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Abstract
In passive imaging, one attempts to reconstruct some coefficients in a wave
equation from correlations of observed randomly excited solutions to this wave
equation. Many methods proposed for this class of inverse problem so far are
only qualitative, e.g. trying to identify the support of a perturbation.Major chal-
lenges are the increase in dimensionality when computing correlations from
primary data in a preprocessing step, and often very poor pointwise signal-
to-noise ratios. In this paper, we propose an approach that addresses both of
these challenges: it works only on the primary data while implicitly using the
full information contained in the correlation data, and it provides quantitative
estimates and convergence by iteration. Our work is motivated by helioseis-
mic holography, a well-established imaging method to map heterogenities and
flows in the solar interior. We show that the back-propagation used in clas-
sical helioseismic holography can be interpreted as the adjoint of the Fréchet
derivative of the operator which maps the properties of the solar interior to the
correlation data on the solar surface. The theoretical and numerical framework
for passive imaging problems developed in this paper extends helioseismic
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holography to nonlinear problems and allows for quantitative reconstructions.
We present a proof of concept in uniform media.

Keywords: helioseismology, correlation data, passive imaging, big data

1. Introduction

In this paper, we consider passive imaging problems described by a linear time-harmonic wave
equation

L [q]ψ = s

with a random source s and some unknown coefficient q, which is the quantity of interest. We
assume thatE [s] = 0 such thatE [ψ ] = 0 by linearity of L[q]. Solutionsψ to this wave equation
are observed on part of the boundary Γ = ∂Ω of a domainΩ for many independent realizations
of s. Thus we can approximately compute the cross-covariance

C(x1,x2) = E
[
ψ (x1)ψ (x2)

]
, x1,x2 ∈ Γ. (1)

Our aim is to determine the unknown parameter q given noisy observations of C or the corres-
ponding integral operator (Cf)(x1) :=

´
Γ
C(x1,x2)f(x2)dx2. If TrΓ is the trace operator onto Γ,

then straightforward calculations show that the forward operator mapping q to C = Cov[TrΓψ]
is given by

C [q] = Cov
[
TrΓL [q]

−1 s
]
= TrΓL [q]

−1Cov [s]
(
L [q]−1

)∗
Tr∗Γ .

(Recall that the covariance operator Cov[v] ∈ L(X) of a random variable v with values in a
Hilbert-spaceX is defined implicitely by Cov(〈v,ψ〉X,〈v,ϕ〉X) = 〈Cov[v]ψ,ϕ〉X for all ϕ,ψ ∈
X.) An early and influential reference on passive imaging is the work of Duvall et al [1] on
time-distance helioseismology. Later, passive imaging has also been used in many other fields
such as seismology [2], ocean acoustics [3], and ultrasonics [4]. We refer to the monograph [5]
by Garnier & Papanicolaou for many further references. Concerning the uniqueness of passive
imaging problems, we refer to [6] for results in the time domain and to [7–10] for results in
the frequency domain. For the unique recovery of the source and the potential from passive
far-field data, we refer to [11].

Local helioseismology analyzes acoustic oscillations at the solar surface in order to recon-
struct physical quantities (subsurface flows, sound speed, density) in the solar interior (e.g.
[12] and references therein). Since solar oscillations are excited by near-surface turbulent
convection, it is reasonable to assume random, non-deterministic noise terms. In this paper,
we will describe sound propagation in the solar interior by a scalar time-harmonic wave
equation and study the passive imaging problem of parameter reconstruction from correlation
measurements.

Very large data sets of high-resolution solar Doppler images have been recorded from the
ground and from space over the last 25 years. This leads to a five-dimensional (22 spatial
dimensions and 1 temporal dimension) cross-correlation data set on the solar surface, which
cannot be stored and analyzed all at once. In traditional approaches, like time-distance heli-
oseismology, the cross-correlations are reduced to a smaller number of observable quantit-
ies, such as travel times [1] or cross-correlation amplitudes (e.g. [13–15]). Since the reduc-
tion to these quantities leads to a loss in information, we are interested in using the whole
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cross-correlation data throughout the inversion procedure, stepping forward to full waveform
inversions.

