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Abstract
The objective of this work is to quantify the reconstruction error in sparse
inverse problems with measures and stochastic noise, motivated by optimal
sensor placement. To be useful in this context, the error quantities must be
explicit in the sensor configuration and robust with respect to the source, yet
relatively easy to compute in practice, compared to a direct evaluation of the
error by a large number of samples. In particular, we consider the identification
of a measure consisting of an unknown linear combination of point sources
from a finite number of measurements contaminated by Gaussian noise. The
statistical framework for recovery relies on twomain ingredients: first, a convex
but non-smooth variational Tikhonov point estimator over the space of Radon
measures and, second, a suitable mean-squared error based on its Hellinger–
Kantorovich distance to the ground truth. To quantify the error, we employ
a non-degenerate source condition as well as careful linearization arguments
to derive a computable upper bound. This leads to asymptotically sharp error
estimates in expectation that are explicit in the sensor configuration. Thus they
can be used to estimate the expected reconstruction error for a given sensor
configuration and guide the placement of sensors in sparse inverse problems.
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1. Introduction

The identification of an unknown signal µ† comprising finitely many point sources lies at the
heart of challenging applications such as acoustic inversion [20, 30], microscopy [10, 25],
astronomy [35], low-rank tensor decomposition [23], linear system identification [3], as well
as initial value identification [7, 8, 22]. Moreover, the recovery of an unknown function by
one-hidden-layer neural networks [2, 9, 29] is intrinsically linked to this task. In all of these
contexts the problem is to identify an unknown linear combination (superposition) of functions
indexed by a nonlinear parameter from a finite number of measurements. Motivated by inverse
point source location tasks we will refer to the linear parameters as amplitudes and nonlinear
parameters as locations. Moreover, we will assume that measurements are associated to cer-
tain spatial locations, motivated by point-wise measurements of physical quantities. Denoting
by Ωs ⊂ Rd and Ωo ⊂ Rdo , d,do ⩾ 1, compact sets of possible source locations and measure-
ment points, a common mathematical framework for the recovery of the locations y†n ∈ Ωs and
amplitudes q†n of its N

†
s individual point sources can be given by equations of the form

zdj (ε) =
N†
s∑

n=1

q†nk
(
xj,y

†
n

)
+ εj for j = 1, . . . ,No; (1.1)

Here, k ∈ C(Ωo×Ωs) denotes a sufficiently smooth given integral kernel (resulting from the
modeling of the physical process and the properties of the sensors), and xj ∈ Ωo denote meas-
urement locations. Moreover, εj is a measurement error for each sensor that, for the purposes
of this paper is thought of as a random perturbation stemming from measurement noise. This
type of ill-posed inverse problem is challenging for a variety of reasons. First and foremost,
we neither assume knowledge of the amplitudes and positions of the sources nor of their num-
ber. This adds an additional combinatorial component to the generally nonlinear nonconvex
problem. Second, inference on µ† is only possible through a finite number of indirect meas-
urements zd. Additional challenges are given by the appearance of unobservable measurement
noise ε in the problem.

To alleviate some of these difficulties we identify µ† with a finite linear combination of
Dirac measures

µ† =

N†
s∑

n=1

q†nδy†n and zdj (ε) =
ˆ
Ωs

k(xj,y) dµ
† (y)+ εj. (1.2)

Subsequently, we try to recover µ† by the stable solution of the linear, ill-posed, operator
equation:

Find µ ∈M(Ωs) : Kµ≈ zd (ε) where Kµ=

(ˆ
Ω

k(x1,y) dµ(y) ; . . . ;
ˆ
Ω

k(xNo ,y) dµ(y)

)
.

Here, M(Ωs) is the space of Radon measures defined on the location set Ωs. At first glance,
this might seem counter-intuitive: The space M(Ωs) is much larger than the set of ‘sparse’
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signals of the form (1.2). Thus, this lifting should only contribute to the ill-posedness of the
problem. However, it also bypasses the nonlinear dependency of k(xj, ·) onto the location of
the sources and enables the use of powerful tools from variational regularization theory for the
reconstruction of µ†. In this work, stable recovery of µ is facilitated by a variational Tikhonov
estimator in the space of Radon measures [4, 19], which amounts to solving a nonsmooth
minimization problem over this space.

However, measurements stemming from experiments are always affected by errors, either
due to external influences, imperfectness of the measurement devices or human failure. These
have to be taken into account in order to guarantee a stable recovery of µ†. In particular,
it is evident that the choice of the measurement locations and the quality of the employed
sensors is a key factor for the successful and robust reconstruction of the signal. This directly
leads to the problem of sensor design, which is to identify a measurement configuration lead-
ing to recovery guarantees with minimal error for the given effort, in a suitable way. Since
the sensor design must usually be chosen before the exact source is known and the practical
measurement has been performed (thus yielding a realization of the noise), this usually calls
for a stochastic framework for the noise. Although much is know about the error caused by
deterministic noise [1, 11, 13, 33, 34], we are not aware of any works pertaining to the case
of stochastic noise in this context. Moreover, existing deterministic bounds on the error of the
recovery µ(ε) to the ground truth µ† are not explicit in terms of the measurement locations xj
the statistical properties of the error εj and ground truth µ†, and thus can not directly be used
to quantify the influence of the measurement locations on the error. The explicit dependency
on the measurement setup is needed to guide the choice of an optimal design that minimizes
the expected recovery error for a given cost (often measured in terms of number and quality of
sensors), while robustness with respect to the ground truth is desirable if only an approximate
guess of the exact source is available (which is the realistic case, in practice).

In addition, to quantify the error, often estimates are given separately in terms of posi-
tions and coefficients, which can then be translated into an an upper bound of the error of
the measure, which may be an overestimate by a large factor. To provide a useful bound for
sensor placement, we start from the error in the recently developed Hellinger–Kantorovich
metric [24], which we then link to the parameters and the quantitative bound that is asymptot-
ically sharp.

1.1. Sparse inverse problems with deterministic noise

Despite the popularity of sparse inverse problems, most of the existing work, to the best of our
knowledge, focuses on deterministic noise ε. Central objects in this context, are the (noiseless)
minimum norm problem

min
µ∈M(Ωs)

||µ||M(Ωs) subject to Kµ= Kµ† (P0)

as well as the question whether µ† is identifiable, i.e. its unique solution. A sufficient condition
for the latter, is, e.g. the injectivity of the restricted operator K|suppµ† as well as the existence
of a so-called dual certificate η† ∈ C2(Ωs), [11], i.e. a subgradient η† ∈ ∂‖µ†‖M(Ωs), which is
in some sense minimal, satisfying a strengthened source condition

|η† (y) |⩽ 1 for all y ∈ Ωs, η
† (y†n)= sign

(
q†n
)
, |η† (y) |< 1 for all y ∈ Ωs \

{
y†
}Ns
n=1

.
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For example, in particular settings, the groundbreaking paper [6] shows that µ† is identifiable
if the source locations y†n are sufficiently well separated. In this context, several manuscripts,
see e.g. [1, 11, 13, 34] for a non-exhaustive list, study the approximation of an identifiable µ†

by solutions to the Tikhonov-regularized problem

µ̄(ε) ∈M(ε) := argmin
µ∈M(Ωs)

[
1
2
||Kµ− zd (ε)||2

Σ−1
0

+β||µ||M(Ωs)

]
, (Pβ,ε)

whereΣ0 is a positive definite diagonal matrix and the regularization parameter β = β(‖ε‖)>
0 is adapted to the strength of the noise. This represents a challenging nonsmoothminimization
problem over the infinite-dimensional and non-reflexive space of Radon measures. Moreover,
due to its lack of strict convexity, its solutions are typically not unique. Under mild conditions
on the choice of β, arbitrary solutions µ̄(ε) approximate µ† in the weak∗-sense as ε goes
to zero. Moreover, it was shown in [11] that if the minimal dual certificate η† associated to
problem (P0) satisfies the strengthened source condition and its curvature does not degenerate
around y†n, µ̄(ε) is unique and of the form

µ̄(ε) =

N†
s∑

n=1

q̄n (ε)δȳn(ε) with |q̄n (ε)− q†n|+ ||ȳn (ε)− y†n||=O (‖ε‖)

provided that ‖ε‖ and β are small enough.

1.2. Sparse inverse problems with random noise

From a practical perspective, assuming knowledge on the norm of the error is very restrictive
or even unrealistic and a statistical model for the measurement error is more appropriate.While
the literature on deterministic sparse inversion is very rich, there are only few works dealing
with randomness in the problem. We point out, e.g. [5] in which the authors consider additive
i.i.d. noise stemming from a low-pass filtering of the signal. A reconstruction µ̄(ε) is obtained
by solving a constrained version of (Pβ,ε) and the authors show that, with high probability,
there holds Qhi(µ̄(ε))≈ Qhi(µ

†) where Qhi is a convolution with a high-resolution kernel.
Moreover, in [34] the authors consider deterministic noise but allow for randomness in the
forward operator K. Their main result provides an estimate on an optimal transport energy
between two positive measures derived from source and reconstruction. These again hold with
high probability. Finally, we also mention [12] in which the authors propose a first step towards
Bayesian inversion for sparse problems, i.e. bothmeasurement noise as well as the unknownµ†

are considered to be random variables. A suitable prior is constructed and well-posedness of
the associated Bayesian inverse problem is shown.

In this paper, similar to [5], we adopt a frequentist viewpoint on sparse inverse problems
and assume that the measurement errors follow a known probability distribution. In contrast,
the unknown signal µ† is treated as a deterministic object. More in detail, we assume unbiased
independent Gaussian noise with diagonal covariance matrix Σ= diag(σj), corresponding to
independent measurements with variable quality sensors at different locations. We consider
the Tikhonov-type estimator (Pβ,ε) with

Σ−1
0 =Σ−1/p, where p= tr

(
Σ−1

)
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and investigate its error to the ground truth, where we have to account for the randomness
of the noise. In statistical terms, Σ−1 is the precision matrix of the sensor array, and p can
be interpreted as an overall precision of the combined measurement, roughly representing an
analogue to 1/||ε|| in the stochastic setting. First and foremost, the uncertainty of the noise
propagates to the estimator and thus µ̄ has to be interpreted as a random variable. Second,
unlike the deterministic setting of [11], the asymptotic analysis cannot exclusively rely on
smallness assumptions on the Euclidean norm of the noise: some realizations of ε might be
very large, albeit with small probability. Consequently, reconstructions can exhibit undesirable
features such as clustering phenomena around y†n or spurious sources far away from the true
support. In particular, the reconstructed signal may comprise more or less than N†

s sources.
Thus, we require a suitable distance between signed measures that is compatible with weak∗

convergence on bounded subsets of M(Ωs) . We find a suitable candidate in generalizations
of optimal transport energies [24]; see also [9, 34].

Despite its various difficulties, stochastic noise also provides new opportunities. For
example, unlike the deterministic case, we are given a whole distribution of the measurement
data and not only one particular realization. Clearly, the uncertainty in the estimate critically
depends on the appropriate choice of measurement locations x= (xj)j=1,...,No , the overall pre-
cision p, and relative precision of each sensor Σ−1

0 . Formalizing this connection enables the
mathematical program of optimal sensor placement or optimal design, i.e. an optimization of
the measurement setup to mitigate the influence of the noise before any data is collected in a
real experiment. This requires a cheap-to-evaluate design criterion which allows to compare
the quality of different sensor setups. For linear inverse problems in Hilbert spaces, a popu-
lar performance indicator is the mean-squared error of the associated least-squares estimator,
which admits a closed form representation through its decomposition into variance and bias;
see, e.g. [18]. For nonlinear problems, locally optimal sensor placement approaches rely on
a linearization of the forward model around a best guess for the unknown parameters; see,
e.g. [36]. To the best of our knowledge, optimal sensor placement for nonsmooth estimation
problems and for infinite dimensional parameter spaces beyond the Hilbert space setting is
uncharted territory.

1.3. Contribution

Taking the mentioned difficulties in the stochastic setting into consideration, we are led to the
analysis of the worst-case mean-squared-error of the estimator

MSE [µ̄] := E

[
sup
µ̄∈M

dHK
(
µ̄,µ†)2]= ˆ

RNo

sup
µ̄∈M(ε)

dHK
(
µ̄,µ†)2 dγp (ε) , (1.3)

where dHK denotes an extension of the Hellinger–Kantorovich distance introduced in [24] to
signed measures (see section 4) and γp is the noise distributionN (0,Σ). We point out that, in
comparison to linear inverse problems in Hilbert space, MSE[µ̄] does not admit a closed form
expression and its computation requires both, a sampling of the expected value, as well as an
efficient way to calculate the Hellinger–Kantorovich distance. This prevents its direct use in
the context of optimal sensor placement for sparse inverse problems.

To enable efficient sensor design, we first need to select an appropriate regularization para-
meter, depending on the noise level. Here, we focus on the a priori choice rule of β(p) =
β0/

√
p for some tunable β0 > 0, that only takes into account the overall precision of the sensor.

5
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For this choice, we provide the following upper bound:

MSE [µ̄]⩽ 8
p
ψβ0 (x,Σ0)+ c̄exp

(
−λ̄β2

0

)
, (1.4)

where the constant ψβ0(x,Σ0) (further detailed below) explicitly depends on the locations
and relative precisions while the constants c̄ and λ̄ depend on the problem setup (the kernel
and domain, some basic bounds on the ground truth), a non-degeneracy parameter of the dual
certificate η† (further detailed below), and quantities that can be bounded byψβ0(x,Σ0), but do
not depend on p or β0 for p⩾ p̄> 0 and β0 ⩾ β̄0 > 0; see theorem 6.1. Thus, under these basic
assumptions and by choosing β0 large enough, the second term in (1.4) becomes negligible
and the first term dominates and closely predicts the mean-squared error. This behavior is
confirmed by numerical examples; see section 7.

To further illustrate the meaning of the constant ψβ0(x,Σ0), let us denote by q=
(q1; . . . ;qNs) and y= (y1; . . . ;yNs) the vectors of coefficients and positions of sources, respect-
ively. Additionally, we collect all the parameters of a given finite source µ in the vector m=
(q;y), and introduce the parameter-to-observation map G(m) = Kµ, as well as its Jacobian
G ′(m†) evaluated at the parameters of the ground truth. Associated to this, we denote the
Fisher information matrix I0 by

I0 := G ′ (m†)⊤Σ−1
0 G ′ (m†) . (1.5)

Then the constant in the estimate above is computed as

ψβ0 (x,Σ0) = tr
(
W†I−1

0

)
+β2

0

∥∥I−1
0 (ρ;0)

∥∥2
W†
,

with the sign vector ρ= sign q† and a weighted Euclidean norm ‖ · ‖W† which is induced by
a positive definite matrix W† connected to the ground truth m†. This clarifies how the multi-
plicative constant in the estimate explicitly depends on the measurement setup and we note
that it closely resembles the ‘classical’ A-optimal design criterion; see [18]. Together with the
estimate (1.4), and the smallness of the second term, this suggests that ψβ0(x,Σ0) is a suitable
criterion to quantify the quality of a given design in terms of the MSE (1.3).

