an atom in
the presence of a nanofibre

With the definitions M NMNs º ñá∣ ∣, E EMN M N w º -( ) ,
k≡ω/c, the Hamiltonian of the full system consisting of the
atom and the electric field takes the form H=Hat+Hf+
Hint with

H a a a a
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where D dM N MN MN, s= å
 

and E r E r E rg r= +
     ( ) ( ) ( ) are the

atomic dipole operator and the total electric field operator,
respectively. Switching to the interaction picture relative to
H H Hat f0 º + , and resorting to the rotating wave approx-
imation we get the interaction Hamiltonian (note that the
states Mñ∣ are ordered by increasing energies)
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For simplicity, from now on we shall use λ to denote either
guided modes, i.e. f p, ,l w= =  = ( ), or radiative
modes, i.e. m p, , ,l w b= ( ), and use ål to represent the
sum, either discrete or continuous, of these modes, whence
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From equation (C.1), we get the Heisenberg equations for
the field and atomic operators, aλ and σPQ
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We can eliminate the field degree of freedom by inserting the
formal solution of equation (C.2)
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into equation (C.3). Then performing Markov approximation
[31] and using
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where we introduced the different decay rates and energy
shifts due to spontaneous emission into the modes of the
fibre
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and the associated Langevin forces
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Note that due to the normal operator ordering in
equation (C.4), 0PQxá ñ = .
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From the relation t t tTrQP PQ0r r s=( ) [ ( ) ( )] one imme-
diately deduces the evolution equation for the density
matrix

t ti .t QP PQ PQ QP PQ
P M

MP MMår r d g r¶ » - G + D +
<

( ) ( ) ( )

In particular, for coherences P Q¹( ), we obtain

t e t .QP
t t

QP
i

0PQ PQ 0r r» - G + D -( ) ( )( )( )

Appendix D. Atomic data

In order to calculate the rates of spontaneous emission for
levels s10 1 2 and p10 1 2,3 2, we need energies and transition
dipole moments involving s, p and d lower levels. Regarding
energies, we take experimental values from the NIST data-
base [32]. Transition dipole moments are calculated using the
Cowan codes [33].

The vector associated with the dipole operator is
expressed as irreducible tensors dq̂ (q=0,±1), such that

d dz0 =ˆ ˆ and d d di 2x y1 =  ˆ ( ˆ ˆ ) . Their matrix elements in
the coupled atomic basis nℓ mj jñ{∣ } read

n ℓ m d nℓ m e j

ℓ s j

j ℓ
n ℓ nℓ Cr

1 2 1

1
, D.1

j j q j j
j ℓ s

jm q
j m

1j

j

á ¢ ¢ ¢ ñ = - +

´
¢ ¢

á ¢ ¢ ñ

¢
+ ¢+

¢ ¢ 
⎧⎨⎩

⎫⎬⎭

∣ ˆ ∣ ( ) ( )

ˆ ( )

where e is the absolute value of the electron charge,
a b c
d e f

⎧⎨⎩
⎫⎬⎭ is a Wigner 6j symbol, and Ca b

c
a b
g a Clebsch–

Gordan coefficient [34]. The quantity n ℓ nℓrá ¢ ¢ ñ ˆ is the
reduced matrix element of the position operator of the out-
ermost electron. In our calculations, it is supposed to be
independent from j and j¢.

Table D1 contains the quantities n ℓ sr 10á ¢ ¢ ñ ˆ and
n ℓ pr 10á ¢ ¢ ñ ˆ relevant for our calculation. They give radiative
lifetimes of 0.855, 8.58 and 8.56 μs for s10 , p10 1 2 and p10 3 2
respectively, which are in correct agreement with the values
reported in [35].
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