Helioseismic holography, a technique within the field of local helioseismology, has proven
to be a powerful tool for studying various aspects of the Sun’s interior. It operates by propagat-
ing the solar wavefield backward from the surface to specific target locations within the Sun
[16]. A notable success of helioseismic holography is the detection of active regions on the
Sun’s far side (e.g. [17–19]). Furthermore, helioseismic holography is used in many other
applications, e.g. to study the subsurface structure of sunspots [20–22], wave absorption in
magnetic regions [23–25], and seismic emission from solar granules [26]. The main idea of
helioseismic holography is the back-propagation (‘egression’) of the wavefield at the solar
surface [27]. Improvements have been proposed in the choice of backward propagators (e.g.
using Porter–Bojarski holograms [28, 29]. Helioseismic holography has a strong connection
to conventional beam forming, where imaging functionals similar to the holographic back-
propagation occur (e.g. [30]). In contrast to these approaches, we will achieve improvements
by iterations.

In the present paper, we connect holographic imaging methods to iterative regularization
methods. This way, holography can be extended to a full converging regularization method.
This approach was successfully applied to inverse source problems in aeroacoustics [10] and
is extended in this work to parameter identification problems.

The organization of the paper is as follows. In section 2 we introduce a generic model for
the forward problem. In section 3 we establish foundations of our functional analytic setting
by establishing sufficient conditions under which the diagonal of an integral operator is well
defined, using Schatten class properties of embedding operators. With this we compute the
Fréchet derivative of the forward operator and its adjoint in section 4. Next, we discuss the
algorithm of iterative holography in section 5. Based on the analysis of sections 2–appendix B
we then introduce forward operators in local helioseismology, their derivatives and adjoints in
section 6. Then we discuss iterative helioseismic holography as an extension of conventional
helioseismic holography in section 7, and demonstrate its performance in numerical examples
with simulated data in section 8 before we end the paper with conclusions in section 9. Some
technical issues are discussed in three short appendices.

2. A model problem

We first present the main ideas of this paper for a generic scalar time-harmonic wave equation.
LetΩ0 ⊂ Ω be a smooth, bounded domain inRd and let Γ⊂ Ω \Ω0 the hypersurface on which
measurements are performed. Γmay be part of the boundary ∂Ω or it may be contained in the
interior of Ω. Moreover, consider the parameters

v ∈ L∞ (Ω,C) , A ∈W∞ (div,Ω) .

Here W∞(div,Ω) := {A ∈ L∞(Ω,Rd) : divA ∈ L∞(Ω)} with norm ‖A‖W∞(div,Ω) :=
‖A‖L∞ + ‖divA‖L∞ .

Assume that the excitation of wavefields ψ inRd by random sources s, which are supported
in Ω0, is described by the model

(
−∆− 2iA ·∇+ v− k2

)
ψ = s, in Ω (2a)

∂ψ

∂n
= BTr∂Ωψ on ∂Ω (2b)
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for the outward pointing normal vector n on ∂Ω and some operator B ∈
L
(
H1/2(∂Ω)→ H−1/2(∂Ω)

)
. (Here and in the following L(X,Y) denotes the space of

bounded linear operators between Banach spaces X and Y.) Typically, B is some trans-
parent boundary condition, e.g. Bψ = ikψ for ∂Ω= Sd−1. We may also choose Bψ := DtNψ
with an exterior Dirichlet-to-Neumann map for the Helmholtz equation with the Sommerfeld
radiation condition. In this case, equation (2) is equivalent to a problem posed on Rd with the
Sommerfeld radiation condition.

Assumption 1. Suppose that for some B0 ∈ L
(
H1/2(∂Ω),H−1/2(∂Ω)

)
, k ∈ C and some set

Bk ⊂ L∞(Ω,C)×W∞(div,Ω) of admissible parameters v,A the following holds true:

div A− Imk2 + Imv⩽ 0 in Ω (3a)

A ·n= 0 on ∂Ω (3b)

Im
ˆ
∂Ω

(Bζ) ζ ds> 0 for all ζ ∈ H1/2 (∂Ω) , ζ 6= 0 (3c)

Re
ˆ
∂Ω

(B0ζ)ζ ds⩽ 0 for all ζ ∈ H1/2 (∂Ω) (3d)

B−B0 : H
1/2 (∂Ω)→ H−1/2 (∂Ω) is compact. (3e)

The conditions (3c)–(3e) are obviously satisfied for Bζ := ikζ, and they also hold true if B
is the exterior Dirichlet-to-Neumann map on a sphere or a circle (see [31, 32]). Throughout
this paper we denote by Hs

0(Ω) the closure of the space of distributions on Ω in Hs(Rd). For a
Lipschitz domain, we have the duality Hs(Ω)∗ = H−s

0 (Ω) [33, theorem 3.30].

