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3D Poissonian Image Deblurring via Patch-based Tensor

Logarithmic Schatten-p Minimization

Jian Lu∗‡, Lin Huang†‡, Xiaoxia Liu§‖, Ning Xie¶‖, Qingtang Jiang∗∗, Yuru Zou†

Abstract

In medical and biological image processing, multi-dimensional images are often corrupted by blur
and Poisson noise. In this paper, we first propose a new tensor logarithmic Schatten-p (t-log-Sp) low-
rank measure and a tensor iteratively reweighted Schatten-p minimization (t-IRSpM) algorithm for
minimizing such measure. Furthermore, we adopt this low-rank measure to regularize the non-local
tensors formed by similar 3D image patches and develop a patch-based non-local low-rank model. The
data fidelity term of the model characterizes the Poisson noise distribution and blur operator. The
optimization model is further solved by an alternating minimization technique combined with variable
splitting. Experimental results tested on 3D fluorescence microscope images show that the proposed
patch-based tensor logarithmic Schatten-p minimization (TLSpM) method outperforms state-of-the-art
methods in terms of image evaluation metrics and visual quality.

Keywords: tensor low-rank measure, non-local low-rank regularization, Poisson noise, deblurring.

1 Introduction

Image degradation by blur and Poisson noise is inevitable in electronic microscopy [1], astronomical
imaging [2], single particle emission computed tomography (SPECT) [3,4], positron emission tomography
(PET) [5], and so on. On one hand, images are convoluted by a point spread function (PSF) of the imaging
device or body movement caused by the respiratory shake of the patient. On the other hand, due to the
low photon count [6], images such as X-ray tomography [7], fluorescence microscopes [1], astronomy [2],
mammography [8], and tomosynthesis [9], are often affected by Poisson noise.

For deconvoluting Poissonian images, a popular method is the Richardson-Lucy (RL) algorithm [10],
which calculated a Poisson maximum likelihood estimate. The Ameliorated Richardson-Lucy (ARL)
algorithm [11] accelerated the deblurring procedure of the RL algorithm. But the RL and ARL algorithms
may amplify the noise after several iterations. To efficiently restore blurry Poissonian images, various
optimization models with regularization terms were developed and further solved by efficient algorithms.
The most commonly used regularization is the total variation (TV) regularization [12–19]. Dey et al. [12]
enhanced the RL algorithm by the TV regularization; Harmany et al. [13] solved the TV regularized
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model by sequential quadratic approximations; Bonettini et al. [14] combined a Poisson log-likelihood data
fidelity term with the TV regularization term and used an alternating extragradient algorithm to solve
the model; Figueiredo et al. [15] solved the model by the alternating direction method of multipliers; Ma
et al. [16] proposed a dictionary learning model in addition to the TV regularization for Poissonian image
restoration. Other regularizations such as wavelet based regularizations [20–25] and Hessian Schatten
norm regularization [26] were also proposed. However, those regularization techniques are primarily
designed for 2D images and cannot be easily extended to 3D images.

Recent approaches for 3D Poissonian image deblurring converted Poisson noise into Gaussian noise
through some transformations and then restored the image via denoising tools for Gaussian noise. Dupe et
al. [27] utilized the Anscombe variance stable transformation (VST) [28] leading to Gaussian noise and de-
noised the blurry Gaussian image by a convex optimization model; Azzari et al. [29] deconvolved the blurry
image by a linear regularized inverse filter and then adopted VST and block matching 3D (BM3D) [30] or
BM4D [31] to remove Poisson noise. Besides these approaches, the methods based on the Poisson unbiased
risk estimate (PURE) also achieved great performance. The PURE-LET method that characterized the
deconvolution process as a linear combination of elementary functions (LET) was proposed in [32] for 2D
images and in [33] for 3D images. Each LET function contains a Wiener filtering and wavelet-domain
thresholding and the PURE is used to estimate the coefficients of the linear combination.

In this paper, we propose a patch-based approach for 3D Poissonian image deblurring. First, a new
tensor low-rank measure called the t-log-Sp low-rank measure is proposed, and an efficient algorithm
with convergence results is also proposed for minimizing such measure. Second, according to the image
non-local self-similarity, we use the proposed tensor low-rank measure to regularize the low-rankness of
the tensors formed by similar 3D patches extracted from the 3D image. Then we further propose a non-
local low-rank model with a data fidelity term for Poissonian deblurring and solve it by an alternating
minimization algorithm with a proximal term. Lastly, we demonstrate the proposed method outperforms
the state-of-the-art methods in removing Poisson noise and deblurring of fluorescence microscope images.

The main contributions of this paper are as follows:

• We propose a matrix logarithmic Schatten-p (log-Sp) low-rank measure for 2D images, which can
reveal the weighting strategy used in the weighted Schatten p-norm minimization [34]. Then we
further extend the log-Sp low-rank measure to tensor log-Sp (t-log-Sp) low-rank measure for 3D
images. It can be demonstrated in this paper that the t-log-Sp measure is efficient and suitable for
applications in 3D image restoration such as 3D Poissonian image deblurring.

• For the proposed log-Sp and t-log-Sp measures, we introduce some properties and develop reliable
solvers for their minimization problems. In particular, we develop an iteratively reweighted Sp

minimization (IRSpM) algorithm for the log-Sp minimization and a tensor IRSpM (t-IRSpM) algo-
rithm for the t-log-Sp minimization. A convergence analysis of each algorithm is provided in detail,
showing any accumulation point generated by the algorithm is a stationary point of the problem.

• We build a new patch-based non-local low-rank model using the proposed t-log-Sp measure for
3D Poissonian image deblurring. This approach can achieve state-of-the-art performance for 3D
Poissonian image deblurring.

This paper is organized as follows. In section 2, we provide some tensor notations and definitions,
then introduce matrix and tensor logarithmic Schatten-p (log-Sp) low-rank measures and their properties.
To solve the matrix and tensor log-Sp minimization problems, in section 3 we propose matrix and tensor
iteratively reweighted Schatten-p minimization (IRSpM) algorithms, respectively, along with convergence
analysis. We further develop our model for 3D Poissonian image deblurring in section 4. Experimental
results tested on 3D fluorescence microscope images are presented in section 5. Section 6 concludes this
paper.
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2 Tensor Logarithmic Schatten-p Low-rank Measure

In this section, we first introduce the definitions and notations of tensors including tensor singular value
decomposition (t-SVD). Then we propose a t-log-Sp low-rank measure and present its properties.

2.1 Preliminaries on tensors

Tensors are represented by bold calligraphy letters, e.g., X ; matrices are represented by bold capital
letters, e.g., X; vectors are represented by bold lowercase letters, e.g., x; and scalars are represented by
lowercase letters, e.g., x. For an N -order tensor X ∈ Rn1×n2×···×nN , the vectorization of X is denoted
as x = vec(X ) ∈ Rn1n2...nN , and the j-th element of x is equal to the (i1, i2, . . . , iN )-th element of X
with j = i1 +

∑N
s=2

(
(is − 1)

∏s−1
m=1 nm

)
. The mode-k tensor matricization of X is denoted as X(k) ∈

Rnk×
∏

s̸=k ns , and the (ik, j)-th element of X(k) is equal to the (i1, i2, . . . , iN )-th element of X , where

j = 1+
∑N

s=1,s̸=k(is − 1)Js with Js =
∏s−1

m=1,m̸=k nm. And the operator “unfold” and its inverse operator
“fold” are defined by X(k) = unfold(k)(X ) and X = fold(k)(X(k)), respectively.

For a 3-order tensor X ∈ Rn1×n2×n3 , xijk denotes the (i, j, k)-th entry of X , X(k) denotes the k-th
frontal slice X (:, :, k), and X denotes the discrete Fourier transform (DFT) of X along the 3-rd dimension,

i.e., X = fft(X , [ ], 3). This also implies X = ifft(X , [ ], 3). X
(i)

denotes the i-th frontal slice of X . The
block diagonal matrix of X is defined as

bdiag(X ) =


X

(1)

X
(2)

. . .

X
(n3)

 ,

and the block circulant matrix of X is defined as a matrix of size n1n3× n2n3 having the following form:

bcirc(X ) =


X(1) X(n3) . . . X(2)

X(2) X(1) . . . X(3)

...
...

. . .
...

X(n3) X(n3−1) . . . X(1)

 .

As for block unfolding X and its inverse operation, the operations are defined as follows:

bvec(X ) =


X(1)

X(2)

...

X(n3)

 , bfold(bvec(X )) = X .

For a 3-order tensor X ∈ Rn1×n2×n3 , the Frobenius norm of X is ∥X∥F =
√∑

ijk |xijk|
2 and the tensor

transpose of X is X T ∈ Rn2×n1×n3 defined as

X T = bfold

([
X(1),X(n3),X(n3−1), . . . ,X(2)

]T)
.

Using the tensor notations above, we present the definition of a tensor product.
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Definition 2.1 [35] (t-product). Let X ∈ Rn1×n2×n3 and Y ∈ Rn2×l×n3. Then the t-product of X and
Y is Z ∈ Rn1×l×n3 defined as:

Z = X ∗Y = bfold(bcirc(X ) · bvec(Y)).