Concerning the smallness of the second term, we note that the constant λ̄ also depends on
a non-degeneracy constant θ > 0, which is a further tightening of the assumption on the dual
certificate. This non-degenerate source condition on µ† requires the associated minimal norm
dual certificate η† to fulfill

|η† (y) |⩽ 1− θmin

{
θ, min

n=1,...,Ns

∥∥∥∥√|q†n|
(
y− y†n

)∥∥∥∥2
2

}
for all y ∈ Ωs (1.6)

for some θ > 0. This condition has been employed in many previous works, and is known
to uniformly hold for several settings under general assumptions on the measurement and a
separation of the condition of the sources; see, e.g. [33] and the references therein.

The proof of the main result relies on a splitting of the set of measurement errors RNo

into a set of ‘nice’ events Anice as well as an estimate of the probability of its comple-
ment RNo \Anice, related to the second term in (1.4). On Anice, there is a unique optimal para-
meter m̄= (q̄, ȳ) with the correct number of sources that parametrizes µ̄. Then, the distance
between the reconstruction and the ground truth in the Hellinger–Kantorovich distance can
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be estimated by a weighted Euclidean distance of the parameters. Those can be further estim-
ated with a linearization of G, which leads to (1.4) after explicitly computing the expectation.
This estimate is specific to the choice of dHK and relies on its interpretation as an unbalanced
Wasserstein-2 distance. While similar estimates can be derived for other popular metrics such
as the Kantorovich-Rubinstein distance (related to theWasserstein-1 distance; see appendix C)
this would introduce additional constants in the first term of (1.4) stemming from an inverse
inequality of discrete ℓ1 and weighted ℓ2 norms. Thus, the first term in the modified estimate
would overestimate the true error by a potentially substantial factor. In contrast, the first term
in (1.4) is sharp in the sense that the convenient factor of 8 can, mutatis mutandis, be replaced
by any c> 1, at the cost of increasing the constant in the second term.

1.4. Further related work

1.4.1. Sparse minimization problems beyond inverse problems. Minimization problems
over spaces of measures represent a sensible extension of ℓ1-regularization towards decision
variables on continuous domains. Consequently, problems of the form (Pβ,ε) naturally
appear in a variety of different applications, detached from inverse problems. We point out,
e.g. optimal actuator placement, optimal sensor placement [26], as well as the training of shal-
low neural networks [2]. Non-degeneracy conditions similar to (1.6) play a crucial role in this
context and form the basis for an in-depth (numerical) analysis of the problem, e.g. concerning
the derivation of fast converging solution methods, [9, 14, 31], or finite element error estim-
ates [22].

1.4.2. Inverse problems with random noise. Frequentist approaches to inverse problems
have been studied previously in, e.g. [16, 37]. These works focus on the ‘lifting’ of determin-
istic regularization methods as well as of their consistency properties and convergence rates
to the random noise setting. This only relies on minimal assumptions on the inverse problem,
e.g. classical source conditions, and thus covers a wide class of settings. Similar to the present
work, an important role is played by a splitting of the possible events into a set on which
the deterministic theory holds and its small complement. However, we want to stress that the
proof of the main estimate in (1.4) is problem-taylored and relies on exploiting specific struc-
tural properties of inverse problems in spaces of measures. Moreover, our main goal is not the
consistency analysis of an estimator but the derivation of a useful and mathematically sound
design criterion for sparse inverse problems.

1.5. Organization of the paper

The paper is organized as follows: In section 3, we recall some properties of the minimum
norm problem (Pβ,ε) and the Tikhonov regularized problem (Pβ,ε) as well as its solutions.
In section 4, we define the Hellinger–Kantorovich distance and investigate its properties.
Section 5 is devoted to study the linearized estimate δm̂. Using these results, we then investig-
ate sparse inverse problems with random noise in section 6 and provide a sharp upper bound
for MSE[µ̄] in section 6.2. Finally, in section 7 we present some numerical examples to verify
our theory.
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2. Notation and preliminaries

Before going into the main part of the paper, we introduce the basic notation used throughout
the paper and gather preliminary assumptions concerning the considered integral kernels as
well as pertinent facts on Radon measures.

2.1. Notation

Throughout the paper, ci,Ci, i = 1,2, . . . denote generic constants that may vary from line to
line. By C= C(a,b, . . .), we indicate that C depends on a,b, . . .. We denote by Ωs ⊂ Rd and
Ωo ⊂ Rdo the compact location and observation set, where do,d⩾ 1 and Ωs has a nonempty
interior. A vector in Xm for a set X and m> 1, will be written in bold face, for instance y=
(y1; . . . ;yNs) ∈ ΩNs

s , q= (q1; . . . ;qNs) ∈ RNs and x= (x1; . . . ;xNo) ∈ ΩNo
o are vectors of coef-

ficients, positions of sources and positions of observations, respectively, where the formal
definitions are introduced in the sequel. We write (a1, . . . ,an) and (a1; . . . ;an) to stack vec-
tors a1, . . . ,an horizontally and vertically, respectively. We write ‖·‖p for the usual ℓp-norm on
Rm. For a vector x ∈ Rm and a positively defined matrix W ∈ Rm×m, we define the weighted
W-norm of x as ‖x‖W :=

∥∥W1/2x
∥∥
2
. The closed ball in this weighted norm is denoted by

BW(x,r) := {x ′ ∈ Rm : ‖x ′ − x‖W ⩽ r}. For a linear map A : X→ Y, the operator norm of A is
given by ‖A‖X→Y = sup∥x∥X⩽1 ‖Ax‖Y. Similarly, any bilinear map A : X1 ×X2 → Y has a nat-
ural operator norm ‖A‖X1×X2→Y := sup∥x1∥X1⩽1,∥x2∥X2⩽1 ‖A(x1,x2)‖Y .

Furthermore, let k : Ωo×Ωs → R be a real-valued kernel. We introduce the following nota-
tions which turn k into vector-valued kernels: k[x](y) = k[x,y] is a column vector with

k [x,y] := (k(x1,y) ; . . . ;k(xNo ,y)) , x= (x1; . . . ;xNo) ∈ ΩNo
o , y ∈ Ωs, (2.1)

while k[x,y] is a row vector with

k [x,y] := (k(x,y1) , . . . ,k(x,yNs)) , x ∈ Ωo, y= (y1; . . . ;yNs) ∈ ΩNs
s . (2.2)

Similarly, we also have the matrix k[x,y] defined as

k [x,y] := (k(x1,y) ; . . . ;k(xNo ,y)) . (2.3)

When k= k(x, ·) is a smooth function in variable y, we consider the rth-derivative of k the tensor
of partial derivatives is y by∇r

y···yk(x,y). In particular,∇yk(x,y) and∇2
yyk(x,y) are the gradient

and Hessian of k (with respect to variable y,) respectively. We note that ∇yk : Ωo×Ωs → RNs

is a vector valued kernel and thus we define∇⊤
y k[x,y] as a matrix defined by

∇⊤
y k [x,y] =

(
∇yk(x,y1)

⊤
,∇yk(x,y2)

⊤
, . . . ,∇yk(x,yNs)

⊤
)
. (2.4)

Similarly,∇⊤
y k[x,y] is a block matrix defined by

∇⊤
y k [x,y] =

(
∇⊤
y k [x1,y] , . . . ,∇⊤

y k [xNo ,y]
)
. (2.5)

Throughout the paper, by a slight abuse of notation, we denote by ε a variable determin-
istic noise, a random variable, or its realization, which will be clear from the context. By γp
we denote the density of a multivariate Gaussian random variable with expectation zero and
covariance Σ. Further notation, specific to the present manuscript, will be introduced at first
appearance. For quicker reference, a notation table can be found in appendix D.
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2.2. Preliminaries

We also recall some basic facts and assumptions for inverse source location.

2.2.1. Integral kernels. Throughout the paper, we assume that the kernel is sufficiently
regular:

(A1) The kernel k ∈ C(Ωo×Ωs) is three-times differentiable in the variable y. For abbrevi-
ation, we further set

Ck := sup
x∈Ωo,y∈Ωs

|k(x,y) |, C ′
k := sup

x∈Ωo,y∈Ωs

‖∇yk(x,y)‖2 ,

C ′ ′
k := sup

x∈Ωo,y∈Ωs

∥∥∇2
yyk(x,y)

∥∥
2→2

, C ′ ′ ′
k := sup

x∈Ωo,y∈Ωs

∥∥∇3
yyyk(x,y)

∥∥
2×2→2

.

By means of the kernel k, we introduce the weak∗ continuous source-to-measurements oper-
ator K : M(Ωs)→ RNo with

Kµ=

(ˆ
Ωs

k(x1,y)dµ(y) ; . . . ;
ˆ
Ωs

k(xNo ,y)dµ(y)

)
. (2.6)

Moreover, consider the operator K∗ : RNo →C2(Ωs) given by

[K∗z] (y) =
No∑
j=1

zjk(xj,y) for all z ∈ RNo . (2.7)

Then K∗ is linear and continuous and there holds
ˆ
Ω

[K∗z] (y) dµ(y) = z⊤[Kµ] for all µ ∈M(Ωs) , z ∈ RNo .

2.2.2. Space of Radon measures. We recall some properties of Radon measures. Let Ω⊂
Rd, d⩾ 1 be a compact set. We define the space of Radon measuresM(Ω) as the topological
dual of the space C(Ω) of continuous functions on Ω endowed with the supremum norm. It is
then a Banach space equipped with the dual norm

‖µ‖M(Ω) := sup

{ˆ
Ω

fdµ : f ∈ C (Ω) ,‖f‖C(Ω) ⩽ 1

}
.

Weak∗ convergence of a sequence in M(Ω) will be denoted by ‘⇀∗’. More specifically,
we have

µn ⇀
∗ µ if and only if

ˆ
Ω

fdµn →
ˆ
Ω

fdµ for all f ∈ C (Ω) .

Next, by the definition of the total variation norm, its subdifferential is defined by

∂ ‖µ‖M(Ωs)
:=

{
η ∈ C (Ωs) : |η (y) |⩽ 1,∀y ∈ Ωs and

ˆ
Ωs

ηdµ= ‖µ‖M(Ωs)

}
,

9
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see for instance [11]. In particular, for a discrete measure µ=
∑N

n=1 qnδyn one has

∂ ‖µ‖M(Ωs)
= {η ∈ C (Ωs) : |η (y) |⩽ 1,∀y ∈ Ωs and η (yn) = sign(qn) ,∀n= 1, . . . ,N} .

Finally, by M+(Ω) we refer to the set of positive Radon measures on Ω.

3. Sparse inverse problems with deterministic noise

Our interest lies in the stable recovery of a sparse ground truth measure

µ† =
N†∑
n=1

q†nδy†n for some q†n ∈ R,

by solving the Tikhonov regularization (Pβ,ε) associated to the inverse problem zd = Kµ given
noisy data zd. In this preliminary section, we give some meaningful examples of this abstract
setting and briefly recap the key concepts and results in the case of additive deterministic noise

zd (ε) = Kµ† + ε for some ε ∈ RNo . (3.1)

In particular, we clarify the connection between (Pβ,ε) and (P0) and recall a first qualitative
statement on the asymptotic behavior of solutions to (Pβ,ε) for a suitable a priori regularization
parameter choice β = β(ε).

3.1. Examples

Sparse inverse problems appear in a variety of interesting applications. In the following, we
give some examples which fit into our setting.

Example 3.1. Consider the advection-diffusion equation

∂tu−∇(D ·∇u)+∇· (κu) = 0 in (0,T)×Rd, (3.2)

together with the initial value u(0, ·) = µ. The boundary condition is given by u→ 0 as
x→∞. This equation describes the rate of change of the concentration of the contaminant
u(t,x). For simplicity, we consider a two-dimensional medium, and both κ= (κ1,κ2) and
D= diag(D1,D2) are independent of x. Here the solution to (3.2) is given by

u(t,x) =
ˆ
R2

G(x− y, t)dµ(y)

where G(x, t) is the Green’s function of the advection-diffusion equation, which is given by

G(x, t) =
1

4π
√
D1D2t

exp
(
−‖x−κt‖2D−1 /(4t)

)
.

Here, if one seeks to identify the initial value µ from finite number of measurements at time
To > 0 in the observation set Ωo ⊂ R2, the kernel is given by k(x,y) = G(x− y,To).

10
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Example 3.2. Consider the advection-diffusion equation on a bounded smooth domain Ω,
together with the Dirichlet boundary conditions u|(0,T)×∂Ω = 0, then there exists a kernel
G(x,y, t) such that

u(t,x) =
ˆ
Ω

G(x,y, t)dµ(y) ,

see, e.g. [15]. In this case, for observations at time To we choose k= G(·, ·,To). For Ωo ⊂ Ω
(i.e. no observation near the boundary), the regularity requirements on ∂Ω are not necessary
since one can employ interior regularity arguments; see, e.g. [17].

3.2. Tihkonov regularization of sparse inverse problems

In this section, we briefly summarize some preliminary results concerning the regularized
problem (Pβ,ε) as well as its solution set. We start by discussing its well-posedness.

Proposition 3.3. Problem (Pβ,ε) admits a solution µ̄. Furthermore, any solution µ̄ to (Pβ,ε)
satisfies ‖µ̄‖M(Ωs)

⩽ ‖ε‖2Σ−1
0
/(2β)+

∥∥µ†
∥∥
M(Ωs)

and the solution set

M(ε) = argmin (Pβ,ε)

is weak∗ compact.

Proof. Existence of a minimizer of (Pβ,ε) is guaranteed by [4, proposition 3.1] noticing that
the forward operatorK :M(Ωs)→ RNo of (Pβ,ε) is weak∗-to-strong continuous. For the upper
bound we use the optimality of µ̄ compared to µ† as well as the definition of zd(ε) to get

β ‖µ̄‖M(Ωs)
⩽ 1

2

∥∥Kµ̄− zd
∥∥2
Σ−1

0
+β ‖µ̄‖M(Ωs)

⩽ 1
2
‖ε‖2Σ−1

0
+β

∥∥µ†∥∥
M(Ωs)

.

Moreover,M(ε) is weak∗ closed since the objective functional in (Pβ,ε) is weak∗ lower semi-
continuous. Combining both observations, we conclude the weak∗ compactness ofM(ε).