Proposition 1. Under Assumption 1 the problem (2) is well posed in the sense that for all
s ∈ H−1

0 (Ω) there exists a unique ψ ∈ H1(Ω) satisfying (2) in the weak sense, and ψ depends
continuously on s with respect to these norms.

Proof. We only sketch the proof, which is a straightforward modification of similar proofs in
[31, 32]. The weak formulation of Problem (2) is given by

ˆ
Ω

(
∇ψ ·∇φ− 2iA · (∇ψ)φ+

(
v− k2

)
ψφ

)
dx−

ˆ
∂Ω

BTr∂ΩψTr∂Ωφds

=

ˆ
Ω

sφdx, φ ∈ H1 (Ω) . (4)

To show that for s= 0 this variational problem only has the trivial solution, we choose φ = ψ
and take the imaginary part. Noting that Im(−2iA · (∇ψ)ψ) =−A · 2Re((∇ψ)ψ) =−A ·∇|ψ|2
and using a partial integration and (3b), we obtain

ˆ
Ω

(
divA+ Im

(
v− k2

))
|ψ|2 dx= Im

ˆ
∂Ω

BTr∂ΩψTr∂Ωψds .

It follows from (3a) and (3c) that both sides must vanish. Hence, Tr∂Ωψ = 0. By elliptic regu-
larity, ψ ∈ H2(Ω) is also a strong solution to (2) with ∂ψ

∂n = 0 on ∂Ω. Due to vanishing Cauchy
data on ∂Ω, ψ may be extended by 0 as a strong solution of the wave equation to the exterior
of Ω. Now it follows from unique continuation results (see [34, theorem 4.2]) that ψ vanishes
identically.
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Using assumptions (3d) and (3e), it can be shown that the sesquilinear form of the vari-
ational formulation is coercive up to a compact perturbation. Therefore, the operator rep-
resenting this sesquilinear form is Fredholm of index 0. By uniqueness, it is boundedly
invertible.

If we write the solution operator

Gv,A : H−1
0 (Ω)→ H1 (Ω) , Gv,As := ψ

as an integral operator

(Gv,As)(x) =
ˆ
Ω

Gv,A (x,y)s(y) dy,

the kernel Gv,A of Gv,A is the Green’s function, which may also be characterized by
(−∆− 2iA ·∇+ v− k2)Gv,A(·,x ′) = δx ′ , ∂nGv,A(·,x ′)−BTr∂ΩGv,A(·,x ′) = 0 on ∂Ω.

For certain random processes of interest, s does not belong to H−1
0 (Ω) almost surely. E.g.,

white noise is in H−s
0 (Ω) almost surely if and only if s> d/2. Nevertheless, the solution

formula

(TrΓψ)(x) =
ˆ
Ω0

Gv,A (x,y)s(y) dy, x ∈ Γ (5)

may still make sense if Gv,A(x, ·) is sufficiently smooth on Ω0. This is always the case if the
support of s and v,A are disjoint or if s ∈ H−1

0 (Ω) almost surely, which is typically true if s
is spatially correlated. Otherwise, we have to impose smoothness conditions on v and A such
that Gv,A is sufficiently smooth and G has suitable mapping properties.

Assumption 2. The solution to (2) on Γ is given by (5).

Assume we have observations TrΓψ1, . . . ,TrΓψN where ψj solves (2) for independent
samples s1, . . . ,sN of s. As E [s] = 0, we have E [TrΓψj] = 0, and we can compute the cor-
relations by

Corr(x1,x2) :=
1
N

N∑
n=1

TrΓψn (x1)TrΓψn (x2), x1,x2 ∈ Γ. (6)

This is an unbiased estimator of the covariance

Cv,A (x1,x2) := Cov(TrΓψ (x1) ,TrΓψ (x2)) = E
[
TrΓψ (x1)TrΓψ (x2)

]
(7)

converging in the limitN→∞. The integral operator (C[v,A] f)(x1) :=
´
Γ
Cv,A(x1,x2)f(x2)dx2

is the covariance operator

C [v,A] = Cov [TrΓGv,As] = TrΓGv,ACov [s]G∗
v,ATr

∗
Γ. (8)

C will be the forward operator of our inverse problem. Recall that if Cv,A ∈ L2(Γ×Γ), then
C[v,A] belongs to the space of Hilbert–Schmidt operators HS

(
L2(Γ)

)
on L2(Γ), and

‖C [v,A]‖HS = ‖Cv,A‖L2 .