Note that if n3 = 1, the operator ∗ reduces to matrix multiplication.

In fact, the t-product can also be calculated via the following equivalence under the DFT:

Z
(i)

= X
(i)
Y

(i)
, (1)

that is, the i-th frontal slice of the DFT of the t-product is equal to the matrix product of the i-th frontal
slices of the DFT of X and Y .

Definition 2.2 [35] (Identity tensor). The identity tensor I ∈ Rn×n×n3 is the tensor whose first frontal
slice is the n× n identity matrix, and other frontal slices are all zeros.

Definition 2.3 [35] (Orthogonal tensor). A tensor Q ∈ Rn×n×n3 is orthogonal if it satisfies QTQ =
QQT = I.

Definition 2.4 [35] (F-diagonal tensor). A tensor is F-diagonal if each frontal slice is diagonal.

Note that each frontal slice of I is the identity matrix and each frontal slide of Q, where Q is
orthogonal, is an orthogonal matrix. Next, we present the definition of a t-SVD and several tensor
low-rank measures.

Theorem 2.5 [35] (t-SVD). Let X ∈ Rn1×n2×n3. Then there exist U ∈ Rn1×n1×n3, S ∈ Rn1×n2×n3 and
V ∈ Rn2×n2×n3 such that:

X = U ∗ S ∗ VT , (2)

where U and V are orthogonal, and S is a frontal-slice-diagonal tensor.

Definition 2.6 [36] (Tensor tubal rank). For a 3D tensor X ∈ Rn1×n2×n3, the tensor tubal rank of X ,
denoted as rankt(X ), is defined as the number of non-zero tubes of S where S is from the t-SVD of
X = U ∗ S ∗ VT . That is,

rankt(X ) = #{i : S(i, i, :) ̸= 0}.

The tensor tubal rank is a tensor low-rank measure based on t-SVD, which counts the number of
non-zero tubes in t-SVD. In fact, the tensor tubal rank only depends on the first frontal slice of S, that
is, rankt(X ) = #{i : S(i, i, 1) ̸= 0}. Since the tensor tubal rank minimization is NP-hard, several tensor
low-rank measures were proposed to approximate the tensor tubal rank.

Definition 2.7 [37] (Tensor nuclear norm). Let X = U ∗S ∗VT be the t-SVD of X ∈ Rn1×n2×n3. Then
the tensor nuclear norm is defined as

∥X∥∗ =
n3∑
i=1

S(i, i, 1).

The tensor nuclear norm can also be computed via the frontal slices of X , that is,

∥X∥∗ =
1

n3

n3∑
i=1

∥X(i)∥∗.

As the frontal slices X
(i)

are matrices, the matrix nuclear norm can be replaced by other non-convex
surrogates of the matrix rank. For example, the tensor p-shrinkage nuclear norm [38] replaces the nuclear
norm by the Schatten-p quasi-norm; the tensor weighted Schatten-p norm [39] uses the weighted Schatten-
p norm, and the log-based tensor nuclear norm [40] uses the log-det function.
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2.2 Tensor logarithmic Schatten-p low-rank measure and its properties

Before we propose the tensor log-Sp low-rank measure, we first define a new matrix log-Sp low-rank
measure as follows.

Definition 2.8 (log-Sp). Given X ∈ Rm×n, the matrix logarithmic Schatten-p (log-Sp) low-rank measure
of X is defined as

Mlog,Sp(X) =

min{m,n}∑
j=1

log
(
σp
j (X) + ε

)
, (3)

where ε > 0, 0 < p ≤ 1, and σj (X) represents the j-th largest singular value of X.

If p = 1, then this log-Sp low-rank measureMlog,Sp(·) reduces to the log-det function [41], which is a
non-convex surrogate of the matrix rank. If 0 < p < 1, due to the non-convexity of the ℓp norm,Mlog,Sp(·)
is also a non-convex relaxation of the matrix rank, and in fact it can achieve a better approximation than
the Sp quasi-norm [42] or log-det function.

Next, we propose a new tensor low-rank measure called the t-log-Sp low-rank measure, which adopts

the matrix log-Sp low-rank measure to characterize the low-rankness of the frontal slices X
(i)
. The

t-log-Sp low-rank measure also denoted asMlog,Sp(·) is defined as follows.

Definition 2.9 (t-log-Sp). Given X ∈ Rn1×n2×n3, the tensor logarithm Schatten-p (t-log-Sp) low-rank
measure of X is defined as

Mlog,Sp(X ) =
1

n3

n3∑
i=1

Mlog,Sp

(
X

(i)
)
=

1

n3

n3∑
i=1

min{n1,n2}∑
j=1

log
(
σp
j

(
X

(i)
)
+ ε
)
, (4)

where ε > 0 and 0 < p ≤ 1. When n3 = 1, the t-log-Sp low-rank measure reduces to the matrix log-Sp

low-rank measure.

Proposition 2.10 (Orthogonal invariance). The following assertions hold:

(i) For a given matrix X ∈ Rm×n, if U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices, then

Mlog,Sp(X) =Mlog,Sp(UXV T ).

(ii) For a given tensor X ∈ Rn1×n2×n3, if U ∈ Rn1×n1×n3 and V ∈ Rn2×n2×n3 are orthogonal tensors,
then

Mlog,Sp(X ) =Mlog,Sp(U ∗X ∗ VT ).

Proof. (i) It immediately follows from σj(X) = σj(UXV T ), j = 1, 2, . . . ,min{m,n}.
(ii) Let Z = U ∗X ∗ VT . By equation (1), we have Z

(i)
= U

(i)
X

(i)
(V

(i)
)T , where U

(i)
and V

(i)
are

orthogonal matrices. According to (i), we have (ii) holds.

As shown in Proposition 2.1, both the matrix and tensor log-Sp low-rank measuresMlog,Sp(·) satisfy
the orthogonal invariance property. This property is useful when we minimize these measures together
with another function that also has an orthogonal invariance property. For example, the log-Sp minimiza-
tion problem that will be discussed in the next section may be reduced to a minimization problem only
in terms of the singular values using this orthogonal invariance property.
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3 Tensor Iteratively Reweighted Sp Minimization Algorithm for the
t-log-Sp Minimization

For a 3D tensor Y ∈ Rn1×n2×n3 , the t-log-Sp minimization problem is written as

min
X

1

2
∥X −Y∥2F + τMlog,Sp(X ), (5)

where τ > 0. By the definition of the t-log-Sp low-rank measure, Mlog,Sp(·) is separable in terms of the

frontal slices of X . Then solving the t-log-Sp minimization problem (5) is equivalent to solving for each

frontal slice X
(i)

via the following problem

min
X

(i)

1

2
∥X(i) − Y

(i)∥2F + τMlog,Sp(X
(i)
). (6)

In subsection 3.1 we will propose an IRSpM algorithm for the log-Sp minimization problem as in (6),
and conduct in subsection 3.2 a convergence analysis for IRSpM algorithm. Then in subsection 3.3, we
summarize the tensor IRSpM (t-IRSpM) algorithm and its convergence analysis for solving the t-log-Sp

minimization problem (5).

3.1 Iteratively reweighted Sp minimization algorithm for the log-Sp minimization

We consider the log-Sp minimization problem as follows

min
X∈Rm×n

1

2
∥X − Y ∥2F + τMlog,Sp(X), (7)

where Y ∈ Rm×n is the given data, X ∈ Rm×n is the unknown to be computed, and τ > 0. Note that

X and Y can represent X
(i)

and Y
(i)
, respectively. By definition, the log-Sp low-rank measure can be

written as

Mlog,Sp(X) =

min{m,n}∑
j=1

g
(
σp
j (X)

)
,

where g : [0,∞)→ R is defined by g(t) = log(t+ ε). The function g is monotonically increasing, concave,
and continuously differentiable. Also, g has a Lipschitz continuous gradient with constant Lg > 0, i.e.,∣∣g′(s)− g′(t)

∣∣ ≤ Lg|s− t|, ∀s, t ∈ [0,∞).

To solve the log-Sp minimization as in (7), we propose an iteratively reweighted Sp minimization
(IRSpM) algorithm as follows

Xk+1 = argmin
X∈Rm×n

µ

2

∥∥∥∥X − [Xk − 1

µ

(
Xk − Y

)]∥∥∥∥2
F

+ τ

l∑
j=1

ωk
j σ

p
j (X), (8)

where wk
j = g′

(
σp
j (X

k)
)
= 1

σp
j (X

k)+ε
, l = min{m,n} and µ > 1.

Before solving equation (8), we recall some notations on the singular value decomposition (SVD).
Given a vector x ∈ Rl, let Diag(x) denote the l× l diagonal matrix with the j-th diagonal element as xj .
Given a matrix X ∈ Rm×n, the SVD of X is computed as X = UΣV T , where U ∈ Rm×l and V ∈ Rn×l

are orthogonal matrices with UTU = V TV = I, and Σ ∈ Rl×l is a diagonal matrix, l = min{m,n}. In
particular, Σ = Diag(σ(X)), where σ(X) := [σ1(X), σ2(X), · · · , σl(X)]T and σj(X) is the j-th largest
singular value of X.