In particular, note that M(ε) is, in general, not a singleton due to the lack of strict convex-
ity in (Pβ,ε). Moreover, we recall that the inverse problem was introduced as a lifting of the
nonconvex and combinatorial integral equation (1.1). From the same perspective, (Pβ,ε) can
be interpreted as a convex relaxation of the parametrized problem

inf
y∈ΩN

s , q∈RN,
N∈N

[
1
2

∥∥k [x,y]q− zd
∥∥2
Σ−1

0
+β ‖q‖1

]
, (3.3)

In the following proposition, we show that this relaxation is exact, i.e. there exists at least one
solution to (3.3) and its minimizers parametrize sparse solutions to (Pβ,ε).

Proposition 3.4. There holds min (Pβ,ε) = inf (3.3). For a triple (N̄, ȳ, q̄) with ȳi 6= ȳj, i 6= j,
the following statements are equivalent:

• The triple (N̄, ȳ, q̄) is a solution of (3.3).
• The parametrized measure µ̄=

∑N̄
n=1 q̄nδȳn is a solution of (Pβ,ε).

Moreover, (Pβ,ε) admits at least one solution of this form with N̄⩽ No.

11
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Proof. Given (N,y,q) with yi 6= yj, i 6= j, note that the sparse measure

µ(y,q) =
N∑
n=1

qnδyn satisfies Kµ(y,q) = k [x,y]q, ‖µ(y,q)‖M(Ωs) = ‖q‖1 .

Hence, one readily verifies min (Pβ,ε) = inf (3.3) as well as the claimed equivalence due to
the weak∗ density of the set of sparse measures in M(Ωs) and since the objective functional
in (Pβ,ε) is weakly∗ lower semicontinuous. The existence of a sparse solution to (Pβ,ε) follows
similarly to [30, theorem 3.7].

The equivalence between both of these problems will play a significant role in our sub-
sequent analysis. Additional insight on the structure of solutions to (Pβ,ε) can be gained
through the study of its first order necessary and sufficient optimality conditions. Since our
interest lies in sparse solutions, we restrict the following proposition to this particular case.

Proposition 3.5. A measure µ̄=
∑N̄

n=1 q̄nδȳn is a solution of (Pβ,ε) if and only if

|η̄ (y) |⩽ 1 for all y ∈ Ωs, η̄ (ȳn) = sign(q̄n) , ∀n= 1, . . . , N̄,

where

η̄ =−K∗Σ−1
0

(
Kµ̄− zd

)
/β = K∗Σ−1

0

(
zd− k [x, ȳ] q̄

)
/β. (3.4)

Note that η̄ is independent of the particular choice of the solution to (Pβ,ε). We will refer
to it as the dual certificate associated to (Pβ,ε) in the following. Finally, we give a connec-
tion between (Pβ,ε) and the minimum norm problem (P0) in the vanishing noise limit. The
following general convergence property follows directly from [19].

Proposition 3.6. Assume that β = β(ε) is chosen such that

β→ 0 and
‖ε‖2Σ−1

0

β
→ 0 as ‖ε‖Σ−1

0
→ 0.

Then solutions to (Pβ,ε) subsequentially converge weakly-∗ towards solutions of (P0).

3.3. Radon minimum norm problems

Following proposition 3.6, guaranteed recovery of the ground truth measure requires that µ†

is identifiable, i.e. the unique solution of (P0). In this section, we briefly summarize some
key concepts regarding (P0) and state sufficient assumptions for the latter. For this purpose,
introduce the associated Fenchel dual problem

min
ζ∈RNo

[
−〈µ†,K∗Σ−1

0 ζ〉+ I∥K∗Σ−1
0 ζ∥C(Ωs)⩽1

]
. (3.5)

as well as the minimal-norm dual certificate

η† := K∗Σ−1
0 ζ† ∈ C2 (Ωs) where ζ† = argmin

ζ∈RNo

{‖ζ‖2 : ζ ∈ argmin (3.5)} . (3.6)

12
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Note that the existence of ζ†, and therefore the minimum-norm dual certificate η†, is guar-
anteed in this setting following [30, proposition A.2] as well as due to K∗ : RNo →C2(Ωs).
Moreover, by standard results from convex analysis, a given µ ∈M(Ωs) is a solution to (P0)
if and only if η† ∈ ∂‖µ‖M(Ωs). The following assumptions on µ† and η† are made throughout
the paper:

(A2) Structure of µ†: We assume that there holds

µ† =

N†
s∑

n=1

q†nδy†n where q†n 6= 0, y†n ∈ int(Ωs) for all n= 1, . . . ,N†
s .

(A3) Source condition: We assume that the minimum-norm dual certificate η† satisfies

|η† (y) |⩽ 1 for all y ∈ Ωs and η†
(
y†n
)
= sign

(
q†n
)

for all n= 1, . . . ,Ns.

(A4) Strengthened source condition: We assume that

|η† (y) |< 1 for all y ∈ Ωs \
{
y†n
}N†

s

n=1

and the operator K|suppµ† := k[x,y†] is injective.

Here, assumption A3 is equivalent to η† ∈ ∂
∥∥µ†
∥∥
M(Ωs)

, i.e. µ† is indeed a solution to (P0),
whereas assumptionsA2 andA3 imply its uniqueness.While assumptionA4 seems very strong
at first glance, it can be explicitly verified in some settings (see, e.g. [6]) and is often numer-
ically observed in practice. According to [11, proposition 5] we have the following:

Proposition 3.7. Let assumptions A2–A4 hold. Then µ† is the unique solution of (P0).

As a consequence, proposition 3.6 implies µ̄ ⇀∗ µ†. Moreover, according to [11,
Proposition 1], the dual certificates η̄ associated to (Pβ,ε) approximate the minimal norm dual
certificate η† in a suitable sense. Taking into account assumption A3 as well as proposition 3.5,
we thus conclude that the reconstruction of µ† from (3.3) is governed by the convergence of
the global extrema of η̄ towards those of η†. However, in order to capitalize on this observa-
tion in our analysis, we need to compute a closed form expression for η†. In general, this is
intractable due to the global constraint |η†(z)|⩽ 1, z ∈ Ωs. As a remedy, the authors of [11]
introduce a simpler proxy replacing this constraint by finitely many linear ones noting that

∇η†
(
y†n
)
= 0, η†

(
y†n
)
= sign

(
q†n
)

for all n= 1, . . . ,N†
s .

The computation of the associated vanishing derivative pre-certificate ηPC := K∗Σ−1
0 ζPC ∈

C2(Ωs) where

ζPC = argmin
ζ∈RNo

{
‖ζ‖2 :∇ηPC

(
y†i

)
= 0, ηPC

(
y†n
)
= sign

(
q†n
)

for all n= 1, . . . ,N†
s

}
(3.7)

only requires the solution of a linear systems of equations and coincides with η† under appro-
priate conditions, see [11, proposition 7]. Finally, in order to derive quantitative statements
on the reconstruction error between µ̄ and µ†, we require the non-degeneracy of the minimal

13
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norm dual certificate of µ† in the sense of [11]. Since we aim to use (1.4) in the context of
optimal sensor placement, that is, we need to track the dependence of the involved constants
on the measurement setting, we utilize the following quantitative definition; see [33].

Definition 3.8. We say that η ∈ C2(Ωs) is θ−non-degenerate or θ−admissible for the sparse
measure µ=

∑Ns
n=1 qnδyn and θ ∈ (0,1] if there holds

|η (y) |⩽ 1− θmin

{
θ, min

n=1,...,Ns

∥∥w†
n (y− yn)

∥∥2
2

}
, η (yn) = sign(qn) for all y ∈ Ωs

(3.8)

and weights w†
n =

√
|q†n|.

Due to the regularity of η one readily verifies that (3.8) is equivalent to

−signη (yn)∇2η (yn)⩾ 2θ|w†
n|2 Id for every n= 1,2, . . . ,Ns, (3.9)

as well as

|η (y) |⩽ 1− θ2, for all y ∈ Ωs \
⋃

n=1,...,Ns

Bw†
n

(
yn,

√
θ
)
. (3.10)

4. Distances on spaces of measures

In order to quantitatively study the reconstruction error of estimators of the sourceµ†, we intro-
duce a distance function on M(Ωs) which measures the error between the estimated source
measure µ̂ and the referencemeasure µ†. An obvious choice of distance would be the total vari-
ation norm on M(Ωs), however it is not suitable for quantifying the reconstruction error. In
fact, evaluating dTV(µ1,µ2) = ‖µ1 −µ2‖M(Ωs)

for sparse measures µ1,µ2 ∈M(Ωs) is simple
by noting that

dTV (q1δy1 ,q2δy1) = |q1 − q2|,

but for y1 6= y2, one has

dTV (q1δy1 ,q2δy2) = |q1|+ |q2|,

that is, dTV does not quantify the reconstruction error of the source positions, and small perturb-
ations of the source points lead to a constant error in the metric. Hence, in general one cannot
rely on TV distance to evaluate the quality of the reconstruction. In the following, we consider
an extension of the Hellinger–Kantorovich (H-K) metric [24] to signed measures, which pos-
sesses certain properties that will be discussed below. The construction of the H-K distance is
more involved than another often used candidate, namely the Kantorovich–Rubinstein (K-R)
distance (see, e.g. [21, 28]) or flat metric, which is directly obtained as a dual norm of a space
of Lipschitz functions (see appendix C). It induces the same topology of weak∗ convergence,
and is bounded by the H-K metric [24]. Since our estimates are going to be asymptotically
sharp in H-K, but only an upper bound in K-R, we focus on H-K in the following.

The Hellinger–Kantorovich metric [24] is a generalization of the Wasserstein-2 distance
(see, e.g. [27]) for measures which are not necessarily of the same norm. We first assume the
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case of positive measures µ1,µ2 ⩾ 0 and define the H-K metric in terms of the Wasserstein-2
metric as:

dHK (µ1,µ2)
2
:= inf

{
W2 (µ̃1, µ̃2)

∣∣ µ̃1, µ̃2 ∈ P2
(
R+ ×Ωs

)
: h2 (µ̃1) = µ1,h2 (µ̃2) = µ2

}
.

Here, P2(R+ ×Ωs) are the probability measures of with finite second moment on R+ ×Ωs,
the two-homogeneous marginal is

h2 (µ̃) =
ˆ
R+

r2dµ̃(r, ·) ∈M(Ωs) ,

and R+ ×Ωs is endowed with a conic metric

dcone ((r1,y1) ,(r2,y2))
2
:= (

√
r1 −

√
r2)

2
+ 4

√
r1r2 sin

2
+ (‖y1 − y2‖2 /2) , (4.1)

where sin+(z) := sin(min{z,π/2}). For a detailed study of this metric and its properties as
well as equivalent formulations in terms of Entropy-Transport problems we refer to [24].

For signed measures, we note that for any distance based on a norm (such as the TV or K-R
distance) one observes that

d(µ1,µ2) =
∥∥(µ+

1 +µ−
2

)
−
(
µ+
2 +µ−

1

)∥∥= d
(
µ+
1 +µ−

2 ,µ
+
2 +µ−

1

)
, (4.2)

by using the Jordan decomposition µi = µ+
i −µ−

i . Motivated by (4.2), we define

dHK (µ1,µ2) := dHK
(
µ+
1 +µ−

2 ,µ
+
2 +µ−

1

)
, (4.3)

which is indeed a metric on M(Ωs) and fulfills dHK(µ1,µ2)⩽ dHK(µ
+
1 ,µ

+
2 )+ dHK(µ

−
1 ,µ

−
2 ).

In contrast to the total variation distance, the Hellinger–Kantorovich distance between two
Dirac measures q1δy1 and q2δy2 can be computed by

dHK (q1δy1 ,q2δy2)
2
=
(√

|q1| −
√

|q2|
)2

+ 4
√
|q1||q2|sin2+ (‖y1 − y2‖2 /2) ,

which is exactly the conic metric given in (4.1). Clearly, it is evidence that for small perturb-
ations of both the source positions and coefficients, the resulting change of the H-K distance
remains small. Hence, it is reasonable to employ this type of distance to measure the recon-
struction error.

One next advantage of the H-K distance is that it is compatible with the weak∗ topology on
M(Ωs), namely it induced weak∗ convergence on bounded set in M(Ωs).

Proposition 4.1. The Hellinger–Kantorovich distance of signed measures defined in (4.3)
metrizes weak∗ convergence of signed measures on bounded set in M(Ωs). More pre-
cisely, a bounded sequence {µn}n∈N ⊂M(Ωs) converges weakly∗ to a measure µ if only if
dHK(µn,µ)→ 0 as n→∞.

Proof. Assume that dHK(µn,µ)→ 0 as n→∞. One can write

µn−µ=
(
µ+
n +µ−)− (µ+ +µ−

n

)
=: µ1

n−µ2
n, (4.4)

which implies dHK(µ1
n,µ

2
n) = dHK(µn,µ)→ 0. Since

∥∥µin∥∥M ⩽ ‖µ±
n ‖M + ‖µ∓‖M ⩽ 2M and

theHK-distancemetrizes weak∗ convergence on bounded sequences of non-negativemeasures
(see [24, theorem 7.15]), we have µ1

n−µ2
n ⇀

∗ 0, which means that µn ⇀∗ µ.
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Conversely, assume that µn ⇀∗ µ. Consider the decomposition (4.4) and suppose that the
distance dHK(µn,µ) does not converges to zero. Then there exists a subsequence, denoted by
the same symbol, such that

dHK
(
µ1
n,µ

2
n

)
= dHK (µn,µ)⩾ δ > 0. (4.5)

We now use the fact that
∥∥µin∥∥M ⩽ 2M to extract a further subsequence (again with the same

symbol) such that µin ⇀
∗ µ̂i, which implies µn−µ= µ1

n−µ2
n ⇀

∗ µ̂1 − µ̂2. Due to (4.5) and
the fact that the HK-distance metrizes weak∗ convergence on bounded sequences of non-
negative measures we have that µ̂1 6= µ̂2 and thus µn−µ⇀∗ µ̂1 − µ̂2 6= 0. Thus the sub-
sequence {µn}n∈N does not converge weak∗ to µ and the original sequence {µn}n∈N can not
converge to µ.

To evaluate the reconstruction error, the distance between finitely supported measures is
needed since the reference measure as well as the reconstructed measure are known to be
sparse. In fact, we only need a (sharp) upper bound for the H-K distance, which will be
provided for the finitely supported case below in term of a (weighted) ℓ2-type distance. This
is yet another advantage of the H-K distance in comparison to other distances.