Therefore, HS
(
L2(Γ)

)
is the natural image space of the forward operator. It is a Hilbert

space with an inner product 〈T,S〉HS = tr(S∗T). Here tr(K) denotes the trace of a linear operator

5
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K :H→H in a separable Hilbert space H defined by tr(K) :=
∑∞

j=1〈Kej,ej〉H for any is an
orthonormal basis {ej : j ∈ N} of H.

Let us also consider the case that in addition to sources s in the interior ofΩ there are sources
s∂Ω on the boundary ∂Ω. Such sources generate a field ψ(x) =

´
∂Ω
Gv,A(x,y)s∂Ω(y)dy. Its

restriction to Ω0 is given by

(Kv,As∂Ω)(x) := (TrΓψ)(x) =
ˆ
∂Ω

Gv,A (x,y)s∂Ω (y) dy, x ∈ Γ, (9)

which is the single layer potential operator for Γ = ∂Ω. It is easy to see that K admits a fac-
torization K= TrΓGv,ATr

∗
∂Ω in the spaces

H−1/2 (∂Ω)
Tr∗∂Ω−−−→ H−1

0 (Ω)
Gv,A−−→ H1 (Ω)

TrΓ−−→ H1/2 (Γ) ,

which implies that K ∈ L
(
H−1/2(∂Ω),H1/2(Γ)

)
(see [35, theorem 1(iii)]). Therefore, in the

presence of boundary sources the measured covariance operator is given by

C [v,A] = TrΓGv,ACov [s]G∗
v,ATr

∗
Γ +Kv,ACov [s∂Ω]K∗

v,A

= TrΓGv,A (Cov [s] +Tr∗∂ΩCov [s∂Ω]Tr∂Ω)G∗
v,ATr

∗
Γ.

Often one assumes that the source process s is spatially uncorrelated and

Cov [s] =MS

for some source strength S ∈ L∞(Ω0), where MS denotes the multiplication operator MSf :=
S · f. If S is treated as an additional unknown, the forward operator becomes

C [v,A,S] = TrΓGv,A (MS+Tr∗∂ΩCov [s∂Ω]Tr∂Ω)G∗
v,ATr

∗
Γ. (10)

Of course, we could also assume that s∂Ω is spatially uncorrelated and treat its source strength
as a further unknown, but for the sake of notational simplicity, we assume that Cov[s∂Ω] ∈
L
(
L2(∂Ω)

)
is known.

We first study the continuity and Fréchet differentiability of Gv,A with respect to the para-
meters (v,A). We will assume that v and A are known in Ω \Ω0. Let (vref,Aref) ∈Bk be some
reference solution. Then the set Bk of admissible parameters in assumption 1 satisfies

Bk ⊂ (vref,Aref)+XG with XG := L∞ (Ω0)×W∞
0 (div,Ω0) , (11)

where W∞
0 (div,Ω0) := {A ∈W∞

0 (div,Ω0) : A ·n= 0on ∂Ω0}.

Lemma 2. Under assumption 1, the mapping Bk → L
(
H−1

0 (Ω),H1(Ω)
)
, (v,A) 7→ Gv,A is

well-defined and continuous, and Fréchet differentiable in the interior of Bk w.r.t. the
XG-topology. The Fréchet derivative G ′

v,A : XG → L
(
H−1

0 (Ω),H1(Ω)
)
at (v,A) ∈ int(Bk) is

given by

G ′
v,A (∂v,∂A) = Gv,A (2iM∂A ·∇−M∂v)Gv,A .

Proof. Again, we only sketch the proof and refer to [31, section 5.3] for a more detailed
proof of a similar result. Let Lv,A : H1(Ω)→ H−1

0 (Ω) denote the operator associated to the
sesquilinear form in the weak formulation (4) such that Gv,A = L−1

v,A. Lv,A is continuous
and affine linear in the parameters. As L ′

v,A(∂v,∂A) =−2iM∂A ·∇+M∂v, the result follows
from the continuity of operator inversion and the formula for its derivative, G ′

v,A(∂v,∂A) =
−Gv,AL ′

v,A(∂v,∂A)Gv,A.
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3. Diagonals of operator kernels