Since equation (8) can be viewed as a weighted Sp minimization problem, we recall some preliminary
results in [34].
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Lemma 3.1 [34]. For the following optimization problem:

min
δ≥0

f(δ) =
1

2
(δ − σ)2 + wδp (9)

with w ≥ 0 and 0 < p ≤ 1, there exists a specific threshold:

τGST
p (w) = (2w(1− p))

1
2−p + wp(2w(1− p))

p−1
2−p ,

and we have the following conclusions.

(i) When |σ| ≤ τGST
p (w), f has an optimal solution TGST

p (σ,w) = 0;

(ii) When |σ| > τGST
p (w), f has one unique optimal solution TGST

p (σ,w) = sign(σ)SGST
p (|σ|, w) and

SGST
p (|σ|, w) can be obtain by solving

SGST
p (|σ|, w)− |σ|+ wp

(
SGST
p (|σ|, w)

)p−1
= 0. (10)

The generalized soft-thresholding (GST) algorithm proposed in [43] for finding an optimal solution
TGST
p (σ,w) of problem (9) is summarized in Algorithm 1.

Algorithm 1 Generalized soft-thresholding (GST) [43]

Input: σ, w, p, J

1: τGST
p (w) = (2w(1− p))

1
2−p + wp(2w(1− p))

p−1
2−p ;

2: if |σ| ≤ τGST
p (w) then

3: TGST
p (σ,w) = 0;

4: else
5: k = 0, δk = |σ|;
6: for k = 0, 1, . . . , J do
7: δk+1 = |σ| − wp(δk)p−1;
8: k ← k + 1 ;
9: end for

10: TGST
p (σ,w) = sign(σ)δk.

11: end if
Output: TGST

p (σ,w)

Theorem 3.2 [34]. Let Y ∈ Rm×n and τ > 0. And let w = [w1, . . . , wl]
T ∈ Rl such that 0 ≤ w1 ≤ w2 ≤

· · · ≤ wl, l = min{m,n}. Then a global optimal solution for the following problem

min
X∈Rm×n

1

2
∥X − Y ∥2F + τ

l∑
j=1

wjσ
p
j (X)

is given by
Γτw(Y ) = U Diag(γ)V T ,

where Y = UΣV T is the SVD of Y , Σ = Diag(σ(Y )), and γ = [γ1, γ2, . . . , γl]
T ∈ Rl satisfies γj =

TGST
p (σj(Y ), τwj), i = 1, 2, . . . , l. In particular, γ also satisfies γ1 ≥ γ2 ≥ · · · ≥ γl ≥ 0.
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For the IRSpM algorithm given in equation (8), it can be easily verified that wk = [wk
1 , w

k
2 , . . . , w

k
l ]

T ∈
Rl satisfies 0 ≤ wk

1 ≤ wk
2 ≤ . . . ≤ wk

l . Then a global optimal solution of (8) can be efficiently solved
according to Theorem 3.2 as follows

Xk+1 = Γ τ
µ
wk

(
Xk − 1

µ
(Xk − Y )

)
. (11)

We summarize the IRSpM algorithm in Algorithm 2.

Algorithm 2 IRSpM algorithm for solving the log-Sp minimization problem (7)

Input: Y and parameter τ
1: Initialize X0

2: Set k = 0, µ > 1 and w0
j =

1
σj(X

0)p+ε

3: while stopping criterion is not satisfied do
4: Compute the SVD of Xk − 1

µ(X
k − Y ), i.e., Xk − 1

µ(X
k − Y ) = Uk+1Σk+1(V k+1)T

5: for j = 1, 2, . . . , l do

6: γk+1
j = TGST

p

(
Σk+1

jj , τµw
k
j

)
7: wk+1

j = 1
(γk+1

j )p+ε

8: end for
9: Xk+1 = Uk+1Diag(γk+1)(V k+1)T

10: k ← k + 1.
11: end while
Output: Xk

Remark 3.3. If we initialize X0 by X0 = Y , the IRSpM algorithm can be simplified and only requires
one SVD operation. Suppose Y = UΣV T is the SVD of Y , where Σ = Diag(σ(Y )). Then the sequence
{Xk} generated by the IRSpM algorithm in (11) can be computed by

Xk+1 = U Diag(γk+1)V T ,

where γk+1 = [γk+1
1 , γk+1

2 , . . . , γk+1
l ]T ∈ Rl, l = min{m,n}, satisfies that γ0 = σ(Y ) and for each j

γk+1
j = TGST

p

(
γkj −

1

µ
(γkj − σj(Y )),

τ

µ
wk
j

)
, k = 0, 1, . . . .

3.2 Convergence analysis of the IRSpM algorithm

We can prove that any accumulation point of the sequence {Xk} generated by Algorithm 2 is a stationary
point of the objective function of the log-Sp minimization as in (7).

First, we recall some definitions of subdifferentials and some results on computing the subdifferential
of singular value functions introduced in [44].

Definition 3.4 Subdifferentials. Let f : Rd → (−∞,+∞] be a proper and lower semicontinuous function.

(1) For a given x ∈ dom ∂f := {x ∈ Rd : ∂f(x) ̸= ∅}, the Fréchet subdifferential of f at x, written
∂̂f(x), is the set of all vectors u ∈ Rd which satisfy

lim inf
y ̸=x y→x

f(y)− f(x)− ⟨u,y − x⟩
∥y − x∥

≥ 0.

When x /∈ dom f , we set ∂̂f(x) = ∅.
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(2) The subdifferential of f at x ∈ Rd, written ∂f(x), is defined through the following closure process

∂f(x) := {u ∈ Rd : ∃xk → x, f(xk)→ f(x) and uk ∈ ∂̂f(xk)→ u as k →∞}.

Definition 3.5. A function f : Rn → R is absolutely symmetric if

f(x1, x2, . . . , xn) = f(|xπ(1)|, |xπ(2)|, . . . , |xπ(n)|),

for any permutation π.

Definition 3.6. A function F : Rm×n → R is a singular value function if F (X) = (f ◦ σ)(X), where
f : Rl → R is an absolutely symmetric function, l = min{m,n}.

Lemma 3.7 [44]. Let f be an absolutely symmetric function, then the subdifferential of the corresponding
singular value function f ◦ σ at a matrix X is given by the formula

∂(f ◦ σ)(X) = U Diag (∂f [σ(X)])V T

with X = UΣV T being the SVD of X.

The log-Sp low-rank measure can be viewed as a singular value function and its subdifferential can be
computed by Lemma 3.7. However, it is still challenging to find an explicit expression for the subdiffer-
ential of the log-Sp low-rank measure due to the non-smoothness of the Sp quasi-norm.

Second, motivated by the class of first-order stationary points for ℓp regularized low-rank approx-
imation problems introduced in [42], we define a class of first-order stationary points for the log-Sp

minimization problem (7) using

Õ(X) :=
{
(Ũ , Ṽ ) ∈ Rm×r × Rn×r : Ũ

T
Ũ = Ṽ

T
Ṽ = I and X = Ũ Diag(σ̃(X))Ṽ

T
}
,

where σ̃(X) := [σ1(X), σ2(X), . . . , σr(X)]T and r = rank(X). Note that Õ(X) is the set of all such
pairs (Ũ , Ṽ ) of the rank reduced SVD of X.

Definition 3.8. A point X∗ is a first-order stationary point of problem (7) if

0 ∈
{
Ũ

T
(X∗ − Y ) Ṽ + τpDiag(d) : (Ũ , Ṽ ) ∈ Õ (X∗) and dj = σp−1

j (X∗)(σp
j (X

∗) + ε)−1
}
. (12)

The next theorem shows that a local minimizer of problem (7) is a first-order stationary point.

Theorem 3.9. Suppose that X∗ is a local minimizer of problem (7). Then X∗ is a first-order stationary
point of problem (7), that is, (12) holds at X∗.

Proof. Let X∗ = U Diag(σ̃(X∗))V T for some (U ,V ) ∈ Õ(X∗) and r = rank(X∗). Define φ : Rr×r → R
as

φ(Z) =
1

2

∥∥X∗ +UZV T − Y
∥∥2
F
+ τMlog,Sp(X

∗ +UZV T )

=
1

2

∥∥X∗ +UZV T − Y
∥∥2
F
+ τMlog,Sp(Diag(σ̃(X∗)) +Z).

By Theorem 7.1 in [44] and the definition of Õ(·), the subdifferential of φ(·) at Z = 0 is given by

∂φ(0) =
{
UT (X∗ − Y )V + τpÛ Diag(d)V̂

T
:

(Û , V̂ ) ∈ Õ (Diag(σ̃(X∗))) and dj = σp−1
j (X∗)(σp

j (X
∗) + ε)−1

}
.
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Since 0 is a local minimizer of φ(·), we have 0 ∈ ∂φ(0). Hence, there exists some (Û , V̂ ) ∈ Õ (Diag(σ̃(X∗)))
such that

UT (X∗ − Y )V + τpÛ Diag(d)V̂
T
= 0,

where dj = σp−1
j (X∗)(σp

j (X
∗)+ ε)−1, j = 1, 2, . . . , r. Upon pre- and post-multiplying the above equation

by Û
T
and V̂ , and using Û

T
Û = V̂

T
V̂ = I, we obtain

Ũ
T
(X∗ − Y ) Ṽ + τpDiag(d) = 0,

where Ũ = UÛ and Ṽ = V V̂ . Since (U ,V ) ∈ Õ(X∗) and (Û , V̂ ) ∈ Õ (Diag(σ̃(X∗))), then we have

Ũ Diag(σ̃(X∗))Ṽ
T
= U

(
Û Diag(σ̃(X∗))V̂

T
)
V T = U Diag(σ̃(X∗))V T = X∗.