Proposition 4.2. Let µ and µ† be finitely supported with the same number N of support points
and sign qn = sign q†n, for all n= 1, . . . ,N. Then we have

dHK
(
µ,µ†)2 ⩽ R

(
q,q†

) N∑
n=1

(
|qn− q†n|2

4|q†n|
+ |q†n|

∥∥yn− y†n
∥∥2
2

)
,

where R(q,q†) :=max{
√
|qn|/|q†n|,

√
|q†n|/|qn| : n= 1, . . . ,N}.

Loosely speaking, the H-K distance between two discrete measures µ and µ† with the same
number of support points could be upper bounded by a weighted ℓ2-type distance of their
corresponding coefficients and positions.

Proof. We use that any finitely supported positive measure with N support points µ can be
extended with h2(µ̃) = µ according to

µ̃=
1
N

N∑
n=1

δ(rn,yn), where rn =
√
N|qn|.

In addition, notice that dHK(µ,µ†) = dHK(µ1,µ2) where µ1 := µ+ +µ†,− and µ2 := µ†,+ +
µ− are positive measures with N support of points. Thus, combining this with the fact that
(1/N)dcone((r1,y1),(r2,y2)) = dcone((r1/

√
N,y1),(r2/

√
N,y2)) it follows:

dHK
(
µ,µ†)2 ⩽ N†∑

n=1

[(√
|qn| −

√
|q†n|
)2

+ 4
√

|qn||q†n| · sin2+
(∥∥yn− y†n

∥∥
2
/2
)]

⩽
N†∑
n=1

 (qn− q†n
)2

4
√
|qn||q†n|

+

√
|qn||q†n| ·

∥∥yn− y†n
∥∥2
2

 .
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Here, we have used sin2+(·)⩽ (·)2 and (
√
a−

√
b)2 = (a− b)2/(

√
a+

√
b)2 ⩽ (a−

b)2/(4
√
ab). This immediately implies the estimate.

The previous result motivates to define a weighted ℓ2-norm for the given parameters (q;y) ∈
(R \ {0})N×ΩN

s . More precisely, we define the weight w=
√

|q| := (
√
|q1|, · · · ,

√
|qN|) ∈

(R \ {0})N and the associated weighted norm for a perturbation (δq;δy) ∈ RN×RdN as

‖(δq;δy)‖2W :=
1
4

∥∥w−1δq
∥∥2
2
+ ‖wδy‖22 =

N∑
n=1

(
|δqn|2

4|qn|
+ |qn|‖δyn‖22

)
, (4.6)

where (wδy)n = wnδyn denotes the entry-wise (Hadamard) product. Here, the diagonal matrix
W= diag((w−2/4;w2; . . . ;w2)) induces the norm in (4.6). Then by proposition 4.2, we have

dHK
(
µ,µ†)2 ⩽ R

(
q,q†

)∥∥(q− q†;y− y†
)∥∥2

W†
,

where W† is the diagonal weight matrix defined above for the weight w† =
√
|q†|. Moreover,

two different weighted norms are equivalent up to the same factor

R
(
q,q†

)−1 ‖(δq;δy)‖2W†
⩽ ‖(δq;δy)‖2W ⩽ R

(
q,q†

)
‖(δq;δy)‖2W†

(4.7)

because R(q,q†) =max{
∥∥w/w†

∥∥
∞ ,
∥∥w†/w

∥∥
∞}. For µ≈ µ† the factor R(q,q†) is arbitrarily

close to one. In other words, asymptotically for µ≈ µ† the upper bound from proposition 4.2
is sharp:

dHK
(
µ,µ†)2 ≈ ∥∥(q− q†;y− y†

)∥∥2
W†
.

5. Fully explicit estimates for the deterministic reconstruction error

The Hellinger–Kantorovich distance allows us to quantify the reconstruction error between the
unknown source µ† and measures obtained by solving (Pβ,ε). This will be done in two steps.
First, we study the approximation of m† = (q†;y†), i.e. the support points and coefficients of
the ground truth, by stationary points m̂= m̂(ε) of the nonconvex parametrized problem

min
m=(q;y)∈(R×Ωs)

Ns

[
1
2

∥∥G(m)−G
(
m†)− ε

∥∥2
Σ−1

0
+β ‖q‖1

]
, (5.1)

where the source-to-observable map G satisfies

G(m) = G(q;y) = k [x,y]q=
N∑
n=1

qnk [x,yn] . (5.2)

By assumption A1, the latter is three times differentiable. Notice that (5.1) is obtained
from (3.3) by fixing Ns = N†

s points of sources in the formulation. Hence, solutions, let alone
stationary points, of problem (5.1) do not parametrize minimizers of (Pβ,ε) in general.
Moreover, it is clear that problem (5.1) is primarily of theoretical interest since its practical real-
ization requires knowledge of N†

s . Thus, in a second step, we investigate for which noises ε, m̂
parametrizes the unique solution of (Pβ,ε). While these results build upon similar techniques
as [11], we give a precise, quantitative characterization of this asymptotic regime and clarify
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the dependence of the involved constants on the problem parameters, e.g. the measurement
points x. This is necessary, for both, lifting these deterministic results to the stochastic setting
in section 3 as well utilizing the derived error estimates in the context of optimal sensor place-
ment. However, since these are merely intermediate steps in the derivation of our main result,
we omit a detailed exposition at this point and direct the interested reader to appendix B. In
the following, a central role will be played by the linearized problem

min
δm=(δq;δy)∈R(1+d)Ns

[
1
2

∥∥G ′ (m†)δm− ε
∥∥2
Σ−1

0
+β sign

(
q†
)⊤
δq
]
. (5.3)

Note that here we have linearized both, the mapping G as

G
(
q† + δq,y† + δy

)
≈ G

(
q†,y†

)
+G ′ (q†,y†)(δq, δy)

= k
[
x,y†

]
q† + k

[
x,y†

]
δq+

(
∇⊤
y k
[
x,y†

]
◦ q†
)
δy,

using that

G ′ (m) =
(
k [x,y] ∇⊤

y k [x,y] ◦ q
)

where
(
∇⊤
y k
[
x,y†

]
◦ q†
)
i,j
:=∇yk

(
xi,y

†
j

)⊤
q†j ,

as well as the ‖·‖1−norm with∥∥q† + δq
∥∥
1
≈
∥∥q†∥∥

1
+ sign

(
q†
)⊤
δq.

The following proposition characterizes the solutions of (5.1) and (5.3). Since its proof
relies on standard computations, we omit it for the sake of brevity.

Proposition 5.1. The solutions m̄ to (5.1) fulfill the stationarity condition

S(m̄) := G ′ (m̄)
⊤
Σ−1

0

(
G(m̄)−G

(
m†)− ε

)
+β (ρ̄;0) = 0, (5.4)

for some ρ̄ ∈ ∂ ‖q̄‖1. The solutions of (5.3) satisfy

G ′ (m†)⊤Σ−1
0

(
G ′ (m†)δm̂− ε

)
+β (ρ;0) = 0,

where ρ= signq†. If G ′(m†) has full column rank then the Fisher information matrix

I0 := G ′ (m†)⊤Σ−1
0 G ′ (m†) (5.5)

is invertible and the unique solution of (5.3) is given by

δm̂(ε) := I−1
0

(
G ′ (m†)⊤Σ−1

0 ε−β (ρ;0)
)

=
(
Σ

−1/2
0 G ′ (m†))+Σ

−1/2
0 ε−βI−1

0 (ρ;0)
(5.6)

where (Σ−1/2
0 G ′(m†))+ = I−1

0 G ′(m†)⊤Σ
−1/2
0 is the pseudo-inverse of Σ−1/2

0 G ′(m†).

Since (5.1) is nonconvex, the stationarity condition (5.4) is only necessary but not sufficient
for optimality. In the following, we call any solution to (5.4) a stationary point.
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5.1. Error estimates for stationary points

In this section, we show that for sufficiently small noise ε, problem (5.1) admits a unique
stationary point m̂(ε) in the vicinity of m†. Moreover, loosely speaking, m† and m† + δm̂(ε)
provide Taylor expansions of zeroth and first order, respectively, for m̂(ε).

Proposition 5.2. Suppose that G ′(m†) has full column rank. Then, for some constant C1 =
C1(k,µ†,

∥∥I−1
0

∥∥
W−1

† →W†
) and radius r̂> 0 and all ε with C1(‖ε‖Σ−1

0
+β)⩽ 1, the station-

arity condition (5.1) admits a unique solution m̂= m̂(ε) on BW†(m†,(3/2)r̂). Moreover, the
stationary point satisfies m̂ ∈ BW†(m†, r̂) as well as∥∥m̂−m†∥∥

W†
⩽ 2‖δm̂‖W†

⩽ C1

(
‖ε‖Σ−1

0
+β
)
,∥∥m̂−m† − δm̂

∥∥
W†

⩽ C2
1

(
‖ε‖Σ−1

0
+β
)2
.

For the sake of brevity, we omit by now the proof of proposition 5.2, which is then presented
in appendix B.

Remark 5.3. Wenote thatC1 dependsmonotonically on the norm of the inverse Fisher inform-
ationmatrix; see RemarkB.3.Moreover, the dependency on the ground truthµ† is only in terms
of the norm

∥∥q†∥∥
1
, and distances of y†n to the boundary and q†n to zero.

5.2. Error estimates for reconstructions of the ground truth

As mentioned in the preceding section, solving the stationarity equation (5.4) for m̂= (ŷ, q̂)
is not feasible in practice since it presupposes knowledge of N†

s . Moreover, recalling that m̂ is
merely a stationary point, the parametrized measure

µ̂=

N†
s∑

n=1

q̂nδ̂yn (5.7)

is not necessarily a minimizer of (Pβ,ε). In this section, our primary goal is to show that m̂
indeed parametrizes the unique solution of problem (Pβ,ε) if the minimum norm dual certific-
ate η† associated to (P0) is θ-admissible and if the set of admissible noises ε is further restric-
ted. A fully-explicit estimate for the reconstruction error between µ̂ and the ground truth µ†

in the Hellinger–Kantorovich distance then follows immediately. For this purpose, recall from
[11, proposition 7] that the non-degeneracy of η† implies

η† = ηPC = K∗Σ
−1/2
0

(
G ′ (m†)Σ−1/2

0

)+
(ρ;0) = K∗Σ−1

0 G ′ (m†)I−1
0 (ρ;0) . (5.8)

where ηPC denotes the vanishing derivative pre-certificate from section 3.3.
We first prove that

η̂ = β−1K∗Σ−1
0

(
zd (ε)−Kµ̂

)
= β−1K∗Σ−1

0

(
G
(
m†)+ ε−G(m̂)

)
is θ/2-admissible for certain ε and β.

Proposition 5.4. Let the assumptions in proposition 5.2 be satisfied and η† be θ−admissible
for µ†, θ ∈ (0,1]. Then there exists a constant C2 = C2(k,µ†,

∥∥I−1
0

∥∥
W−1

† →W†
) such that if

C1

(
‖ε‖Σ−1

0
+β
)
⩽
√
θ/32, (5.9)
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C2β
−1

((
‖ε‖Σ−1

0
+β
)2

+ ‖ε‖Σ−1
0

)
⩽ θ2/32, (5.10)

then the function η̂ is θ/2−admissible for µ̂.

The proof of proposition 5.4 is then provided in appendix B.

Remark 5.5. Wenote thatC2 dependsmonotonically on the norm of the inverse Fisher inform-
ation matrix; see remark B.5. Moreover, the dependency on the ground truth µ† is only in terms
of the norm

∥∥q†∥∥
1
, and distances of y†n to the boundary and q

†
n to zero.

As a consequence, we conclude that the solution to (Pβ,ε) is unique and parametrized by m̂.
Moreover, its H-K distance to µ† can be bounded in terms of the linearization δm̂.

Theorem 5.6. Let the assumptions of proposition 5.4 hold. Then the solution of (Pβ,ε) is
unique and given by µ̂ from (5.7). There holds

dHK
(
µ̂,µ†)2 ⩽ 8‖δm̂‖2W†

. (5.11)

Proof. From proposition 5.4, we conclude that η̂ is θ/2-admissible for µ̂. Consequently, we
have η̂ ∈ ∂‖µ̂‖M(Ωs), i.e. µ̂ is a solution of (Pβ,ε). It remains to show its uniqueness. For this
purpose, it suffices to argue that

K|supp µ̂ = k[x, ŷ] ∈ RNo×N†
s

is injective, see, e.g. the proof of [31, proposition 3.6]. Assume that this is not the case. Then,
following [30, theorem B.4], there is v 6= 0 with k[x,y]v= 0 and τ 6= 0 such that the measure µ̃
parametrized by m̃= (q̃; ŷ)with q̃= q̂+ τv is also a solution of (Pβ,ε) (choose the sign of τ to
not increase the ℓ1-regularization, and the magnitude small not to change the sign of q̃) and q̃ 6=
q̂. For s ∈ (0,1), set qs = (1− s)q̂+ sq̃. By convexity of (Pβ,ε), the measure parametrized
by ms = (qs; ŷ) is also a minimizer of (Pβ,ε). Consequently, ms is a solution of (5.1) and thus
also a stationary point. Finally, noting that ms 6= m̂, s ∈ (0,1), and lims→0ms = m̂, we arrive
at a contradiction to the uniqueness of stationary points in the vicinity of m†. The estimate
in (5.11) immediately follows from

dHK
(
µ̂,µ†)2 ⩽ R

(
q̂,q†

)∥∥m̂−m†∥∥2
W†

⩽ 2
∥∥m̂−m†∥∥2

W†
⩽ 8‖δm̂‖2W†

6. Inverse problems with random noise

Finally, let (D,F ,P) denote a probability space and consider the stochastic measurement
model

zd (ε) = Kµ† + ε,

where the noise is distributed according to ε∼ γp =N (0,p−1Σ0) for some p> 0 represent-
ing the overall precision of the measurements. Mimicking the deterministic setting, we are
interested in the reconstruction of the ground truth µ† by solutions obtained from (Pβ,ε) for
realizations of the random variable ε. By utilizing the quantitative analysis presented in the
preceding section, we provide an upper bound on the worst-case mean-squared error
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Eγp

[
sup

µ∈M(·)
dHK

(
µ,µ†)2]= ˆ

RNo

sup
µ∈M(ε)

dHK
(
µ,µ†)2 dγp (ε)

for a suitable a priori parameter choice rule β = β(p). Note that the expectation is well-defined
according to appendix A.2.