The present section serves as a preparation for computing adjoints of the Fréchet derivative of
the forward operator defined by (10). A crucial step will be the characterization of adjoints of
the mapping

S 7→MS

(in a sense to be specified later).
In the discrete setting, MS corresponds to diagonal matrices diag(S) ∈ Cd×d with diagonal

S. The adjoint of the mapping

M : Cd → Cd×d, S 7→ diag(S)

with respect to the Frobenius norm is given by

Diag A= Diag(A) ,

where Diag(A) ∈ Cd denotes the diagonal of the matrix A ∈ Cd×d.
We wish to generalize this to an infinite dimensional setting, with the Frobenius norm

replaced by the Hilbert–Schmidt norm. Recall that any operator A ∈ HS
(
L2(Ω)

)
has a

Schwartz kernel A ∈ L2(Ω×Ω) such that (Aϕ)(x) =
´
Ω
A(x,y)ϕ(y)dy and ‖A‖HS = ‖A‖L2 .

It is tempting to define (DiagA)(x) := A(x,x). However, as A is only a L2-function and the
diagonal {(x,x) : x ∈ Ω} ⊂ Ω×Ω has measure zero, the restriction of A to the diagonal is not
well-defined.

To address this problem, we first recall that for Hilbert spaces X, Y and p ∈ [1,∞) the
p-Schatten class Sp (X,Y) consists of all compact operator A ∈ L(X,Y) for which the singu-
lar values σj(A) (counted with multiplicity) form a `p sequence. Sp (X,Y) is a Banach space
equipped with the norm ‖A‖Sp := (

∑
jσj(A)p)1/p. S2(X,Y) coincides with HS(X,Y). We

write Sp (X) := Sp (X,X). The elements of S1(X) are called trace class operators. For such
operators, the trace tr(A) :=

∑
k〈Aej,ej〉 is well-defined for any orthonormal basis {ek} of X,

and |tr(A)|⩽ ‖A‖S1 .
Let us first recall Mercer’s theorem: It states that for a positive definite operator A with

continuous kernel A, we have

trA=

ˆ
Ω

A(x,x) dx

and A(x,x)⩾ 0 for all x. Since not all (positive semidefinite) Hilbert–Schmidt operators are
trace class, we cannot expect that x 7→ A(x,x) belongs to L1(Ω) for general Hilbert–Schmidt
operators. However, with the help of Mercer’s theorem, we can show the following result.

Proposition 3. LetΩ⊂ Rd be open and non-empty. Then there exists a unique bounded linear
operator

Diag : S1
(
L2 (Ω)

)
→ L1 (Ω)

such that

Diag(A)(x) = A(x,x) , x ∈ Ω

7
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for all operators A ∈ S1(L2(Ω)) with continuous kernel A. Moreover,

tr(A) =

ˆ
Ω

Diag(A) dx . (12)

Equation (12) is shown in [36, theorem 3.5] where it is also shown that Diag(A) can be con-
structed by local averaging, but the first part is not explicitly stated. We sketch an alternative,
more elementary proof:

Proof of proposition 3. If A is positive semidefinite, it may be factorized as A= B∗B with
B ∈ HS

(
L2(Ω)

)
and ‖A‖S1 = ‖B‖2S2 , e.g. by choosing B =A1/2. By density of C(Ω×Ω)

in L2(Ω×Ω), there exists a sequence (Bn) converging to B in L2(Ω×Ω). For the corres-
ponding operators Bn it follows that limn→∞ ‖Bn−B‖HS = 0 and limn→∞ ‖An−A‖S1 = 0
for An := B∗

nBn (see proposition 4, part ii below). Thus, we have constructed a sequence of
positive semidefinite operators with continuous kernels converging to A in S1

(
L2(Ω)

)
, and

the statement follows from the classical Mercer theorem.
We decompose a general A ∈ S1

(
L2(Ω)

)
as linear combination of trace class operators:

We start with A= Re(A)+ i Im(A) where Re(A) := 1
2 (A+A∗) and Im(A) := 1

2i (A−A∗).
There exists an expansion Re(A) =

∑∞
k=1λkψk⊗ψk. We define P1 :=

∑∞
k=1max(λk,0)ψk⊗

ψk,P2 :=
∑∞

k=1max(−λk,0)ψk⊗ψk such that Re(A) = P1 −P2 with positive semidefin-
ite P1,P2 ∈ S1

(
L2(Ω0)