Hence, (Ũ , Ṽ ) ∈ Õ(X∗) and (12) holds.

Third, we show some convergence results on the sequence {Xk} generated by the proposed IRSpM
algorithm in Algorithm 2. The objective function of (7) evaluated at the sequence {Xk} is strictly
decreasing and any accumulation point of {Xk} is a stationary point.

Proposition 3.10. Let Ψ denote the objective function of the log-Sp minimization problem (7). Suppose
that {Xk} is a sequence generated by Algorithm 2 and µ > 1. Then we have

Ψ(Xk)−Ψ(Xk+1) ≥ µ− 1

2
∥Xk+1 −Xk∥2F . (13)

Proof. By the descent lemma [45] and the concavity of the function g, we obtain

Ψ(Xk)−Ψ(Xk+1) =
1

2
∥Xk − Y ∥2F −

1

2
∥Xk+1 − Y ∥2F + τ

l∑
j=1

[
g
(
σp
j (X

k)
)
− g

(
σp
j (X

k+1)
)]

= ⟨Xk − Y ,Xk −Xk+1⟩ − 1

2
∥Xk+1 −Xk∥2F + τ

l∑
j=1

[
g
(
σp
j (X

k)
)
− g

(
σp
j (X

k+1)
)]

≥ ⟨Xk − Y ,Xk −Xk+1⟩ − 1

2
∥Xk+1 −Xk∥2F + τ

l∑
j=1

wk
j

(
σp
j (X

k)− σp
j (X

k+1)
)
, (14)

where wk
j = g′

(
σp
j (X

k)
)
and l = min{m,n}. Note that Xk+1 is a minimizer of (8), and thus we have

⟨Xk − Y ,Xk+1 −Xk⟩+ µ

2
∥Xk+1 −Xk∥2F + τ

l∑
j=1

wk
j σ

p
j (X

k+1)

≤ ⟨Xk − Y ,Xk −Xk⟩+ µ

2
∥Xk −Xk∥2F + τ

l∑
j=1

wk
j σ

p
j (X

k)

= τ
l∑

j=1

wk
j σ

p
j (X

k).

That is,

⟨Xk − Y ,Xk −Xk+1⟩+ τ
∑
j

wk
j

(
σp
j (X

k)− σp
j (X

k+1)
)
≥ µ

2

∥∥∥Xk+1 −Xk
∥∥∥2
F
. (15)

Then substituting (15) into (14) yields (13).
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Theorem 3.11. Let Ψ denote the objective function of the log-Sp minimization problem (7). Suppose
that {Xk} is a sequence generated by Algorithm 2 and µ > 1. Then the following assertions hold:

(i) The sequence {Xk} is bounded.

(ii) lim
k→∞

∥Xk+1 −Xk∥F = 0.

(iii) Any accumulation point of {Xk} is a stationary point of Ψ.

Proof. (i) It follows from Proposition 3.10 that the decreasing sequence {Ψ(Xk)} is bounded above by
Ψ(X0). Also, Ψinf = infX Ψ(X) > −∞. Then assertion (i) holds since Ψ is coercive.

(ii) Summing (13) from k = 0 to k = K, we have

K∑
k=0

∥Xk+1 −Xk∥2F ≤
2

µ− 1

(
Ψ(X0)−Ψ(XK+1)

)
≤ 2

µ− 1

(
Ψ(X0)−Ψinf

)
< +∞.

Taking K →∞, we have
∞∑
k=0

∥Xk+1 −Xk∥2F < +∞.

This yields assertion (ii).
(iii) Let X∗ be an accumulation point of the sequence {Xk} and let γ∗ ∈ Rl be a vector such that

γ∗ = σ(X∗). Assume that a subsequence {Xki} of {Xk} converges to X∗ as i → ∞. Due to assertion
(ii), we also have Xki+1 → X∗ as i → ∞. Then σ(Xki) → σ(X∗) and σ(Xki+1) → σ(X∗), i.e.,
γki → γ∗ and γki+1 → γ∗, as i→∞.

Let r = rank(X∗). Then there exists some I0 > 0 such that γki+1
j > 0 for all j ≤ r and i > I0. And

γki+1
j > 0 implies that γkij −

1
µ(γ

ki
j − σj(Y )) > τGST

p ( τµw
ki
j ) and

γki+1
j = TGST

p

(
Σki+1

jj ,
τ

µ
wki
j

)
= SGST

p

(
Σki+1

jj ,
τ

µ
wki
j

)
.

By Lemma 3.1, the following equation holds for all j ≤ r and i > I0,

γki+1
j −Σki+1

jj +
τ

µ
wki
j p(γki+1

j )p−1 = 0. (16)

Denote γ̃ki+1 := [γki+1
1 , γki+1

2 , . . . , γki+1
r ]T and denote dki+1 := [dki+1

1 , dki+1
2 , . . . , dki+1

r ]T with dki+1
j =

wki
j (γki+1

j )p−1 = ((γkij )p + ε)−1(γki+1
j )p−1. Let Σ̃

ki+1
denote the r × r matrix formed by the first r rows

and first r columns of Σki+1, let Ũ
ki+1

denote the m× r matrix formed by the first r columns of Uki+1

and let Ṽ
ki+1

denote the n× r matrix formed by the first r columns of V ki+1. Then from equation (16),
we obtain

Ũ
ki+1

Diag(γ̃ki+1)(Ṽ
ki+1

)T − Ũ
ki+1

Σ̃
ki+1

(Ṽ
ki+1

)T +
τp

µ
Ũ

ki+1
Diag(dki+1)(Ṽ

ki+1
)T = 0.

We observe that Ũ
ki+1

Diag(γ̃ki+1)(Ṽ
ki+1

)T = Uki+1Diag(γki+1)(V ki+1)T−
∑l

j=r+1 γ
ki+1
j Uki+1

j (V ki+1
j )T =

Xki+1 −
∑l

j=r+1 γ
ki+1
j Uki+1

j (V ki+1
j )T , where Uki+1

j and V ki+1
j denote the j-th column of Uki+1 and

V ki+1, respectively. Also, Ũ
ki+1

Σ̃
ki+1

(Ṽ
ki+1

)T = Uki+1Σki+1(V ki+1)T−
∑l

j=r+1Σ
ki+1
jj Uki+1

j (V ki+1
j )T =

Xki − 1
µ(X

ki − Y )−
∑l

j=r+1Σ
ki+1
jj Uki+1

j (V ki+1
j )T . These imply that

µ(Xki+1−Xki)+(Xki−Y )+µ

l∑
j=r+1

(Σki+1
jj −γki+1

j )Uki+1
j (V ki+1

j )T +τpŨ
ki+1

Diag(dki+1)(Ṽ
ki+1

)T = 0.
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Upon pre- and post-multiplying the equation above by (Ũ
ki+1

)T and Ṽ
ki+1

and using (Ũ
ki+1

)T Ũ
ki+1

= I

and (Ṽ
ki+1

)T Ṽ
ki+1

= I, we obtain for all i > I0

µ(Ũ
ki+1

)T (Xki+1 −Xki)Ṽ
ki+1

+ (Ũ
ki+1

)T (Xki − Y )Ṽ
ki+1

+ τpDiag(dki+1) = 0. (17)

Next, it can be easily verified that {Ũki+1} and {Ṽ ki+1} are bounded. Considering a convergent

subsequence if necessary, without loss of generality we assume that Ũ
ki+1 → Ũ

∗
and Ṽ

ki+1 → Ṽ
∗
. Then

taking the limit of both sides of equation (17) as i→∞ and using assertion (ii), we have

(Ũ
∗
)T (X∗ − Y )Ṽ

∗
+ τpDiag(d∗) = 0,

where d∗ = [d∗1, d
∗
2, . . . , d

∗
r ]
T ∈ Rr such that d∗j = (γ∗j )

p−1((γ∗j )
p + ε)−1 = σp−1

j (X∗)(σp
j (X

∗) + ε)−1. Since

(Ũ
ki+1

)T Ũ
ki+1

= I and (Ṽ
ki+1

)T Ṽ
ki+1

= I, we have (Ũ
∗
)T Ũ

∗
= I and (Ṽ

∗
)T Ṽ

∗
= I. Since γ∗j = 0 for

all j > r, we have X∗ = Ũ
∗
Diag(γ̃∗)(Ṽ

∗
)T , that is, (Ũ

∗
, Ṽ

∗
) ∈ Õ (X∗). Therefore, X∗ is a stationary

point of Ψ.

3.3 The tensor IRSpM algorithm and its convergence analysis for the t-log-Sp mini-
mization

As mentioned in the beginning of section 3, solving the t-log-Sp minimization (5) is equivalent to solving

a log-Sp minimization (6) for each frontal slice X
(i)
. Then a tensor IRSpM (t-IRSpM) algorithm can

be proposed for the t-log-Sp minimization using the IRSpM algorithm for the log-Sp minimization. We
summarize the t-IRSpM algorithm in Algorithm 3 and its convergence results in Theorem 3.13.