6.1. A priori parameter choice rule

Before stating the main result of the manuscript, let us briefly motivate the particular choice of
the misfit term in (Pβ,ε) as well as the employed parameter choice rule from the perspective
of the stochastic noise model. Since we consider independent measurements, their covari-
ance matrix Σ= p−1Σ0 is diagonal with Σjj = σ2

j for variances σ2
j > 0, j = 1, . . . ,No. This

corresponds to performing the individual measurements with independent sensors of variable
precision pj = 1/σ2

j . We call

p=
No∑
j=1

pj =
No∑
n=1

σ−2
j = tr

(
Σ−1

)
.

the total precision of the sensor array. It can be seen that its reciprocal σ2
tot = 1/p corresponds

to the harmonic average of the variances divided by the number of sensors No. Therefore, the
misfit in (Pβ,ε) satisfies

∥∥Kµ− zd (ε)
∥∥2
Σ−1

0
=

1
p

No∑
j=1

σ−2
j |[Kµ]j− zd (ε)j |

2.

For identical sensors and measurements ε∼N (0, IdNo) this simply leads to the scaled

Euclidean norm (1/No)
∥∥Kµ− zd(ε)

∥∥2
2
. In general, by increasing the total precision of the

sensor setup p, we improve the measurements by proportionally decreasing the variances
by σ2

tot. While this will decrease the expected level of noise through its distribution, it will
not affect the misfit functional, which is just influenced by Σ0, or the normalized variances
σ2
0,j = σ2

j /σ
2
tot.

Moreover, since ε∼N (0,Σ), we have Σ−1/2ε∼N (0,No ) and by direct calculations, the
following estimate holds

No√
No+ 1

⩽ Eγp [‖ε‖Σ−1 ]⩽
√
No.

Hence, with high probability, realizations of the error fulfill the estimate√√√√ No∑
j=1

ε2j /σ
2
j = ‖ε‖Σ−1 =

√
p‖ε‖Σ−1

0
⩽ C

√
No

and thus ‖ε‖Σ−1
0

≲ 1/
√
p. Thus, we consider the expected noise σtot = 1/

√
p as an (expected)

upper bound for the noise. This motivates the parameter choice rule

β (p) = β0/
√
p= β0 tr

(
Σ−1

)−1/2

for some β0 > 0 large enough.
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6.2. Quantitative error estimates in the stochastic setting

We are now prepared to prove a quantitative estimate on the worst-case mean-squared error
by lifting the deterministic result of theorem 5.6 to the stochastic setting.

Theorem 6.1. Assume that η† is θ-admissible for θ ∈ (0,1) and set β(p) = β0/
√
p. Then there

exists

p= β2
0cp
(
θ,k,µ†,

∥∥I−1
0

∥∥
W−1

† →W†

)
such that for p⩾ p, there holds

Eγp

[
sup

µ∈M(·)
dHK

(
µ,µ†)2]⩽ 8Eγp

[
‖δm̂‖2W†

]
+C3 exp

[
−
(
θ2β0
64C4

)2

/(2No)

]
, (6.1)

where C3 = 2‖µ†‖M(Ωs) +
√
2No/(2β0

√
p) and C4 =max{C1,C2}. In addition, the expecta-

tion Eγp [‖δm̂‖2W†
] has the closed form

Eγp

[
‖δm̂‖2W†

]
=

1
p

(
tr
(
W†I−1

0

)
+β2

0

∥∥I−1
0 (ρ;0)

∥∥2
W†

)
. (6.2)

Proof. Define the sets

A1 =

{
ε : C4β (p)

−1 ‖ε‖Σ−1
0

⩽ θ2

64

}
, A2 =

{
ε : C4β (p)

−1
(
‖ε‖Σ−1

0
+β (p)

)2
⩽ θ2

64

}
.

By a case distinction, we readily verify

RNo \ (A1 ∩A2)⊂
(
RNo \A1

)
∪
((
RNo \A2

)
∩A1

)
and thus

Eγp

[
sup

µ∈M(·)
dHK

(
µ,µ†)2]⩽ˆ

A1∩A2

sup
µ∈M(ε)

dHK
(
µ,µ†)2 dγp (ε)

+

ˆ
RNo\A1

sup
µ∈M(ε)

dHK
(
µ,µ†)2 dγp (ε)︸ ︷︷ ︸

I1

+

ˆ
(RNo\A2)∩A1

sup
µ∈M(ε)

dHK
(
µ,µ†)2 dγp (ε)︸ ︷︷ ︸

I2

.

(6.3)

For ε ∈ A1 ∩A2, we have

C2β (p)
−1
((

∥ε∥
Σ−1

0
+β (p)

)2
+ ∥ε∥

Σ−1
0

)
⩽ C4β

−1 (p)
(
∥ε∥

Σ−1
0

+β (p)
)2

+C4β
−1 (p)∥ε∥

Σ−1
0

⩽ θ2

64
+

θ2

64
=

θ2

32
,
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i.e. ε satisfies (5.10). Moreover, expanding the square in the definition of A2, we conclude
that (5.9) also holds due to

2C4

(
‖ε‖Σ−1

0
+β (p)

)
⩽ θ2

32
⩽

√
θ

2
√
32
.

Hence, for ε ∈ A1 ∩A2, there holds M(ε) = {µ̂} and

sup
µ∈M(ε)

dHK
(
µ,µ†)2 = dHK

(
µ̂,µ†)2 ⩽ 8‖δm̂‖2W†

(6.4)

by proposition 5.6. Next, we estimate I1 by

dHK
(
µ̂,µ†)2 ⩽ ∥∥µ†∥∥

M(Ωs)
+ ‖µ̂‖M(Ωs)

⩽ 2
∥∥µ†∥∥

M(Ωs)
+ ‖ε‖2Σ−1

0
/(2β0/

√
p)

applying proposition 3.3 and [24, proposition 7.8]. Together with lemma A.1 this yields

I1 =
ˆ
RNo\A1

dHK
(
µ̂,µ†)2 dγp (ε)⩽ ˆ

RNo\A1

(
2
∥∥µ†∥∥

M(Ωs)
+ ‖ε‖2Σ−1 /(2β0

√
p)
)
dγp (ε)

⩽
(
2
∥∥µ†∥∥

M(Ωs)
+

√
2No

2β0
√
p

)
exp

[
−
(
θ2β0
64C4

)2
/

(2No)

]
.

(6.5)

Finally, for ε ∈ (RNo\A2)∩A1, one has

p1/4
(
θ2β0
64C4

)1/2

−β0 < ‖ε‖Σ−1 = p−1/2 ‖ε‖Σ−1
0

⩽ θ2β0
64C4

where the first inequality follows from ε 6∈ A2 and the second follows from ε ∈ A1. Hence, if
we choose

p⩾ β2
0

(
θ2

64C4
+ 1

)4
/(

θ2

64C4

)2

:= β2
0cp := p

then (RNo\A2)∩A1 is empty and I2 = 0. Together with (6.3)–(6.5), we obtain (6.1) for every
p⩾ p. The equality in (6.2) follows immediately from the closed form expression (5.6) for δm̂
and ε∼N (0,p−1Σ0).

Let us interpret this result: By choosing β0 large enough, the second term on the right hand
side of (6.6) becomes negligible, i.e.

Eγp

[
sup

µ∈M(·)
dHK

(
µ,µ†)2]⩽ 8Eγp

[
‖δm̂‖2W†

]
+ δ (6.6)

for some 0< δ� 1. As a consequence, due to its closed form representation (6.2),
Eγp [‖δm̂‖2W†

] provides a computationally inexpensive, approximate upper surrogate for the
worst-casemean-squared error which vanishes as p→∞.Moreover, due to its explicit depend-
ence on the measurement setup, it represents a suitable candidate for an optimal design cri-
terion in the context of optimal sensor placement for the class of sparse inverse problems under
consideration. This potential will be further investigated in a follow-up paper.
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Remark 6.2. It is worthmentioning that the constant 8 appearing on the right hand side of (6.6)
is not optimal and is primarily a result of the proof technique. In fact, by appropriately selecting
constants in propositions B.2 and 5.2, it is possible to replace 8 by 1+ δ, where 0< δ� 1 at
the cost of increasing p̄. We will illustrate the sharpness of the estimate of the worst-case
mean-squared error by Eγp [‖δm̂‖2W†

] in the subsequent numerical results.

Remark 6.3. Relying on similar arguments as in the proof of theorem 6.1, we are also able
to derive pointwise estimates on the Hellinger–Kantorovich distance which hold with high
probability. Indeed, noticing that (6.4) holds in the set A1 ∩A2, we derive a lower probability
bound for P(ε ∈ A1 ∩A2) by noticing that

P(ε ∈ A1 ∩A2)⩾ P(ε ∈ A1)+P(ε ∈ A2)− 1

⩾ 1−P
(
ε ∈ RNo\A1

)
−P

(
ε ∈ RNo\A2

)
.

By invoking lemma A.1, one has

P
(
ε ∈RNo\A1

)
= P

(
∥ε∥Σ−1 >

θ2β0
64C4

)
⩽ 2exp

[
−
(

θ2β0
64C4

)2
/

(2No)

]
,

P
(
ε ∈RNo\A2

)
= P

(
∥ε∥Σ−1 >

p1/2θβ1/2
0

8C1/2
4

−β0

)
⩽ 2exp

−(p1/2θβ1/2
0

8C1/2
4

−β0

)2/
(2No)

 .
Hence, since exp(−x2)→ 0 as x→∞, we can see that for every δ ∈ (0,1), one can choose
β0 and p large enough such that

exp

[
−
(
θ2β0
64C4

)2
/

(2No)

]
< δ/4, exp

−(p1/2θβ1/2
0

8C1/2
4

−β0

)2/
(2No)

< δ/4,

which implies P(ε ∈ A1 ∩A2)⩾ 1− δ. Therefore, with probability at least 1− δ, we have

sup
µ∈M(ε)

dHK
(
µ,µ†)2 ⩽ 8‖δm̂‖2W†

for realization ε of the noise. Furthermore, employing lemma A.1 again, we know that with
probability at least 1− δ, and independently from p, one has ‖ε‖Σ−1 ⩽

√
−2No ln(δ/2).

Hence, by proposition 5.2 together with ε ∈ A1 ∩A2, we have

sup
µ∈M(ε)

dHK
(
µ,µ†)2 ⩽ 8C1p

−1/2 (‖ε‖Σ−1 +β0)

⩽ 8C1p
−1/2

(√
−2No ln(δ/2)+β0

)
with probability at least 1− 2δ.

7. Numerical results

We end this paper with the study of some numerical examples to illustrate our theory. We
consider a simplified version of example 3.1:
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• The source domain Ωs and observation domain Ωo are the interval [−1,1].
• The reference measure is given by µ† = 0.4δ−0.7 + 0.3δ−0.3 − 0.2δ0.3 ∈M(Ωs).
• The kernel k : [−1,1]× [−1,1]→ R is defined as

k(x,y) = exp

(
− (x− y)2

2σ2

)
,σ = 0.2, x,y ∈ [−1,1] .

• The measurement points {x1, . . . ,xNo} ⊂ Ωo vary between the individual examples and are
marked by grey points in the respective plots. The associated noise model is given by ε∼
N (0,Σ) with Σ−1 = pΣ−1

0 , where Σ−1
0 = (1/No) IdNo .

Following our theory, we attempt to recover µ† by solving (Pβ,ε) using the a priori parameter
choice rule β(p) = β0/

√
p. The regularized problems are solved by the Primal-Dual-Active-

Points method, [26, 31], yielding a solution µ̄. Since the action of the forward operator K
on sparse measures can be computed analytically, the algorithm is implemented on a grid free
level. In addition, we compute a stationary point m̂ of the nonconvex problem (5.1) inducing the
measure µ̂ from (5.7). This is done by a similar iteration to the Gauss-Newton sequence (B.10)
with a nonsmooth adaptation to handle the ℓ1-norm and an added globalization procedure to
make it converge without restrictions on the data. We note that this solution depends on the
initialization of the algorithm at m†, which is usually unavailable in practice. To evaluate the
reconstruction results in a qualitative way, we follow [11] by considering the dual certificates
and pre-certificates; see section 3. Our Matlab implementation is available at https://github.
com/hphuoctruong/OED_SparseInverseProblems.

7.1. Example 1

In the first example, we illustrate the reconstruction capabilities of the proposed ansatz for
different measurement setups and with and without noise in the observations. To this end, we
attempt to recover the reference measure µ† using a variable number No of uniformly dis-
tributed sensors. For noisy data, the regularization parameter is selected as β = β0/

√
p where

β0 = 2 and p= 104. We first consider the exact measurement data with No ∈ {6,9,11} and try
to obtain µ† by solving (P0). The results are shown in figure 1. We observe that with 6 sensors,
the pre-certificate ηPC is not admissible. Recalling [11, proposition 7], this implies that µ† is
not a minimum norm solution. In contrast, the experiments with 9 and 11 uniform sensors
provide admissible pre-certificates. In these situations, the pre-certificates coincide with the
minimum norm dual certificates and the ground truth µ† is indeed an identifiable minimum
norm solution.

Next, we consider noisy data and solve (Pβ,ε) for the aforementioned choice of β(p).
Following the observation in the first example, we only evaluate the reconstruction results
obtained by 9 and 11 uniform sensors. In the absence of the measurement data obtained from
experiments, we generate synthetic noisy measurements where the noise vector ε is a realiza-
tion of the Gaussian random noise ε∼N (0,Σ). The results are shown in figure 2. Since µ† is
identifiable in these cases, µ̂ and µ̄ coincide and closely approximate µ† with high probability
for an appropriate choice of β0 and p large enough. Both properties can be clearly observed in
the plots, where β0 = 2.
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Figure 1. Reconstruction results with exact data using 6 sensors (left), 9 sensors
(middle) and 11 sensors (right).

Figure 2. Reconstruction results with noisy data using 9 sensors (left) and 11 sensors
(right).

7.2. Example 2

In the second example we study the influence of the parameter choice rule on the reconstruction
result. To this end, we fix the measurement setup to 9 uniformly distributed sensors. We recall
that the a priori parameter choice rule is given by β(p) = β0/

√
p. According to section 6.2,
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Figure 3. Reconstruction results with β0 = 2 (left), β0 = 1 (middle) and β0 = 0.5
(right).

selecting a sufficiently large value for β0 is recommended to achieve a high quality recon-
struction. To determine a useful range of regularization parameters, we solve problem (Pβ,ε)
for a sequence of regularization parameters using PDAP. Here, we choose β0 ∈ {0.5,1,2} and
p ∈ {104,105,106}.

In figure 3, different reconstruction results are shown for the same realization of noise, β0 ∈
{0.5,1,2} and p= 104. As one can see, for this particular realization of the noise, the number
of spikes is recovered exactly in the case β0 = 2 and we again observe that µ̂= µ̄. In contrast,
for smaller β0, the noisy pre-certificate is not admissible. Hence, while µ̂ still provides a good
approximation of µ†, µ̄ admits two additional spikes away from the support of µ†. These obser-
vations can be explained by looking at theorem 6.1 the second term on the right hand side of
the inequality becomes negligible for increasing β0 and large enough p. Thus, roughly speak-
ing, the parameter β0 controls the probability of the ‘good events’ in which µ̂ is the unique
solution of (Pβ,ε).