)
. Therefore, a general A ∈ S1

(
L2(Ω)

)
can be written as a linear

combination of positive semi-definite trace class operators: A= P1 −P2 + iP3 − iP4 where
‖P1‖S1 ,‖P2‖S1 ⩽ ‖Re(A)‖S1 ,‖P3‖S1 ,‖P4‖S1 ⩽ ‖Im(A)‖S1 . By the Courant-Fischer character-
ization σn(A) = inf{‖A−F‖ : rank(F)⩽ n}, we get σ2n(Re(A)),σ2n(Im(A))⩽ σn(A) and
hence ‖Re(A)‖S1 ,‖Im(A)‖S1 ⩽ 2‖A‖S1 . It follows that ‖Pj‖S1 ⩽ 2‖A‖S1 . Now we can apply
the first proven special case to all Pj to obtain the result.

To speak of an adjoint of the operatorM : S 7→MS, we have to treatMS in some space with
a dual pairing. We will use Hilbert–Schmidt spaces between suitable Sobolev spaces. (Recall
that MS : L2(Ω)→ L2(Ω) is not compact in general.)

Note that a Gelfand triple V ′ ↪→H ↪→ V of Hilbert spaces induces Gelfand triple

HS(V,V ′) ↪→ HS(H,H) ↪→ HS(V ′,V)

of Hilbert-Schmidt spaces with dual pairing, given by 〈A,B〉HS := tr(B∗A) for A ∈ HS(V,V ′)
and B ∈ HS(V ′,V).

We give some preliminary results on p-Schatten class embeddings.

Proposition 4. Let Ω⊂ Rd be a bounded Lipschitz domain and let X,Y,Z be Hilbert spaces.
Then the following holds true:

(i) The Sobolev embedding: j : Hm(Ω) ↪→ Hl(Ω) is an element in the Schatten class
Sp

(
Hm(Ω),Hl(Ω)

)
if and only if p> d

m−l .

(ii) Let p,q,r> 0 satisfy 1
p +

1
q =

1
r and let A ∈ Sp (X,Y) ,B ∈ Sq (X,Y). Then, BA ∈ Sr (X,Z)

and we have the bound:

‖BA‖Sr(X,Z) ⩽ 21/r‖A‖Sp(X,Y)‖B‖Sq(Y,Z).

8
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(iii) Let A ∈ Sp (X,Y) ,B ∈ L(Y,Z) ,C ∈ L(Z,X). Then, BA ∈ Sp (X,Z) ,AC ∈ Sp (Z,Y) and
we have the bounds:

‖BA‖Sp(X,Z) ⩽ ‖A‖Sp(X,Y)‖B‖, ‖AC‖Sp(Z,Y) ⩽ ‖A‖Sp(X,Y)‖C‖.

(iv) Let p,q> 1 with 1
p +

1
q = 1. Then, Sp (X,Y) ′ = Sq (Y ′,X ′) with the dual pairing 〈A,B〉=

tr(B∗A) for A ∈ Sp (X,Y) and B ∈ Sq (X ′,Y ′).

Proof. Part (i) follows from theorem 1 of [37]. Part (ii) and (iii) follow from lemma 16.7
of [38].

Let A ∈ Sp (X,Y) and B ∈ Sq (X ′,Y ′). By part (ii) and the boundedness of the trace in
S1 [38, lemma 16.23], we get: |〈A,B〉|= |tr(B∗A)|⩽ ‖B∗A‖S1(Y) ⩽ ‖B∗‖Sq(Y,X)‖A‖Sp(X,Y) =
‖B‖Sq(X ′,Y ′)‖A‖Sp(X,Y). Hence, Sq (Y ′,X ′)⊆ Sp (X,Y) ′ and Sp (X,Y)⊆ Sq (Y ′,X ′)

′. By the
Hahn-Banach theorem, we have the sequence

Sp (X,Y)⊆ Sq (Y ′,X ′)
′ ⊆ Sp (X,Y) ′ ′ .

Sp (X,Y) is a uniformly convex Banach space [39, chapter 5] and therefore reflexive by
Milman–Pettis theorem [40]. Hence, Sp (X,Y) ′ ′ = Sp (X,Y) and the assertion follows.