Algorithm 3 The t-IRSpM Algorithm for solving the t-log-Sp minimization problem (5)

Input: Y and parameter τ
1: Set initialization denoted as Z
2: Y = fft(Y , [ ], 3)
3: Z = fft(Z, [ ], 3)
4: for i = 1, 2, . . . , n3 do

5: X
(i)

= IRSpM(Y
(i)
, τ) initialized with Z

(i)
.

6: end for
7: X = ifft(X , [ ], 3)

Output: X

Definition 3.12. A point X ∗ is a first-order stationary point of problem (5) if for i = 1, 2, . . . , n3,

0 ∈
{
Ũ

T
(
X∗

(i) − Y
(i)
)
Ṽ + τpDiag(d) :(Ũ , Ṽ ) ∈ Õ

(
X∗

(i)
)

and dj = σp−1
j (X∗

(i)
)(σp

j (X∗
(i)
) + ε)−1

}
.

(18)

To present the convergence results of the t-IRSpM algorithm, we denote {X(i)
k } as the sequence

generated by IRSpM in the fifth line in Algorithm 3 and denote X k = ifft(X k, [ ], 3), where the i-frontal

slice of X k is X
(i)
k .

Theorem 3.13. Let Φ denote the objective function of the log-Sp minimization problem (7). Suppose
that {X k} is a sequence generated by Algorithm 3. Then the following assertions hold:
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(i) Φ(X k)− Φ(X k+1) ≥ µ−1
2 ∥X k+1 −X k∥2F , where µ > 1 is an IRSpM algorithm parameter.

(ii) The sequence {X k} is bounded.

(iii) lim
k→∞

∥X k+1 −X k∥F = 0.

(iv) Any accumulation point of {X k} is a stationary point of Φ.

Proof. Let Ψi(X
(i)
) denote the objective function of problem (6). Note Φ(X ) = 1

n3

∑n3
i=1Ψi(X

(i)
) and

∥X k+1 −X k∥F = 1
n3

∑n3
i=1 ∥Xk+1

(i) −Xk
(i)∥2F . All the assertions immediately hold.

4 Patch-based Approach for 3D Poissonian Image Deblurring

In this section, we propose a non-local low-rank model for 3D Poissonian image deblurring by exploiting
low-rank priors of the non-local similar patch groups extracted from the observed images.

4.1 Problem statement

For a 3D image x ∈ RN , the image degradation model under Poisson noise can be written as

y = P (Hx), (19)

where x denotes an image that is not degraded, H ∈ Rn×n denotes a matrix operation of the convolution
of a PSF, P (·) denotes a process in which the image is contaminated with Poisson noise, and y denotes
a degraded image. If H is an identity matrix, the model becomes a simple denoising model. In this
paper, we consider periodic boundary conditions and then the blurring operator H keeps the block-cyclic
structure.

Since the variance of the Poisson noise is proportional to the intensity of the signal in each pixel, more
precisely, assuming that the observed value of image f at position i is independent, we can write

P (y |Hx) =
∏
i

e−(Hx)i ((Hx)i)
yi

yi!
,

where yi denotes the pixel value of the observed image at each position i, and x denotes the original clear
image. Using the Bayesian framework, Le et al. [46] proposed a minimization model as follows for 2D
Poissonian image deblurring

min
x

τ⟨Hx− y logHx,1⟩+ ∥∇x∥1, (20)

where 1 denotes the vector whose entries are all ones, the logarithm and multiplication with y are
component-wise operations, and τ > 0 is a parameter. The first term of model (20) is the data fidelity
term derived from the log-likelihood function of the Poisson distribution, and the second term is the
classical discrete TV regularization [47] defined as the composition of the l1 norm and the first-order
difference operator ∇.

For 3D Poissonian image deblurring, the data fidelity term of model (20) for 2D Poissonian image
deblurring can also be used. However, due to the ill-posedness of the problem, TV regularization-based
methods have some limitations in preserving the image textures, especially for 3D images. Therefore, we
propose a non-local low-rank model based on the t-log-Sp low-rank measure.
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4.2 Non-local low-rank model for 3D images

Non-local self-similarity for 2D images indicates that for each patch of the 2D image, similar patches
can be found in the image and grouped to obtain a low-rank matrix. And using this property, non-local
low-rank models have been developed for various applications in image restoration [48–54]. For example,
weighted nuclear norm minimization [52] has been applied to image denoising [52], image deblurring [53],
Rician noise removal [54] and phase retrieval [51]. For 3D images, the non-local self-similarity property
also exists. The non-local low-rank regularization for 3D images can be imposed by using matrix low-rank
measures [55] or tensor low-rank measures [56,57]. For example, Kronecker-Basis-Representation (KBR)
tensor sparsity regularization [58] has been applied to multispectral image denoising [58] and low-dose
dynamic cerebral perfusion CT reconstruction [59] and low-dose CT sinogram recovery [60]. In the
following, we adopt our t-log-Sp tensor low-rank measure proposed in section 2, and develop a non-local
low-rank model for 3D Poissonian image deblurring.

First, we group non-local 3D patches, also called cubes, with similarity together by cube matching and
form a non-local similar patch tensor. Given a 3D image x, suppose it can be divided into L overlapping
cubes of size

√
n1×
√
n1×n3, denoted as {x1,x2, · · · ,xL}. For each reference cube xi of the image, a total

number of n2 non-local self-similar cubes {xi,1,xi,2, · · · ,xi,n2} can be found by cube matching. Here, the
cubes are grouped using Euclidean distances, and the tensor Ri(x) is generated for the reference cube
xi by stacking the grouped unfolding cubes in the ascending order of Euclidean distance in the second
dimension, see Definition 4.1.

Definition 4.1. Given a vectorized 3D image x ∈ RN and a reference vectorized cube xi ∈ Rn1n3,
the non-local similar patch matrix Ri,j ∈ Rn1n3×N is a binary matrix (whose terms are 1 or 0), i =
1, 2. . . . , L, j = 1, 2. . . . .n2, such that Ri,jx is the j-th vectorized cube in the i-th non-local similar group
xi,j, that is, Ri,jx = xi,j. Let Ri : RN → Rn1×n2×n3 be the extraction operator for the i-th non-local
self-similar tensor defined as

Ri(x) = fold(2)([Ri,1x, . . . ,Ri,n2x]
T ).

Here, Ri(x) is the constructed tensor for the i-th reference cube. And this tensor describes the spatial
correlation along the first dimension, presents the repeated patterns of similar cubes along the second
dimension, and keeps the mode-3 correlation of the 3D image along the third dimension. Note that the
order of the modes can be switched. And Ri(x) should be a low-rank tensor according to non-local
self-similarity if x is a clean image.

Second, we adopt the t-log-Sp low-rank measure to regularize the low-rank properties of these non-local
similar patch tensors. By combining the low-rank tensor regularization using t-log-Sp low-rank measure
defined as in (4) with the tensor Poissonian image deblurring model (20), a non-local low-rank tensor
model for image restoration is as follows

min
x

τ⟨Hx− y logHx,1⟩W +

L∑
i=1

ηiMlog,Sp(Ri(x)), (21)

where Ri(x) represents the constructed tensor for each reference cube, W =
∑L

i=1RT
i ◦ Ri =

∑L
i=1∑n2

l=1R
T
i,lRi,l is a diagonal matrix whose main diagonal entries indicate the counts for each pixel, ⟨·, ·⟩

is the W -weighted inner product and ηi > 0. This model preserves the structural correlation of the
constructed tensors, thus obtaining better denoising results.

Lastly, we use variable splitting to reformulate the model. By introducing relaxation variables, and
problem (21) can be rewritten as a constrained problem:

min
x

τ⟨h− y logh,1⟩W +
L∑
i=1

ηiMlog,Sp(Li), s.t. Hx = h, Li = Ri(x).
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Then by relaxing these equalities of the splitting variables, the constrained problem can be relaxed to an
unconstrained problem as follows

min
x,h,Li

τ⟨h− y logh,1⟩W +
α

2
∥h−Hx∥2W +

L∑
i=1

[
1

2
∥Li −Ri(x)∥2F + ηiMlog,Sp(Li)

]
, (22)

where τ > 0, α > 0 and ηi > 0. We call this model as the non-local low-rank tensor model for 3D
Poissonian image deblurring.

4.3 The full algorithm for 3D Poissonian image deblurring

To solve the proposed model (22) for 3D Poissonian image deblurring, we perform an alternating mini-
mization algorithm with a proximal term as follows.

• Update of Li: given x = xk, we update Lk+1
i by solving the following subproblem

min
Li

1

2

∥∥∥Li −Ri(x
k)
∥∥∥2
F
+ ηiMlog,Sp(Li). (23)

We solve this t-log-Sp minimization problem by the t-IRSpM algorithm given in Algorithm 3 using
Lk

i as an initial solution.

• Update of h: given x = xk, we update hk+1 by minimizing problem (22) with respect to h as
follows

hk+1 = argmin
h

τ⟨h− y logh,1⟩W +
α

2
∥h−Hxk∥2W .