Finally, we address the reconstruction error from a quantitative perspective. For this pur-
pose, we simplify the evaluation of the maximum mean-squared error (MSE) by inserting the
solution µ̄ computed algorithmically. We note that this could only lead to an under-estimation
of the maximum error in the case of non-unique solutions of (Pβ,ε); a degenerate case that
is unlikely to occur in practice. Moreover, the expectation is approximated using 103 Monte-
Carlo samples. Additionally, we use the closed form expression (6.2) for evaluating the linear-
ized estimateEγp [‖δm̂‖2W†

] exactly. Here, the expectations are computed for β0 ∈ {2,0.5}. The
results are collected in table 1. We make several observations: Clearly, the MSE decreases for
increasing p, i.e. lower noise level. For increased β0, the behavior differs: For the theoretical
quantities m̂ and δm̂ increased β0 only introduces additional bias and thus increases error. For
the estimator µ̄, the increased regularization however leads to generally improved results, since
the probability of µ̂ 6= µ̄ is decreased. We highlight in bold the estimator which performed best
for each β0. Here, the results conform to theorem 6.1: For larger β0, the second term on the
right-hand side of (6.1) is negligible and the linearized estimate provides an excellent bound
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Table 1. Reconstruction results with β0 = 2 and β0 = 0.5.

p= 104 p= 105 p= 106 p= 107

β0 = 2
Eγp [∥δm̂∥2W†

] 7.97 · 10−3 7.97 · 10−4 7.97 · 10−5 7.97 · 10−6

Eγp [dHK(µ
†, µ̂)2] 5.43 · 10−3 6.49 · 10−4 7.35 · 10−5 7.76 · 10−6

Eγp [dHK(µ
†, µ̄)2] 5.44 · 10−3 6.51 · 10−4 7.42 · 10−5 7.99 · 10−6

β0 = 0.5
Eγp [∥δm̂∥2W†

] 2.07 · 10−3 2.07 · 10−4 2.07 · 10−5 2.07 · 10−6

Eγp [dHK(µ
†, µ̂)2] 1.71 · 10−3 1.94 · 10−4 2.03 · 10−5 2.06 · 10−6

Eγp [dHK(µ
†, µ̄)2] 4.12 · 10−3 9.83 · 10−4 2.65 · 10−4 7.94 · 10−5

Table 2. Reconstruction results with different sensor setups.

11 sensors ‘selected’ 6 sensors 6 sensors

Eγp [dHK(µ
†, µ̄)2]

p= 104 5.03 · 10−3 4.25 · 10−3 1.54 · 10−2

p= 105 5.61 · 10−4 4.58 · 10−4 1.19 · 10−2

p= 106 6.31 · 10−5 4.65 · 10−5 1.18 · 10−2

Eγp [∥δm̂∥2W†
]

p= 104 6.09 · 10−3 4.77 · 10−3

Infp= 105 6.09 · 10−4 4.77 · 10−4

p= 106 6.09 · 10−5 4.77 · 10−5

on theMSE for both µ̂ and µ̄. We also note that the estimate is closer to theMSE in the limiting
case for larger p. In contrast, for β= 0.5, the linearized estimate and the MSE of µ̂ are much
smaller than the MSE of the estimator µ̄. This underlines the observation that theorem 5.6
requires further restrictions on the admissible noises in comparison to proposition 5.2.

7.3. Example 3

The final example is devoted to compare the reconstruction results obtained by uniform
designs and an improved design chosen by heuristics. To this end, we consider three meas-
urement setups: uniformly distributed setups with 6 and 11 sensors, respectively, and one
with 6 sensors selected on purpose. More precisely, in the later case, we place the sensors
at Ωo = {−0.8,−0.6,−0.4,−0.1,0.1,0.4}. The different error measures are computed as in
the previous example and the results are gathered in table 2. We observe that the measurement
setup with 6 selected sensors performs better than the uniform ones. Moreover, the linearized
estimate again provides a sharp upper bound on the error for both ten uniform and six selected
sensors but yields numerically singular Fisher information matrices for six uniform sensors
(denoted as Inf in the table), i.e. µ† is not stably identifiable in this case. Note that the estim-
ator µ̄ still yields somewhat useful results, which are however affected by a constant error due
to the difference in minimum norm solution and exact source as depicted in figure 1 and do not
improve with lower noise level. These results suggest that the reconstruction quality does not
only rely on the amount of measurements taken but also on their specific setup. In this case, we
point out that the selected sensors are chosen to be adapted to the sources as every two sensors
are placed on the two sides of every source. Thus the obtained results imply that if we have
some reasonable prior information on the source positions and amplitudes, one may obtain a
better sensor placement setup by incorporating it in the design of the measurement setup. This
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leads to the concept of optimal sensor placement problems for sparse inversion which we will
consider in a future work.

8. Conclusion

In the present work, we have considered the inverse problem of estimating an unknown sparse
signal µ† from finitely many measurements perturbed by Gaussian random noise which was
formulated as a linear, ill-posed operator equation in the space of Radon measures. The main
result of the paper is an asymptotical sharp upper bound on the mean-squared error defined in
terms of the Hellinger–Kantorovich distance of a nonsmooth Tikhonov-type estimator which
is confirmed by extensive numerical experiments. Its proof relies on three key concepts: A
suitable a priori regularization parameter choice rule β = β(p) which is adapted to the overall
precision of the measurements p, the non-degeneracy of the minimal-norm dual certificate as
well as a careful linearization argument for the H-K distance on a quantifiable set of random
events. In comparison to the intractable mean-squared error, the new bound is easily comput-
able and explicitly depends on the locations of themeasurement sensors as well as their relative
precision. In perspective, these observations suggest the application of this new-found upper
estimate in the context of optimal sensor design for sparse inverse problems. However, we also
point out that a practical realization of such an approach is not straightforward since the derived
upper bound, i.e. the prospective design criterion, depends on the unknown source µ† and the
non-degeneracy of the minimal-norm certificate, a property that also inherently depends on
the measurement setup. Addressing these problems goes beyond the scope of the current paper
and will be addressed in future work. Moreover, the extension of the presented result towards
vector measures as, e.g. encountered in acoustic inversion is of great interest.
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Appendix A. Auxiliary results

A.1. Gaussian tail bounds

The following lemma gives an estimate on the tail probabilities of a Gaussian random variables
as well as on its moments.

Lemma A.1. Assume that ε0 ∼ γE =N (0, IdNo). Then for every α> 0 there holds

P(‖ε0‖2 > α)⩽ 2exp

(
− α2

2No

)
.

Moreover for l⩾ 1, with Cl = (2l− 1)!! = (2l− 1)(2l− 3) · · ·1, we have
ˆ
∥ε0∥2>α

‖ε0‖l2 dγE (ε0)⩽
√
2NoCl exp

(
− α2

4No

)
= exp

(
− α2

4No
+ log(2NoCl)/2

)
.

Proof. According to remark 4 in [32], we get for any λ> 0 that

P(‖ε0‖2 > α) =

ˆ
∥ε0∥>α

dγE (ε0)⩽ 2exp(−λα)exp
(
λ2No/2

)
.

Minimizing the right-hand side with respect to λ yields λ= α/No and the first estimate. The
second inequality is due to

ˆ
∥ε0∥>α

‖ε0‖l2 dγE (ε0)⩽
√ˆ

‖ε0‖2l2 dγE (ε0)

√
2exp

(
− α2

2No

)

with Cauchy-Schwarz. The proof is finished noting that E[‖ε0‖2l2 ] = NoCl where Cl = (2l−
1)!! denotes the 2l-the moment of the univariate standard normal distribution.

A.2. Some results on measurability

In this section we address the measurability of the worst-case distance function

ε 7→ sup
µ∈M(ε)

dHK
(
µ,µ†) (A.1)

as well as the boundedness of its second moment. For this purpose, recall the definition of the
solution set

M(ε) = argmin
µ∈M(Ωs)

[
1
2

∥∥Kµ− zd (ε)
∥∥2
Σ−1

0
+β ‖µ‖M(Ωs)

]
and note that M(ε) is weak∗ compact. We first show that the supremum in (A.1) is attained
and give a useful upper bound on it.

Lemma A.2. For every ε ∈ RNo , there is µ̄(ε) ∈M(ε) with

dHK
(
µ̄(ε) ,µ†)= sup

µ∈M(ε)

dHK
(
µ,µ†) .
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Moreover, we have

sup
µ∈M(ε)

dHK
(
µ,µ†)2 ⩽ 2

∥∥µ†∥∥
M(Ωs)

+
1
2β

‖ε‖2Σ−1
0
. (A.2)

Proof. The inequality (A.2) follows from proposition 3.3 and [24, proposition 7.18]. Hence,
there exists a supremizing sequence {µk}k ⊂M(ε), i.e,

lim
k→∞

dHK
(
µk,µ

†)= sup
µ∈M(ε)

dHK
(
µ,µ†) .

Due to weak∗ compactness ofM(ε), it admits a subsequence, denoted by the same subscript,
as well as µ̄(ε) ∈M(ε) with µk ⇀∗ µ̄(ε). Since dHK metrizes weak∗ convergence, the inverse
triangle inequality yields

|dHK
(
µk,µ

†)− dHK
(
µ̄(ε) ,µ†) |⩽ dHK (µ̄(ε) ,µk)→ 0

and thus

dHK
(
µ̄(ε) ,µ†)= lim

k→∞
dHK

(
µk,µ

†)= sup
µ∈M(ε)

dHK
(
µ,µ†) .

Using lemma A.2, we conclude the measurability of the worst-case distance.

Proposition A.3. The function defined in (A.1) is γp-measurable. Moreover, there holds

Ep

[
sup

µ∈M(·)
dHK

(
µ,µ†)2]⩽ 2

∥∥µ†∥∥
M(Ωs)

+
N0

2βp
<∞

Proof. For abbreviation, define

Err [µ̄] (ε) = sup
µ∈M(ε)

dHK
(
µ,µ†)

and let {εk}k denote a convergent sequence with limit ε. Note that the set
⋃
kM(εk) as well as

the sequence Err[µ̄](εk) are bounded. Now, choose a subsequence {εk,i}i such that

lim
i→∞

Err [µ̄] (εk,i) = limsup
k→∞

Err [µ̄] (εk)

and let {µ̄(εk,i)}i be a corresponding sequence of maximizers from lemma A.2. By possibly
extracting another subsequence, there is µ̃ with µ̄(εk,i)⇀∗ µ̃. By standard arguments, we
verify that µ̃ ∈M(ε). Consequently, we have

limsup
k→∞

Err [µ̄] (εk) = lim
i→∞

Err [µ̄] (εk,i) = lim
i→∞

dHK
(
µ(εk,i) ,µ

†)2 = dHK
(
µ̃,µ†)2 ⩽ Err [µ̄] (ε) .

Hence Err[µ̄] is upper semicontinuous and thus measurable w.r.t γp. Finally, we apply (A.2) to
conclude

Ep

[
sup

µ∈M(·)
dHK

(
µ,µ†)2]⩽ 2

∥∥µ†∥∥
M(Ωs)

+
1
2β

Ep

[
‖ε‖2Σ−1

0

]
⩽ 2

∥∥µ†∥∥
M(Ωs)

+
N0

2βp
.
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Appendix B. Proofs of proposition

In this section we provide the omitted proofs of proposition 5.2 and 5.4, respectively, as well
as all the auxiliary results needed in their derivation.

Proposition B.1. The following estimates hold:∥∥∥Σ−1/2
0 G ′ (m)δm

∥∥∥
2
⩽ Ck ∥δq/w∥2 +C ′

k

√
∥q∥1 ∥wδy∥2 ,∥∥∥Σ−1/2

0 G ′ ′ (m)(δm, τm)
∥∥∥
2
⩽ C ′

k (∥δq/w∥2 ∥wτy∥2 + ∥τq/w∥2 ∥wδy∥2)+C ′ ′
k ∥wδy∥2 ∥wτy∥2 ,

where wn =
√

|qn|. In particular, with the W-norm ‖δm‖2W := ‖δq/w‖22 /4+ ‖wδy‖22 with W=
W(m), we have ∥∥∥Σ−1/2

0 G ′ (m)
∥∥∥
W→2

⩽ (2Ck+C ′
k)
√
‖q‖1, (B.1)∥∥∥Σ−1/2

0 G ′ ′ (m)
∥∥∥
W×W→2

⩽ 4C ′
k +C ′ ′

k . (B.2)

Proof. We first notice that ‖v‖Σ−1
0

⩽ ‖v‖∞ due to tr Σ−1
0 = 1. In addition, one can write

[G ′ (m)δm]k =

Ns∑
n=1

k(xk,yn)δqn+(∇yk(xk,yn))
⊤
δyn qn

=

Ns∑
n=1

k(xk,yn)wn δqn/wn+(∇yk(xk,yn))
⊤wnδyn qn/wn

[G ′ ′ (m)(δm, τm)]k =

Ns∑
n=1

(∇yk(xk,yn))
⊤
δyn τqn+(∇yk(xk,yn))

⊤
τyn δqn

+ δy⊤n ∇2
yyk(xk,yn)τynqn.

Here, we choose wn =
√
|qn|. Hence, by estimating term by term, we have

‖G ′ (m)δm‖Σ−1
0

⩽ Ck ‖w‖2 ‖δq/w‖2 +C ′
k ‖q/w‖2 ‖wδy‖2 ⩽ (2Ck+C ′

k)
√

‖q‖1 ‖δm‖W ,

which implies (B.1). A similar argument gives (B.2).

Proposition B.2. Define the constant

r† = r
(
µ†) :=min

{
min

{
w†
n/8, dw†

n

(
y†n,∂Ω

)
/2
}
| n= 1, . . . ,Ns

}
.

Then for every m ∈ BW†(m
†,r†), there holds signq= signq† and

R
(
q,q†

)
⩽ 2 and 1/2

∥∥q†∥∥
1
⩽ ‖q‖1 ⩽ 2

∥∥q†∥∥
1
, (B.3)

where R(q,q†) is the maximal ratio of the weights wn and w†
n from proposition 4.2.