Using this proposition, we can prove that multiplication operators are Hilbert–Schmidt in
suitable Sobolev spaces:

Lemma 5. Let Ω⊂ Rd be a bounded Lipschitz domain, S ∈ L∞(Ω), and s> d/4, s− 1/2 /∈
N0. (In particular, for d ∈ {2,3} we may choose s= 1.) Then MS ∈ HS

(
Hs(Ω),H−s

0 (Ω)
)
, and

the following mapping is continuous

M :L∞ (Ω)→ HS
(
Hs (Ω) ,H−s

0 (Ω)
)
,

S 7→MS.
(13)

Proof. The condition s− 1/2 /∈ N0 ensures that Hs(Ω) ′ = H−s
0 (Ω) (see, e.g. [41, chapter 4]).

Let M̃S : L2(Ω)→ L2(Ω),M̃Sψ := Sψ. Then, we consider MS in the function spaces:

Hs (Ω)
j
↪→ L2 (Ω)

M̃S−→ L2 (Ω)
j∗

↪→ H−s
0 (Ω) .

By proposition 4, part i, the embedding j is an element of the Schatten class Sp
(
Hs(Ω),L2(Ω)

)
if p> d/s. Consequently, j∗ ∈ Sp

(
L2(Ω),H−s

0 (Ω)
)
. It follows from proposition 4, parts ii and

iii thatMS ∈ Sr(Hs(Ω),H−s
0 (Ω)) if 1

r =
1
p +

1
p <

2s
d . As

2s
d > 1/2, r= 2 is admissible. The con-

tinuity of M follows from the continuity of the mapping: S→ M̃S.

Lemma 6. Under the assumptions of lemma 5, the adjoint operator M∗ :
HS

(
H−s

0 (Ω),Hs(Ω)
)
→ L∞(Ω) ′ takes values in the pre-dual L1(Ω)⊂ L∞(Ω) ′ of L∞(Ω)

and

M∗ = Diag. (14)

Proof. Let f ∈ L∞(Ω), j : Hs(Ω) ↪→ L2(Ω), and A ∈ HS
(
H−s

0 (Ω),Hs(Ω)
)
. It follows from

proposition 4 that Ã := jAj∗ ∈ S1
(
L2(Ω)

)
. We identify Ã andA, i.e. a more precise formula-

tion of (14) isM∗(A) = Diag(Ã) for allA. By the density result established at the beginning

9
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of the proof of proposition 3, it suffices to establish the relation for operatorsAwith continuous
kernel A. Choosing an orthonormal basis {ek : k ∈ N} of L2(Ω), we obtain

〈Mf,A〉= tr(A∗Mf) = tr
(
jA∗Mfj

−1
)
= tr

(
Ã∗M̃f

)
=

∞∑
k=1

〈
Ã∗ ( fek) ,ek

〉
=

∞∑
k=1

ˆ
Ω

ˆ
Ω

A(y,x)f(y)ek (y) dyek (x)dx

=

ˆ
Ω

∞∑
k=1

ek (y)
ˆ
Ω

A(y,x)ek (x)dxf(y)dy.

Since Ω is bounded and hence A(y, ·) ∈ C(Ω)⊂ L2(Ω), the completeness of {ek} implies that∑∞
k=1 ek(y)

´
Ω
A(y,x)ek(x)dx= A(y,y). This shows that 〈M( f),A〉= 〈 f,Diag(Ã)〉, complet-

ing the proof.

In lemma 2 we consider M∂v and M∂A in the following function spaces:

M∂v : H
1 (Ω0)→ H−1

0 (Ω0) ,

M∂A : L2 (Ω)d → H−1
0 (Ω) .

The multiplication operatorM∂v has been discussed in lemmas 5 and 6. Although forM∂A we
have less regularity, the following analogs still hold true:

Lemma 7. Let d ∈ {2,3} and ∂A ∈W∞(div,Ω0). Then,

(i) M∂A ∈ S4
(
L2(Ω0)

d,H−1
0 (Ω0)

)
and the following map is continuous:

M̃ : L∞
(
Ω0,Rd

)
→ S4

(
L2 (Ω0)

d
,H−1

0 (Ω0)
)

∂A 7→M∂A.

(ii) M̃∗ : S4/3(L2(Ω0)
d,H1(Ω0)) = S4

(
L2(Ω0)

d,H−1
0 (Ω0)

) ′ → L∞(Ω0)
′ takes values in the

pre-dual L1(Ω0)⊂ L∞(Ω0)
′. For an operator B = (B1, . . . ,Bd) ∈ S4/3(L2(Ω0)

d,H1(Ω0))
with continuous kernel B= (B1, . . . ,Bd) : Ω×Ω→ Cd we have

M̃∗B = Diag B, Diag B := (Diag B1, . . . ,Diag Bd) .