This is a least squares problem. Its closed-form solution is

hk+1 =
1

2

(
Hxk − τ

α

)
+

√
1

4

(
Hxk − τ

α

)2
+

τy

α
. (24)

• Update of x: given h = hk+1 and Li = Li
k+1, the update of the estimated image xk+1 at the

(k + 1)-th step is computed by minimizing problem (22) together with a proximal term as follows

xk+1 = argmin
x

α

2

∥∥∥hk+1 −Hx
∥∥∥2
W

+

L∑
i=1

1

2

∥∥∥Lk+1
i −Ri(x)

∥∥∥2
F
+

β

2

∥∥∥x− xk
∥∥∥2
W

,

where β > 0. The update of x has a closed-form solution as follows

xk+1 =
[
αHTH + (β + 1) I

]−1

(
αHThk+1 +

L∑
i=1

W−1RT
i

(
Lk+1

i

)
+ βxk

)
, (25)

where RT
i : Rn1×n2×n3 → RN is an inverse process of Ri defined as RT

i (X ) =
∑n2

j=1R
T
i,j vec(X (:

, j, :)).

Since the update of h has a closed-form solution, the algorithm can be viewed as alternatively updating
variables Li and x. We call this algorithm as the patch-based tensor logarithmic Sp minimization (TL-
SpM) algorithm and summarize it in Algorithm 4. The convergence analysis of this algorithm is presented
in the next subsection.
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Algorithm 4 Patch-based TLSpM algorithm for 3D Poissonian deblurring

Input: y, and parameters τ, α, ηi, and β.
1: Initialize x0 = y, k = 0
2: Set extraction Ri by cube matching
3: repeat
4: Update Lk+1

i by t-IRSpM(Ri(x
k), ηi) initialized with Lk

i , i = 1, 2, ..., L;
5: Update hk+1 by eq. (24);
6: Update xk+1 by eq. (25);
7: k ← k + 1.
8: until convergence

Output: xk

4.4 Convergence analysis of the Patch-based TLSpM algorithm

We can prove that any accumulation point of the sequence {(x∗,h∗, {Li
∗})}, where {Li

∗} denotes
{L1

∗,L2
∗, . . . ,LL

∗}, generated by Patch-based TLSpM algorithm in Algorithm 4 is a stationary point of
the objective function of the proposed model in (22).

For the sake of proving convergence results for Algorithm 4, we assume with loss of generality that
the t-IRSpM algorithm in line 4 performs q inner iterations. And we denote the inner updates of Li from

the initial Lqk
i to the output Lq(k+1)

i , which are corresponding to the initial Lk
i to the output Lk+1

i in
line 4.

Definition 4.2. A point (x∗,h∗, {Li
∗}) is a first-order stationary point of problem (22) if

0 = τ(1− y

h∗ ) + α(h∗ −Hx∗)

0 = αHT (Hx∗ − h∗) + x∗ −
∑
i

W−1RT
i (L∗

i ),

where the division of y is a component-wise operation and for s = 1, 2, . . . , n3, i = 1, 2, . . . , L,

0 ∈
{
Ũ

T
(
L∗

i
(s) −Ri(x∗)

(s)
)
Ṽ + τpDiag(d) :(Ũ , Ṽ ) ∈ Õ

(
L∗

i
(s)
)

and dj = σp−1
j (L∗

i
(s)

)(σp
j (L

∗
i
(s)

) + ε)−1
}
.

Proposition 4.3. Let Φ denote the objective function of model (22). Suppose that {(xk,hk, {Li
qk})} is

a sequence generated by Algorithm 4. Then the following assertions hold:

(i) The following inequality holds for k = 1, 2, . . .

Φ(xk,hk, {Li
qk})−Φ(xk+1,hk+1, {Li

q(k+1)}) ≥ µ− 1

2

L∑
i=1

q∑
j=1

∥Lqk+j
i −Lqk+j−1

i ∥2F+
β

2
∥xk+1−xk∥2W ,

(26)
where µ > 1 is an IRSpM algorithm parameter.

(ii) The sequence {(xk,hk, {Li
qk})} is bounded.

(iii) lim
k→∞

∥xk+1 − xk∥W = 0, lim
k→∞

∥hk+1 − hk∥F = 0 and lim
k→∞

∥Lq(k+1)
i −Lqk

i ∥F = 0

(iv) Any accumulation point of {(xk,hk, {Li
qk})} is a stationary point of Ψ.

16

Page 16 of 28AUTHOR SUBMITTED MANUSCRIPT - IP-104104.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Proof. (i) By the update of Lq(k+1)
i via t-IRSpM algorithm, it follows from Theorem 3.13 that

Φ(xk,hk, {Li
qk})− Φ(xk,hk, {Li

q(k+1)}) ≥ µ− 1

2

L∑
i=1

q∑
j=1

∥Lqk+j
i −Lqk+j−1

i ∥2F .

By the updates of hk+1 and xk+1, we have Φ(xk,hk+1, {Li
q(k+1)}) − Φ(xk,hk, {Li

q(k+1)}) ≥ 0 and
Φ(xk+1,hk+1, {Li

q(k+1)})−Φ(xk,hk+1, {Li
q(k+1)}) ≥ β

2 ∥x
k+1−xk∥2W . It follows immediately from these

inequalities that equation (26) holds.
(ii) Since Φ is bounded below and coercive assertion (ii) holds.
(iii) Summing (26) from k = 0 to k = K, we have

µ− 1

2

L∑
i=1

q∑
j=1

∥Lqk+j
i −Lqk+j−1

i ∥2F +
β

2
∥xk+1 − xk∥2W ≤ Φ(x0,h0, {Li

0})− Φ(xK ,hK , {Li
qK}) < +∞.

Taking K →∞, we have

L∑
i=1

q∑
j=1

∥Lqk+j
i −Lqk+j−1

i ∥2F < +∞ and ∥xk+1 − xk∥2W < +∞.

These together with (24) yield assertion (iii).
(iv) Let (x∗,h∗, {Li

∗}) be an accumulation point of the sequence {(xk,hk, {Li
qk})}. Assume that a

subsequence {(xk,hk, {Li
qk})}K converges to (x∗,h∗, {Li

∗}) as k →∞.
According to the t-IRSpM algorithm and Theorem 3.13, we have for s = 1, 2, . . . , n3, i = 1, 2, . . . , L,

0 ∈
{
Ũ

T
(
L

q(k+1)
i

(s)

−Ri(xk)
(s)
)
Ṽ + τpDiag(d) :(Ũ , Ṽ ) ∈ Õ

(
L

q(k+1)
i

(s)
)

and dj = σp−1
j (L

q(k+1)
i

(s)

)(σp
j (L

q(k+1)
i

(s)

) + ε)−1
}
.

According to the updates of hk+1 and xk+1, we have

0 = τ(1− y

hk+1
) + α(hk+1 −Hxk)

0 = αHT (Hxk+1 − hk+1) + xk+1 −
∑
i

W−1RT
i (L

q(k+1)
i ) + β(xk+1 − xk),

Taking k ∈ K approaches ∞ and using assertion (iii), we can obtain the assertion (iv).

5 Experimental Results

In this section, we demonstrate the performance of the patch-based TLSpM algorithm in Algorithm 4 for
3D Poissonian image deblurring. We compare this algorithm with other Poisson deblurring algorithms
including RL [10], ARL [11], VST-BM3D [29] and PURE-LET [33] algorithms. Also, we test the KBR-
denoising [61] for 3D Poissonian image deblurring by using our proposed model and algorithm scheme.
For example, in the KBR-PoisDebl algorithm, the model is (22) whereMlog,Sp is replaced by KBR. The
experiments were implemented in MATLAB 2016b running a 64-bit Ubuntu 18.04 system and executed
on an eight-core Intel Xeon E5-2640v3 128GB CPU at 2.6 GHz. The proposed algorithm was accelerated
using parallel computing, as the estimation of each patch tensor can be computed in parallel.
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5.1 Experiments on fluorescence microscope images

Poisson noise and blur degradation often occur simultaneously in fluorescence microscope images. Fluores-
cence microscopy is widely used in biological studies to analyze cell and tissue structures. Its resolution
is affected by two factors. One is the ambiguity caused by the Abbe diffraction limit, and the other
is the noise that strongly depends on the signal. We use 3D fluorescence microscope images for test-
ing. Three test images are “Spherical-beads”1 (128× 128× 64), “Micro-tubules”1 (128× 128× 64), and
“Pollen”2 (256×256×32). The 10th frontal slice of each original image is shown in Figure 1. To simulate
blurry Poissonian images, we adopt the procedure in [62]. First, the original image is scaled by Peak/Imax,
where Imax is the maximum value of the original image and Peak is the peak value set as 255. Then the
image is further convolved with three different 3D blur kernels obtained by a microscope PSF generator3,
including one 3D Gibson & Lanni blur (G&L) [63] and two different 3D Gaussian blur (G1 and G2).
Lastly, Poisson noise is added to the blurry image.

Figure 1: The 10th frontal slices of fluorescence microscope images of “Spherical-beads”, “Micro-tubules”
and “Pollen”, respectively.

