This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
ACCEPTED MANUSCRIPT

Uniqueness of an inverse cavity scattering problem for the time-harmonic biharmonic wave equation

and

Accepted Manuscript online 25 April 2024 © 2024 IOP Publishing Ltd

What is an Accepted Manuscript?

DOI 10.1088/1361-6420/ad438c

10.1088/1361-6420/ad438c

Abstract

This paper addresses an inverse cavity scattering problem associated with the time-harmonic biharmonic wave equation in two dimensions. The objective is to determine the domain or shape of the cavity. The Green's representations are demonstrated for the solution to the boundary value problem, and the one-to-one correspondence is confirmed between the Helmholtz component of biharmonic waves and the resulting far-field patterns. Two mixed reciprocity relations are deduced, linking the scattered field generated by plane waves to the far-field pattern produced by various types of point sources. Furthermore, the symmetry relations are explored for the scattered fields generated by point sources. Finally, we present two uniqueness results for the inverse problem by utilizing both far-field patterns and phaseless near-field data.

Export citation and abstract BibTeX RIS

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully protected by copyright and cannot be reused or reposted elsewhere.

As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript will be available for reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.

10.1088/1361-6420/ad438c