In addition, for all m,m ′ ∈ BW†(m
†,r†) and δm, there holds∥∥∥Σ−1/2

0 (G(m)−G(m ′))
∥∥∥
2
⩽ LG ‖m−m ′‖W†

, (B.4)
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∥∥∥Σ−1/2
0 G ′ (m)δm

∥∥∥
2
⩽ LG ‖δm‖W†

, (B.5)∥∥∥Σ−1/2
0 (G ′ (m)−G ′ (m ′))δm

∥∥∥
2
⩽ LG ′ ‖m−m ′‖W†

‖δm‖W†
, (B.6)

where LG := 4(2Ck+C ′
k)
√∥∥q†∥∥

1
and LG ′ := 2(4C ′

k +C ′ ′
k ).

Proof. For m ∈ BW†(m
†,r), one has

|qn− q†n|/w†
n ⩽

∥∥(q− q†
)
/w†∥∥

2
⩽ 4

∥∥m−m†∥∥
W†

⩽ 1/2w†
n, ∀n= 1, . . . ,Ns.

This implies 1/2⩽ qn/q†n ⩽ 3/2 for all n= 1,2, . . . ,Ns. Hence, signq= signq† and (B.3) fol-
lows. Also, the condition r† ⩽ dw†

n
(y†n,∂Ω)/2 guarantees that yn ∈ Ωs for all n= 1, . . . ,Ns. By

proposition (B.1) and (B.3), it can now be seen that∥∥∥Σ−1/2
0 (G(m)−G(m ′))

∥∥∥
2
=

∥∥∥∥∥Σ−1/2
0

ˆ 1

0
G ′ (m ′ + t(m−m ′))dt(m−m ′)

∥∥∥∥∥
2

⩽
ˆ 1

0

∥∥∥Σ−1/2
0 G ′ (m ′ + t(m−m ′))

∥∥∥
W†→2

dt‖m−m ′‖W†
,

(B.7)

for every m,m ′ ∈ BW†(m
†,r†). Next, since m ′ + t(m−m ′) ∈ BW†(m

†,r†), for W=W(m ′ +

t(m−m ′)) and W† =W†(m†), we use (4.7), (B.3) and (B.1) to deduce that∥∥∥Σ−1/2
0 G ′ (m ′ + t(m−m ′))

∥∥∥
W†→2

⩽ 2
∥∥∥Σ−1/2

0 G ′ (m ′ + t(m−m ′))
∥∥∥
W→2

⩽ 2(2Ck+C ′
k)
√
‖q ′ + t(q− q ′)‖1

⩽ 4(2Ck+C ′
k)
√
‖q†‖1.

(B.8)

Combining (B.7) and (B.8), we deduce now (B.4). Similarly, (B.5) follows from (B.1)
and (B.3) as well. Moreover, (B.6) can be proved using the estimate (B.2) with a similar
argument.

Proof of proposition 5.2. Since G ′(m†) has full column rank, the Fisher information matrix
I0 defined in (5.5) is invertible. Hence, the map T(m) :=m−I−1

0 S(m) is well-defined, where
S(m) is the residual of the stationarity equation given in (5.4) with ρ̄= ρ= signq†. In order
to obtain the claimed results, we aim to show that T is a contraction and argue similarly to the
proof of the Banach fixed point theorem. However, since the correct domain of definition for
the map T is difficult to determine beforehand, we provide a direct proof.

We start by showing that T is Lipschitz continuous on the ball BW†(m†, r̂) for some as of
yet undetermined 0< r̂⩽ rwith Lipschitz constant κ(r̂)⩽ 1/2 if ε is chosen suitably. For this
purpose, consider two points m and m ′ in BW†(m†, r̂), their difference δm=m−m ′ and the
difference of their images δmT = T(m)−T(m ′). Note that

I0δmT = I0δm− (S(m)− S(m ′))

=
(
G ′ (m†)−G ′ (m)

)⊤
Σ−1

0 G ′ (m†)δm
+G ′ (m)

⊤
Σ−1

0

(
G ′ (m†)δm− (G(m)−G(m ′))

)
− (G ′ (m)−G ′ (m ′))

⊤
Σ−1

0

(
G(m ′)−G

(
m†)− ε

)
.

33



Inverse Problems 40 (2024) 055007 P-T Huynh et al

We multiply this equation from the left with (δmT)
⊤ and consider each term on the right hand

side separately. Using proposition B.2, we have for the first term

(δmT)
⊤ (G ′ (m†)−G ′ (m)

)⊤
Σ−1

0 G ′ (m†)δm
=
(
Σ

−1/2
0

(
G ′ (m†)−G ′ (m)

)
δmT

)⊤
Σ

−1/2
0 G ′ (m†)δm

⩽
∥∥∥Σ−1/2

0

(
G ′ (m†)−G ′ (m)

)
δmT

∥∥∥
2

∥∥∥Σ−1/2
0 G ′ (m†)δm∥∥∥

2

⩽ LGLG ′
∥∥m† −m

∥∥
W†

‖δm‖W†
‖δmT‖W†

.

For the second term we estimate

(δmT)
⊤G ′ (m)

⊤
Σ−1

0

(
G ′ (m†)δm− (G(m)−G(m ′))

)
=
(
Σ

−1/2
0 G ′ (m)δmT

)⊤
Σ

−1/2
0

ˆ 1

0

(
G ′ (m†)−G ′ (τm+(1− τ)m ′)

)
δmdτ

⩽ LGLG ′

ˆ 1

0

∥∥m† − (τm+(1− τ)m ′)
∥∥
W†

dτ ‖δm‖W†
‖δmT‖W†

and for the third term we have

(δmT)
⊤
(G ′ (m)−G ′ (m ′))

⊤
Σ−1

0

(
G(m ′)−G

(
m†)− ε

)
=
(
Σ

−1/2
0 (G ′ (m)−G ′ (m ′))δmT

)⊤
Σ

−1/2
0

(
G(m ′)−G

(
m†)− ε

)
⩽ LG ′

(
LG
∥∥m† −m ′∥∥

W†
+ ‖ε‖Σ−1

0

)
‖δm‖W†

‖δmT‖W†
.

Since m,m ′ are contained in the ball BW†(m†, r̂) it follows that∥∥I−1
0

∥∥−1

W−1
† →W†

‖mT‖2W†
⩽ (δmT)

⊤I0δmT ⩽ LG ′

(
3LGr̂+ ‖ε‖Σ−1

0

)
‖δmT‖W†

‖δm‖W†
,

using the fact that one has

m⊤I0m=
(
W1/2

† m
)⊤ [

W−1/2
† I0W−1/2

†

](
W1/2

† m
)

⩾ ‖m‖2W†

∥∥∥W1/2
† I−1

0 W1/2
†

∥∥∥−1

2→2
= ‖m‖2W†

∥∥I−1
0

∥∥−1

W−1
† →W†

.

Dividing by ‖mT‖W†
, the estimate

‖T(m)−T(m ′)‖W†
= ‖δmT‖W†

⩽ κ(r̂)‖δm‖W†
= κ(r̂)‖m−m ′‖W†

follows with

κ(r̂) := LG ′
∥∥I−1

0

∥∥
W−1

† →W†

(
3LGr̂+ ‖ε‖Σ−1

0

)
.

The contraction estimate above holds for any r̂⩽ r under the assumption that the points
under consideration lie in the appropriate ball. In order to ensure contraction, we need to estab-
lish an appropriate bound and assumptions on the data. For this, we consider the linearized
estimate

δm̂=−I−1
0 S

(
m†)= I−1

0

[
G ′ (m†)⊤Σ−1

0 ε−β (ρ;0)
]
,
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from (5.6). Using the weighted W†-norm defined in proposition B.1, one has

‖δm̂‖W†
⩽
∥∥I−1

0

∥∥
W−1

† →W†

(∥∥∥∥(Σ−1/2
0 G ′ (m†))⊤Σ

−1/2
0 ε

∥∥∥∥
W−1

†

+β ‖(ρ;0)‖W−1
†

)

⩽
∥∥I−1

0

∥∥
W−1

† →W†

(∥∥∥∥(Σ−1/2
0 G ′ (m†))⊤∥∥∥∥

2→W−1
†

∥∥∥Σ−1/2
0 ε

∥∥∥
2
+β
√
‖q†‖1

)

⩽
∥∥I−1

0

∥∥
W−1

† →W†

(
LG ‖ε‖Σ−1

0
+β
√
‖q†‖1

)
,

where we have used (B.1) together with
∥∥A⊤

∥∥
2→W−1

†
= ‖A‖W†→2 and ‖(ρ;0)‖W−1

†
=
√
‖q†‖1.

In the following, we denote

c1 :=
∥∥I−1

0

∥∥
W−1

† →W†

(
LG+

√
‖q†‖1

)
, c2 := LG ′

∥∥I−1
0

∥∥
W−1

† →W†
(6LGc1 + 1) .

If we now choose r̂=min
{
c1/c2, r†/2

}
and assume that

‖ε‖Σ−1
0

+β ⩽ r̂
2c1

=min

{
1
2c2

,
r†

4c1

}
, (B.9)

then it follows immediately with the previous estimates that

‖δm̂‖W†
⩽ c1

(
‖ε‖Σ−1

0
+β
)
⩽ r̂

2
and κ(r̂)⩽ 1/2.

We are now ready to show the existence of a fixed point in BW†(m
†, r̂) as well as the claimed

estimates. For this purpose, consider the simplified Gauss-Newton iterative sequence

m0 =m†, mk+1 = T
(
mk
)
=mk−I−1

0 S
(
mk
)
, k⩾ 1. (B.10)

Put δmk :=mk−mk−1, k⩾ 1. It can be seen that the first Gauss-Newton step is given by δm1 =
δm̂. We use induction to prove that mk ∈ BW†(m

†, r̂) for all k⩾ 0. Indeed, if ε satisfies (B.9),
we have

∥∥m1 −m†
∥∥
W†

= ‖δm̂‖W†
⩽ r̂/2, which implies m1 ∈ BW†(m

†, r̂). Assume that mk ∈
BW†(m

†, r̂). Notice that it holds
∥∥δmk+1

∥∥
W†

=
∥∥T(mk)−T(mk−1)

∥∥
W†

⩽ κ
∥∥δmk

∥∥
W†

. Then,

with dk :=
∥∥δmk

∥∥
W†

and ek :=
∑k

i=1 d
i we have

dk+1 ⩽ κdk and ek ⩽ 1−κk

1−κ
d1 ⩽ 1

1−κ
d1.

Hence,

∥∥mk+1 −m†∥∥
W†

⩽
k+1∑
i=1

∥∥mi −mi−1
∥∥
W†

= ek ⩽ 1
1−κ

d1 ⩽ 2‖δm̂‖W†
⩽ r̂, (B.11)

and thus mk+1 ∈ BW†(m
†, r̂). Going to the limit, by standard arguments, we obtain that mk →

m̂ ∈ BW†(m
†, r̂) with T(m̂) = m̂ and thus S(m̂) = 0. Furthermore, by letting k→∞ in (B.11),

we obtain
∥∥m̂−m†

∥∥
W†

⩽ 2‖δm̂‖W†
.
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For the second estimate, we rewrite the difference between the error and the perturbation
in terms of all updates

m̂−m† − δm̂= m̂−m0 − δm1 =
∞∑
k=2

δmk.

Now, choosing m :=mk+1 and m ′ :=mk we have the contraction estimate∥∥δmk
∥∥
W†

⩽ κ(r̃)
∥∥δmk−1

∥∥
W†
,

where r̂ is now replaced by r̃=max{
∥∥mk+1 −m†

∥∥ , ∥∥mk−m†
∥∥}⩽ 2d1 ⩽ 2c1(‖ε‖Σ−1

0
+

β) and thus κ(r̃)⩽ c2(‖ε‖Σ−1
0

+β). Hence, bounding the updates by
∥∥δmk

∥∥
W†

= dk ⩽
κ(r̃)k−1d1 ⩽ (1/2)k−2κ(r̃)d1, we conclude

∥∥m̂−m† − δm̂
∥∥
W†

⩽
∞∑
k=2

(1/2)k−2
κ(r̃)d1 ⩽ 2c1c2

(
‖ε‖Σ−1

0
+β
)2
. (B.12)

It remains to argue that m̂ is the unique stationary point of (5.1) on BW†(m
†,(3/2)r̂).

Replacing r̂ with r̃= (3/2)r̂) we still obtain the Lipschitz constant κ((3/2)r̂)⩽ 3/4 on the
slightly larger ball. Now, assume that m̃ is any stationary point in the larger ball, thus also
fixed point of T and

‖m̃− m̂‖W†
= ‖T(m̃)−T(m̂)‖W†

⩽ (3/4)‖m̃− m̂‖W†
,

yielding m̃= m̂.

Remark B.3. Following (B.9) and (B.12), the constant C1 in the statement of proposition 5.2
can be chosen explicitly as

C1 =max

{
c1,

4c1
r†
,2c2

}
.

Next, in order to prove proposition 5.4, we require the following estimates on K∗.

Lemma B.4. Suppose that η(y) = [K∗Σ−1
0 ζ](y) for y ∈ Ωs, ζ ∈ RNo . Then

sup
y∈Ωs

|Dη (y) |⩽ CD
∥∥∥Σ−1/2

0 ζ
∥∥∥
2
.

for D ∈ { Id,∇,∇2,∇3 } and CD ∈ {Ck,C ′
k,C

′ ′
k ,C

′ ′
k

′ }, respectively.

Proof. One can see that η can be written as

η (y) =
[
K∗Σ−1

0 ζ
]
(y) =

(
Σ−1

0 ζ,k [x,y]
)
2
=

No∑
n=1

(
Σ−1

0 ζ
)
n
k(xn,y) . (B.13)

Hence, for every y ∈ Ωs there holds

|η (y) |⩽
No∑
n=1

|
(
Σ−1

0 ζ
)
n
||k(xn,y) |⩽ sup

x∈Ωo,y∈Ωs

|k(x,y) |
No∑
n=1

|
(
Σ−1

0 ζ
)
n
|= Ck

∥∥Σ−1
0 ζ
∥∥
1
.
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Since
∑No

n=1σ
−2
0,n = 1, we have

∥∥∥Σ−1/2
0 v

∥∥∥
1
=

No∑
n=1

σ−1
0,nvn ⩽

√√√√ No∑
n=1

σ−2
0,n

√√√√ No∑
n=1

|vn|2 = ‖v‖2 , ∀v ∈ RNo

Hence,
∥∥Σ−1

0 ζ
∥∥
1
⩽
∥∥∥Σ−1/2

0 ζ
∥∥∥
2
. From (B.13) the other estimates follow similarly by taking

derivatives.

Proof of proposition 5.4. By the definition of η̂, one has

η̂ (ŷn) = sign(q̂n) = sign
(
q†n
)
and ∇η̂ (ŷn) = 0, n= 1, . . . ,Ns.