For the proposed patch-based TLSpM algorithm, we first set the search window as 35 × 35 and the
number of non-local patches for each group as 60. The cube size is 7× 7× 7 for the G&L blur kernel and
6× 6× 14 for the G1 and G2 blur kernels. Also, the parameters p = 0.95, β = 0.0001 and µ = 1.0001 and
the rest are shown in Table 1. And to achieve better performance, the cube matching Ri is also updated
for certain iterations and then remains unchanged afterward.

Table 1: Parameter settings for patch-based TLSpM algorithm

Image Spherical-beads Micro-tubules Pollen

PSF G&L G1 G2 G&L G1 G2 G&L G1 G2

α 20 20 2 20 20 2 20 20 2
τ 150 200 80 150 200 80 240 200 60
ηi 5000 5000 900 5000 5000 900 5000 35000 700

In the experiment, the peak signal-to-noise ratio (PSNR) [64] and structural similarity index mea-
sure (SSIM) [65] are used to measure the quality of the restored images. In particular, the PSNR value
is defined as

PSNR = 10 log10
Peak2

∥x∗ − x∥22
,

where x∗ is the restored image and x is the original image. And the SSIM value is defined in [65].

1The “Spherical-beads” and “Micro-tubules” images are collected from http://bigwww.epfl.ch/deconvolution/index.html#data.
2The “Pollen” image is collected from http://www. cellimagelibrary.org/images/35532.
3The software package is downloaded from http://bigwww.epfl.ch/algorithms/psfgenerator/.
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Table 2: PSNR and SSIM comparison among different algorithms under different blur kernels

Image Metric Spherical-beads Micro-tubules Pollen
PSF G&L G1 G2 G&L G1 G2 G&L G1 G2

Noisy
PSNR 14.53 13.82 14.67 19.66 19.64 19.66 23.77 23.76 23.64
SSIM 0.291 0.197 0.315 0.220 0.221 0.224 0.429 0.462 0.450

RL
PSNR 18.80 17.78 18.60 20.85 20.95 20.92 26.46 25.17 25.82
SSIM 0.782 0.674 0.766 0.325 0.337 0.324 0.626 0.475 0.581

ARL
PSNR 17.44 15.64 17.44 19.79 19.81 19.74 24.72 23.23 23.90
SSIM 0.639 0.451 0.686 0.305 0.286 0.280 0.557 0.417 0.501

VST-BM4D
PSNR 19.09 19.13 19.24 22.01 22.32 22.18 27.25 25.60 26.51
SSIM 0.756 0.746 0.766 0.358 0.381 0.365 0.642 0.546 0.594

PURE-LET
PSNR 19.41 18.97 19.28 22.39 22.72 22.69 28.23 26.82 27.59
SSIM 0.779 0.734 0.787 0.357 0.356 0.371 0.741 0.595 0.627

PoisDebl-KBR
PSNR 19.70 19.21 19.56 23.15 23.55 23.67 28.40 27.34 28.10
SSIM 0.820 0.787 0.812 0.607 0.574 0.628 0.717 0.600 0.658

Patch-based PSNR 19.67 19.42 20.97 23.58 23.65 23.87 28.49 27.35 28.40
TLSpM (ours) SSIM 0.788 0.795 0.846 0.634 0.602 0.634 0.720 0.689 0.718

The PSNR and SSIM values of the restored images obtained by different algorithms are shown in
Table 2. It shows that the proposed patch-based TLSpM algorithm achieves the best numerical values for
most of the testing cases. For example, for “Micro-tublules” image with the G2 blur kernel, the PSNR
value of the proposed algorithm exceeds the state-of-the-art PURE-LET algorithm by 1.18 dB. The
PoisDebl-KBR method that is modified from our proposed model performs very competitive numerical
results, achieving only 0.17 dB in average less than our Patch-based TLSpM in terms of PSNR values.

To evaluate the visual quality of the restored images obtained by different algorithms, we compare
several selected slices of the restored 3D images in Figures 2-4. In Figure 2, for the “Spherical-beads” image
with the G&L blur kernel, the proposed patch-based TLSpM algorithm obtains the best performance in
preserving the spherical structure of beads and separating distinct beads. In contrast, The RL and ARL
algorithms were not able to remove Poisson noise and restore the shape of the beads; the VST-BM4D
and PURE-LET fail to separate the distinct beads if they are too close to each other; and the PoisDebl-
KBR method can separate the beads but the gaps between the beads are not as clear as our proposed
method, even though the PSNR value of PoisDebl-KBR method exceeds our proposed method by 0.03dB.
In Figure 3, the lateral slice of the original “Micro-tubules” image contains many luminous points. The
ARL and RL algorithms cannot recognize luminous points, while the VST-BM4D, PURE-LET, PoisDebl-
KBR and proposed algorithms can identify most of the luminous points. In fact, the proposed algorithm
can restore images with higher accuracy and fewer artifacts, compared to the VST-BM4D, PURE-LET
and PoisDebl-KBR algorithms, as shown in the zoomed-in image of Figure 3. Lastly, in Figure 4, for
the “Pollen” image with the G2 blur kernel, the proposed and PoisDebl-KBR algorithms can recover the
pattern of the cell wall, while the RL and ARL algorithms fail to remove the noise on the cell wall and
the state-of-the-art VST-BM4D and PURE-LET algorithms restore blurry cell walls without details.

All in all, the proposed patch-based TLSpM algorithm outperforms the competing algorithms in
removing Poisson noise and retrieving details from blurry images.

5.2 Analysis on the parameter p

The denoising performance of the proposed patch-based TLSpM method is related to the parameter p,
which is used in the t-log-Sp low-rank measure. We conduct a sensitivity analysis on parameter p using
the “Spherical-beads” image with a G2 blur kernel. Figure 5(a) presents the plot of the PSNR value
for p ∈ (0, 1) vs the number of iterations. We can observe that when p ∈ (0, 0.65), the PSNR value
decreases as p decreases; when p ∈ [0.65, 1), the differences in PSNR are not very significant. To analyze
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(a) Original (b) Noisy (c) RL (d) ARL

(e) VST-BM4D (f) PURE-LET (g) PoisDebl-KBR (h) Patch-based TLSpM
.............. (ours)

Figure 2: The 20th frontal slices of the images restored by different algorithms from the noisy “Spherical-
beads” image with the G&L blur kernel. The PSNR values of the restored images are: (b) noisy image
(14.53 dB); (c) RL (18.80 dB); (d) ARL (17.44 dB); (e) VST-BM4D (19.09 dB); (f) PURE-LET (19.41 dB);
(g) PoisDebl-KBR (19.70 dB); (h) Patch-based TLSpM (ours) (19.67 dB).
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(a) Original (b) Noisy (c) RL (d) ARL

(e) VST-BM4D (f) PURE-LET (g) PoisDebl-KBR (h) Patch-based
...TLSpM (ours)

Figure 3: The 33rd lateral slices of the images restored by different algorithms from the noisy “Micro-
tubules” image with the G1 blur kernel. The PSNR values of the restored images are: (b) noisy image
(19.64 dB); (c) RL (20.95 dB); (d) ARL (19.81 dB); (e) VST-BM4D (22.32 dB); (f) PURE-LET (22.72 dB);
(g) PoisDebl-KBR (23.55 dB); (h) Patch-based TLSpM (ours) (23.65 dB).
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(a) Original (b) Noisy (c) RL (d) ARL

(e) VST-BM4D (f) PURE-LET (g) PoisDebl (h) Patch-based TLSpM
.............. (ours)

Figure 4: The 12th frontal slices of the images restored by different algorithms from the noisy “Pollen”
image with the G2 blur kernel. The PSNR values of the restored images are: (b) noisy image (23.64 dB);
(c) RL (25.82 dB); (d) ARL (23.90 dB); (e) VST-BM4D (25.51 dB); (f) PURE-LET (27.59 dB); (g)
PoisDebl-KBR (28.10 dB); (h) Patch-based TLSpM (ours) (28.40 dB).
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the sensitivity of parameter p ∈ [0.65, 1), we use the PSNR value for p = 0.8 as a reference and compute
the difference between the PSNR value for each p and the reference PSNR. Figure 5(b) presents the plot
of the PSNR difference vs the number of iterations. When fewer than 100 iterations are performed, the
PSNR differences are not significant; when 100-300 iterations are performed, p = 0.8 performs the best;
when 500 iterations are performed, p = 0.95 performs the best. In summary, the proposed method can
achieve satisfactory performance by choosing p ∈ [0.65, 1). When early stop is preferred, one may choose
p = 0.8; otherwise, one may choose p = 0.95.

(a) Plot of PSNR values. (b) Plot of differences in PSNR values.

Figure 5: Sensitivity analysis of parameter p. (a) Plot of the PSNR value for p ∈ (0, 1) vs the number of
iterations; (b) The PSNR difference for p ∈ [0.65, 1) vs the number of iterations.

6 Conclusion

In this paper, we first define a new t-log-Sp low-rank measure for tensors. Then we propose a patch-based
non-local low-rank approach, called patched-based TLSpM, for removing blur and Poisson noise. The
experimental results show that this algorithm is effective in improving the image quality of 3D fluorescence
microscopes, and it is superior to the existing methods in terms of visual quality and quantitative quality
measures.
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[27] FranÇois-Xavier Dupe, Jalal M. Fadili, and Jean-Luc Starck. A proximal iteration for deconvolv-
ing Poisson noisy images using sparse representations. IEEE Transactions on Image Processing,
18(2):310–321, 2009.

[28] F. J. Anscombe. The transformation of Poisson, binomial and negative-binomial data. Biometrika,
35(3-4), 1957.

[29] Lucio Azzari and Alessandro Foi. Variance stabilization in Poisson image deblurring. In 2017 IEEE
14th International Symposium on Biomedical Imaging (ISBI 2017), pages 728–731, 2017.

[30] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian. Image denoising with
block-matching and 3D filtering. In Image Processing: Algorithms and Systems, Neural Networks,
and Machine Learning, pages 354–365, 2006.

[31] Matteo Maggioni, Vladimir Katkovnik, Karen Egiazarian, and Alessandro Foi. Nonlocal transform-
domain filter for volumetric data denoising and reconstruction. IEEE Transactions on Image Pro-
cessing, 2013.

[32] Jizhou Li, Florian Luisier, and Thierry Blu. Pure-let image deconvolution. IEEE Transactions on
Image Processing, 27(1):92–105, 2018.

25

Page 25 of 28 AUTHOR SUBMITTED MANUSCRIPT - IP-104104.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



[33] Jizhou Li, Florian Luisier, and Thierry Blu. Pure-let deconvolution of 3D fluorescence microscopy
images. In 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pages
723–727, 2017.

[34] Yuan Xie, Shuhang Gu, Yan Liu, Wangmeng Zuo, Wensheng Zhang, and Lei Zhang. Weighted
Schatten p-norm minimization for image denoising and background subtraction. IEEE Transactions
on Image Processing, 25(10):4842–4857, 2016.

[35] Misha E Kilmer and Carla D Martin. Factorization strategies for third-order tensors. Linear Algebra
and its Applications, 435(3):641–658, 2011.

[36] Misha E Kilmer, Karen Braman, Ning Hao, and Randy C Hoover. Third-order tensors as operators
on matrices: A theoretical and computational framework with applications in imaging. SIAM Journal
on Matrix Analysis and Applications, 34(1):148–172, 2013.

[37] Canyi Lu, Jiashi Feng, Yudong Chen, Wei Liu, Zhouchen Lin, and Shuicheng Yan. Tensor robust
principal component analysis with a new tensor nuclear norm. IEEE transactions on pattern analysis
and machine intelligence, 42(4):925–938, 2019.

[38] Chunsheng Liu, Hong Shan, and Chunlei Chen. Tensor p-shrinkage nuclear norm for low-rank tensor
completion. Neurocomputing, 387:255–267, 2020.

[39] Quanxue Gao, Pu Zhang, Wei Xia, Deyan Xie, Xinbo Gao, and Dacheng Tao. Enhanced tensor RPCA
and its application. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(6):2133–
2140, 2021.

[40] Yu-Bang Zheng, Ting-Zhu Huang, Xi-Le Zhao, Tai-Xiang Jiang, Tian-Hui Ma, and Teng-Yu Ji.
Mixed noise removal in hyperspectral image via low-fibered-rank regularization. IEEE Transactions
on Geoscience and Remote Sensing, 58(1):734–749, 2020.

[41] Maryam Fazel, Haitham Hindi, and Stephen P. Boyd. Log-det heuristic for matrix rank minimization
with applications to Hankel and Euclidean distance matrices. In Proceedings of American Control
Conference, volume 3, pages 2156 – 2162, 2003.

[42] Zhaosong Lu, Yong Zhang, and Jian Lu. ℓp Regularized low-rank approximation via iterative
reweighted singular value minimization. Computational Optimization and Applications, 68(3):619–
642, 2017.

[43] Wangmeng Zuo, Deyu Meng, Lei Zhang, Xiangchu Feng, and David Zhang. A generalized iter-
ated shrinkage algorithm for non-convex sparse coding. In 2013 IEEE International Conference on
Computer Vision, pages 217–224, 2013.

[44] Adrian S. Lewis and Hristo S. Sendov. Nonsmooth analysis of singular values. part I: Theory. Set-
Valued Analysis, 13(3):213–241, 2005.

[45] James M. Ortega and Werner C. Rheinboldt. Iterative solution of nonlinear equations in several
variables. Academic Press, New York, 1970.

[46] Triet Le, Rick Chartrand, and Thomas J. Asaki. A variational approach to reconstructing images
corrupted by Poisson noise. Journal of Mathematical Imaging and Vision, 27(3):257–263, 2007.

[47] Leonid I. Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based noise removal
algorithms. Physica D: Nonlinear Phenomena, 60(1):259–268, 1992.

26

Page 26 of 28AUTHOR SUBMITTED MANUSCRIPT - IP-104104.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



[48] Chen Xu, Xiaoxia Liu, Jian Zheng, Lixin Shen, Qingtang Jiang, and Jian Lu. Nonlocal low-rank
regularized two-phase approach for mixed noise removal. Inverse Problems, 37(8):085001, Jul 2021.

[49] Xiaoxia Liu, Jian Lu, Lixin Shen, Chen Xu, and Yuesheng Xu. Multiplicative noise removal: Nonlocal
low-rank model and its proximal alternating reweighted minimization algorithm. SIAM J. Imag. Sci.,
13(3):1595–1629, 2020.

[50] Shanzhou Niu, Gaohang Yu, Jianhua Ma, and Jing Wang. Nonlocal low-rank and sparse matrix
decomposition for spectral CT reconstruction. Inverse Problems, 34(2):024003, Jan 2018.

[51] Zhi Li, Ming Yan, Tieyong Zeng, and Guixu Zhang. Phase retrieval from incomplete data via weighted
nuclear norm minimization. Pattern Recognition, 125:108537–, 2022.

[52] Shuhang Gu, Lei Zhang, Wangmeng Zuo, and Xiangchu Feng. Weighted nuclear norm minimization
with application to image denoising. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2862–2869, 2014.

[53] Liyan Ma, Li Xu, and Tieyong Zeng. Low rank prior and total variation regularization for image
deblurring. Journal of Scientific Computing, 2017.

[54] Jian Lu, Jiapeng Tian, Qingtang Jiang, Xiaoxia Liu, and Yuru Zou. Rician noise removal via weighted
nuclear norm penalization. Applied and Computational Harmonic Analysis, 53(4), 2021.

[55] Jian Lu, Chen Xu, Zhenwei Hu, Xiaoxia Liu, Qingtang Jiang, Deyu Meng, and Zhouchen Lin. A new
nonlocal low-rank regularization method with applications to magnetic resonance image denoising.
Inverse Problems, 38(6):065012, May 2022.

[56] Duo Qiu, Minru Bai, Michael K. Ng, and Xiongjun Zhang. Nonlocal robust tensor recovery with
nonconvex regularization. Inverse Problems, 37(3):035001, Jan 2021.

[57] Jize Xue, Yongqiang Zhao, Wenzhi Liao, and Jonathan Cheung-Wai Chan. Nonlocal low-rank regu-
larized tensor decomposition for hyperspectral image denoising. IEEE Transactions on Geoscience
and Remote Sensing, 57(7):5174–5189, 2019.

[58] Qi Xie, Qian Zhao, Deyu Meng, and Zongben Xu. Kronecker-basis-representation based tensor
sparsity and its applications to tensor recovery. IEEE Transactions on Pattern Analysis and Machine
Intelligence, pages 1–1, 2017.

[59] Dong Zeng, Qi Xie, Wenfei Cao, Jiahui Lin, Hao Zhang, Shanli Zhang, Jing Huang, Zhaoying Bian,
Deyu Meng, and Zongben Xu. Low-dose dynamic cerebral perfusion computed tomography recon-
struction via Kronecker-basis-representation tensor sparsity regularization. IEEE Transactions on
Medical Imaging, PP(12):1–1, 2017.

[60] Jian Lu, Huaxuan Hu, Yuru Zou, Zhaosong Lu, Xiaoxia Liu, Keke Zu, and Lin Li. A nonlocal
Kronecker-basis-representation method for low-dose CT sinogram recovery. Journal of Computational
Mathematics, 2023.

[61] Qi Xie, Qian Zhao, Deyu Meng, and Zongben Xu. Kronecker-basis-representation based tensor
sparsity and its applications to tensor recovery. IEEE transactions on pattern analysis and machine
intelligence, 40(8):1888–1902, 2017.

[62] Liyan Ma, Lionel Moisan, Jian Yu, and Tieyong Zeng. A dictionary learning approach for Poisson
image deblurring. IEEE Transactions on medical imaging, 32(7):1277–1289, 2013.

27

Page 27 of 28 AUTHOR SUBMITTED MANUSCRIPT - IP-104104.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



[63] Sarah Frisken Gibson and Frederick Lanni. Experimental test of an analytical model of aberration in
an oil-immersion objective lens used in three-dimensional light microscopy. JOSA A, 9(1):154–166,
1992.

[64] Alan C. Bovik. Handbook of image and video processing. Academic press, 2010.

[65] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4):600–612,
2004.

28

Page 28 of 28AUTHOR SUBMITTED MANUSCRIPT - IP-104104.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t