We now prove the θ/2-admissibility of η̂ if (5.9)–(5.10) hold, namely

− signη̂ (ŷn)∇2η̂ (ŷn)⩾ θ|w†
n|2 Id, ∀n= 1, . . . ,Ns, (B.14)

|η̂ (y) |⩽ 1− (θ/2)2 , ∀y ∈ Ωs \
⋃

n=1,...,Ns

Bw†
n

(
ŷn,
√
θ/2
)

(B.15)

Compare this to (3.9)–(3.10) for ηPC. To this end, consider the noisy pre-certificate

ηPC,ε :=−β−1K∗Σ−1
0

(
G ′ (m†)δm̂− ε

)
= β−1K∗Σ−1

0

[
G ′ (m†)I−1

0

(
β (ρ;0)−G ′ (m†)⊤Σ−1

0 ε
)
+ ε
]

= ηPC −β−1K∗Σ
−1/2
0

[
Σ

−1/2
0 G ′ (m†)I−1

0 G ′ (m†)⊤Σ
−1/2
0 − Id

](
Σ

−1/2
0 ε

)
= ηPC −β−1K∗Σ

−1/2
0 [P− Id]

(
Σ

−1/2
0 ε

)
,

(B.16)

where ηPC is given in (5.8) and P is an orthogonal projection to theNs−No(1+ d) dimensional
range of Σ−1/2

0 G ′(m†). This implies

η̂ =−β−1K∗Σ−1
0

(
G(m̂)−G

(
m†)− ε

)
= ηPC,ε −β−1K∗Σ−1

0

(
G(m̂)−G

(
m†)−G ′ (m†)δm̂)

= ηPC −β−1

K∗Σ
−1/2
0 [P− Id]

(
Σ

−1/2
0 ε

)
︸ ︷︷ ︸

e1

−K∗Σ−1
0

(
G(m̂)−G

(
m†)−G ′ (m†)δm̂)︸ ︷︷ ︸

e2

 .
Applying lemma B.4, we have

‖e1‖C(Ωs)
⩽ Ck

∥∥∥Σ−1/2
0 [P− Id]Σ−1/2

0 ε
∥∥∥
1

⩽ Ck
∥∥∥[P− Id]Σ−1/2

0 ε
∥∥∥
2
⩽ Ck ‖ε‖Σ−1

0
.

In order to estimate e2, we apply lemma B.4 and proposition B.1 to have

‖e2‖C(Ωs)
⩽ Ck

∥∥Σ−1
0

(
G(m̂)−G

(
m†)−G ′ (m†)δm̂)∥∥

1

⩽ Ck
∥∥∥Σ−1/2

0

(
G(m̂)−G

(
m†)−G ′ (m†)δm̂)∥∥∥

2
.

(B.17)
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Notice that

G(m̂)−G
(
m†)−G ′ (m†)δm̂= G ′ (m†)(m̂−m† − δm̂

)
+

ˆ 1

0

(
G ′ (mτ )−G ′ (m†))(m̂−m†)dτ

where mτ =m† + τ(m̂−m†). Using this together with propositions B.2 and 5.2, we have

‖e2‖C(Ωs) ⩽ Ck(‖Σ−1/2
0 G ′(m†)(m̂−m† − δm̂)‖2

+

ˆ 1

0
‖Σ−1/2

0 (G ′(mτ )−G ′(m†))(m̂−m†)‖2dτ)

⩽ Ck(LG‖m̂−m† − δm̂‖W† +LG ′‖m̂−m†‖2W†
)

⩽ Ck(LG+LG ′)C2
1(‖ε‖Σ−1

0
+β)2.

(B.18)

Combining (B.16)–(B.18), we have

‖η̂− ηPC‖C(Ωs)
⩽ c3β

−1

[(
‖ε‖Σ−1

0
+β
)2

+ ‖ε‖Σ−1
0

]
,

where c3 := Ck((LG+LG ′)C2
1 + 1). This yields

|η̂ (y) |⩽ |η̂ (y)− ηPC (y) |+ |ηPC (y) |
⩽ ‖η̂− ηPC‖C(Ωs)

+ |ηPC (y) |

⩽ c3β
−1

[(
‖ε‖Σ−1

0
+β
)2

+ ‖ε‖Σ−1
0

]
+ |ηPC (y) |.

(B.19)

We first prove (B.15). Assume that (5.9) holds. Using proposition 5.2, we know that for
y ∈ Ωs \

⋃
n=1,...,Ns

Bw†
n
(ŷn,

√
θ/2), there holds∥∥w†

n

(
y− y†n

)∥∥
2
⩾
∥∥w†

n (y− ŷn)
∥∥
2
−
∥∥m̂−m†∥∥

W†
⩾
√
θ/2−

√
θ/32=

√
9θ/32.

Hence, since ηPC is non-degenerate, we have by (3.8) that

|ηPC (y) |⩽ 1− θmin
{
θ,
∥∥w†

n

(
y− y†n

)∥∥2
2

}
⩽ 1− θmin{θ,9θ/32}= 1− 9θ2/32.

This, (B.19) and condition (5.10) with C2 = c3 imply that

|η̂ (y) |⩽ θ2/32+
(
1− 9θ2/32

)
= 1− (θ/2)2 , for every y ∈ Ωs \

⋃
n=1,...,Ns

Bw†
n

(
ŷn,
√
θ/2
)
,

which is indeed (B.15).
We next prove (B.14). Following the same arguments as for (B.17)–(B.18) together with

lemma B.4, we have for c ′ ′3 := C ′ ′
k ((LG+LG ′)C2

1 + 1) that

sup
y∈Ωs

∥∥∇2η̂−∇2ηPC
∥∥
2→2

⩽ c ′ ′3 β
−1

[(
‖ε‖Σ−1

0
+β
)2

+ ‖ε‖Σ−1
0

]
. (B.20)
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In addition, by invoking assumption A1 on the boundedness of the third derivative of k, we
obtain∥∥∇2ηPC (ŷn)−∇2ηPC

(
y†n
)∥∥

2→2
⩽
∥∥ŷn− y†n

∥∥
2
sup
y∈Ωs

∥∥∇3ηPC (y)
∥∥
2×2→2

⩽ |w†
n|−1

∥∥w†
n

(
ŷn− y†n

)∥∥
2
C ′ ′ ′
k

∥∥∥Σ−1/2
0 G ′ (m†)I−1

0 (ρ;0)
∥∥∥
2

⩽ |w†
n|−1

∥∥m̂−m†∥∥
W†
C ′ ′ ′
k LG

∥∥I−1
0

∥∥
W−1

† →W†
‖(ρ;0)‖W†

⩽ |w†
n|−1C ′ ′ ′

k LG
√
‖q†‖1

∥∥I−1
0

∥∥
W−1

† →W†
C1

(
‖ε‖Σ−1

0
+β
)

⩽ c4β
−1

[(
‖ε‖Σ−1

0
+β
)2

+ ‖ε‖Σ−1
0

]
,

(B.21)

with c4 :=maxn |w†
n|−1C ′ ′

k
′LG
√
‖q†‖1

∥∥I−1
0

∥∥
W−1

† →W†
C1.

From (B.20)–(B.21), we have∥∥∥∇2η̂ (̂yn)−∇2ηPC

(
y†n
)∥∥∥

2→2
=

∥∥∥∇2η̂ (̂yn)−∇2ηPC (̂yn)
∥∥∥
2→2

+
∥∥∥∇2ηPC (̂yn)−∇2ηPC

(
y†n
)∥∥∥

2→2

⩽
(
c ′ ′3 + c4

)
β−1

[(
∥ε∥

Σ−1
0

+β
)2

+ ∥ε∥
Σ−1

0

]
for every n= 1, . . . ,Ns. If we set C2 = (c ′ ′3 + c4)maxn |w†

n|−2 and require

C2β
−1

[(
‖ε‖Σ−1

0
+β
)2

+ ‖ε‖Σ−1
0

]
⩽ θ2/32

and that ηPC is θ−admissible with 0< θ ⩽ 1, we have with (3.9) for ηPC for any vector ξ that

−signη̂ (̂yn)ξ
⊤∇2η̂ (̂yn)ξ ⩾−signηPC

(
y†n
)
ξ⊤∇2ηPC

(
y†n
)
ξ−∥ξ ∥22

∥∥∥∇2η̂ (̂yn)−∇2ηPC

(
y†n
)∥∥∥

2→2

⩾ 2θ|w†
n|2 ∥ξ ∥22 − θ2/32|w†

n|2 ∥ξ ∥22 ⩾ θ|w†
n|2 ∥ξ ∥22

and η̂ satisfies (B.14). Hence, we conclude that η̂ is θ/2-admissible for µ̂.

Remark B.5. In fact, the constant C2 in the proof of proposition 5.4 can be chosen as

C2 =max
{
c3,(c

′ ′
3 + c4)max

n
|w†

n|−2
}
.

Since these constants depend monotonically on
∥∥I−1

0

∥∥
W−1

† →W†
, we also have the monotone

dependence of C2 on
∥∥I−1

0

∥∥
W−1

† →W†
.

Appendix C. Discussion on possible distance candidates

The Hellinger–Kantorovich distance introduced in this paper turns out to be a suitable dis-
tance to quantify the reconstruction. Nevertheless, it is worth mentioning that other choices of
distances are possible, for instance the Kantorovich–Rubinstein distance.
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C.1. Kantorovich-Rubinstein distance

The distance induced by the Kantorovich–Rubinstein (KR) norm (equivalent to the ‘Bounded-
Lipschitz’ norm) is also referred to as the ‘flat’ metric, and metricises weak∗ convergence on
bounded sets inM(Ωs). The norm can be defined by

‖µ‖KR := sup

{ˆ
Ωs

fdµ : f ∈ C0,1 (Ωs) ,‖f‖C(Ωs)
⩽ 1 and Lip( f)⩽ 1

}
.

Here, C0,1(Ωs) is the space of Lipschitz functions on Ωs and

Lip( f) := sup
x ̸=y

‖f(x)− f(y)‖
‖x− y‖

, x,y ∈ Ωs.

The KR distance is then set to

dKR (µ1,µ2) = ‖µ1 −µ2‖KR .

Although its evaluation for general sparse measures requires the solution of a minimization
problem (see [21]) it has many useful properties. For positive measures µ1,µ2 ⩾ 0 it is equival-
ent to a generalized Wasserstein-1 distance for measures not necessarily of the same TV-norm
as in [28];

dKR (µ1,µ2) = inf
{ µ̃1,µ̃2 : ∥µ̃1∥M=∥µ̃2∥M}

[‖µ̃1 −µ1‖M + ‖µ̃2 −µ2‖M +W1 (µ̃1, µ̃2)] . (C.1)

For signed measures, we use the Jordan decomposition µi = µ+
i −µ−

i and observe that

dKR (µ1,µ2) =
∥∥(µ+

1 +µ−
2

)
−
(
µ+
2 +µ−

1

)∥∥
KR

= dKR
(
µ+
1 +µ−

2 ,µ
+
2 +µ−

1

)
,

which then allows to apply the characterization (C.1). This representation, together with the
help of [28, proposition 2] allows to characterize the KR distance of single point sources with
weight of equal sign:

dKR (q1δy1 ,q2δy2) = min
0⩽θsignq1⩽min{|q1|,|q2|}

[|θ− q1|+ |θ− q2|+ θ‖y1 − y2‖2]

= |q1 − q2|+min{|q1|, |q2|}min{‖y1 − y2‖2 ,2} . (C.2)

For the case of signq1 6= signq2, we instead have dKR(q1δy1 ,q2δy2) = |q1|+ |q2|. The above
formula can be used for all finitely supported measures with the same number of support points
by applying the triangle inequality. Motivated by property (C.2), the Kantorovich-Rubinstein
distance dKR is also appropriate to quantify the distance between two discrete measures, and
a similar upper bound as in proposition 4.2 can be obtained, i.e.

dKR
(
µ,µ†)⩽ N∑

n=1

(
|qn− q†n|+ |q†n|

∥∥yn− y†n
∥∥
2

)
⩽ 2
√

2‖µ†‖
∥∥m−m†∥∥

W†
,

However, this bound either uses an ℓ1 like sum over the weighted errors, which is not suitable
for the rest of our analysis, or the equivalence between a weighted ℓ1 and ℓ2 norm (by Hölder’s
inequality), and is not an asymptotically sharp bound.

40



Inverse Problems 40 (2024) 055007 P-T Huynh et al

Appendix D. Notation table

Ωs, Ωo location and observation set, both compact
N†
s , y

†
n , q

†
n Unknown number, positions and coefficients of ground truth sources

y†, q†, m† Concatenated source/measurement locations, coefficients,m† = (y†;q†)
w†, W† weight vector and weight matrix induced by q†, (4.6) et sqq.
No, xj Given number and locations of measurements
k Integral kernel, see section 2.2.1
∇yk, ∇2

yyk, ∇3
yyyk (Higher-order) partial derivatives of k w.r.t y

Ck,C
′
k ,C

′ ′
k ,C ′ ′ ′

k Bounds on k, ∇yk, ∇2
yyk, ∇3

yyyk, see assumption A1
k[x,y], k[x,y] Evaluation of k(·,y), k(x, ·) along x, y, respectively, (2.1) and (2.2)
∇⊤
y k[x,y] Evaluation of ∇yk(x, ·)⊤ along y, (2.4)

k[x,y], ∇⊤
y k[x,y] Evaluation of k[·,y],∇⊤

y k[·,y] along x, (2.3) and (2.5)
K, K∗ Source-to-measurements operator, (2.6). (pre)-adjoint K= (K∗)∗, (2.7)
ε Measurement noise, deterministic or random
zd(ε) Observed measurements given noise ε, (3.1)
M(Ωs), ∥·∥M(Ωs)

Space of Radon measures on Ωs and associated norm, section 2.2.2
µ† Sparse ground truth measure, (1.2)
(P0), (Pβ,ε) Minimum norm problem, regularized problem
M(ε) Solution set of problem (Pβ,ε)
β(ε), β(p), β0 Parameter choice rules, β(p) = β0/

√
p

η†, ηPC, η̄ Minimum norm dual certificate, (3.6), vanishing derivative
pre-certificate, (3.7) dual certificate, dual certificate of problem (Pβ,ε)

θ Non-degeneracy parameter, definition 3.8
dTV, dKR, dHK Total variation, Kantorovich–Rubinstein, Hellinger Kantorovich metrics
I0, ρ Fisher information and sign vector, (1.5)
p, Σ0 Overall precision of measurements, normalized covariance matrix
Σ, γp Parametrized covariance matrix Σ= p−1Σ0 and

Gaussian γp =N (0,Σ)
G(m) Measurements k[x,y]q given m= (y;q), (5.2)
m̂(ε), δm̂(ε) Stationary point of (5.1), linear approximation of m̂(ε), (5.6).
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