Proof. In this proof, j will denote the embedding H1(Ω0) ↪→ L2(Ω0) and recall from proposi-
tion 4, part i that j ∈ S4

(
H1(Ω0),L2(Ω0)

)
and hence j∗ ∈ S4

(
L2(Ω0),H

−1
0 (Ω0)

)
.

Part (i):We consider M∂A = j∗ ◦ M̃∂A in the function spaces

L2 (Ω0)
d M̃∂A−−→ L2 (Ω0)

j∗

↪→ H−1
0 (Ω0) ,

where M̃∂Aψ = ∂A ·ψ for ψ ∈ L2(Ω0)
d. The claim follows by proposition 4.

Part (ii): Let B̃ := j ◦B : L2(Ω0)
d → L2(Ω0). Part (ii) of this proposition yields B̃ ∈

S1
(
L2(Ω0)

d,L2(Ω0)
)
. As in lemma 6, the assertion now follows.

10
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4. Fréchet derivative and adjoint of the forward operator

A characterization of the adjoint of S 7→ TrΓGMSG∗Tr∗Γ was given in [10]. There, a characteriz-
ation of the adjoint of S 7→MS in a functional analytic framework was circumvented, resulting
in a rather technical formulation of the result.

With the results of the previous section, the proof of the following central results is now
mostly straightforward.

Theorem 8. Assumptions 1 and 2 hold true for some wave number k ∈ C and d ∈ {2,3}. Let
X := XG ×L∞(Ω0,R) with XG defined in (11) and let B :=Bk×L∞(Ω0; [0,∞)). Then the
following holds true:

(i) The forward operator (10) is well-defined and continuous as a mapping

C :B→ HS
(
L2 (Γ)

)
,

and it is Fréchet differentiable on the interior of B. The derivative C ′[v,A,S] : X→
HS

(
L2(Γ)

)
is given by

C ′ [v,A,S] (∂v,∂A,∂S)

= 2Re
(
TrΓGv,A (−M∂v+ 2iM∂A ·∇)Gv,A (MS+Tr∗∂ΩCov [s∂Ω]Tr∂Ω)G∗

v,ATr
∗
Γ

)
+TrΓGv,AM∂SG∗

v,ATr
∗
Γ

where Re(A) := 1
2 (A+A∗).

(ii) The adjoint C ′[v,A,S]∗ : HS
(
L2(Γ)

)
→ X ′ of C ′[v,A,S] takes values in the pre-dual

L1(Ω0;C)×L1(Ω0;Rd)×L1(Ω0;R)⊂ X ′ of X and is given by

C ′ [v,A,S]∗D =

 −2Diag
(
E (MS+Tr∗∂ΩCov [s∂Ω]Tr∂Ω)G∗

v,A

)
−4iDiag

(
E (MS+Tr∗∂ΩCov [s∂Ω]Tr∂Ω)(∇Gv,A)∗

)
DiagE

 ,

E := G∗
v,ATr

∗
ΓRe(D)TrΓGv,A.

Proof. Part (i): let C1[v,A,S] := TrΓGv,AMSG∗
v,ATr

∗
Γ. and C2[v,A,S] := TrΓGv,ATr∗∂ΩCov[s∂Ω]

Tr∂ΩG∗
v,ATr

∗
Γ.We consider the factors defining C1[v,A,S] in the following function spaces:

L2 (Γ) ↪→ H−1/2 (Γ)
Tr∗Γ−−→ H−1

0 (Ω)
G∗

−−→ H1 (Ω)
MS−→ H−1

0 (Ω)
G−→ H1 (Ω)

TrΓ−−→ H1/2 (Γ) ↪→ L2 (Γ) .

Here MS : H1(Ω)→ H−1
0 (Ω) is Hilbert–Schmidt by lemma 5, and all other operators are

bounded. By part (iii) of proposition 4, it follows that C1[v,A,S] is Hilbert–Schmidt.
Similarly, we consider the factors defining C2[v,A,S] in the following function spaces:

L2 (Γ) ↪→ H−1/2 (Γ)
K∗

−→ H1/2 (∂Ω) ↪→ L2 (∂Ω)
Cov[s∂Ω]−−−−−→ L2 (∂Ω)

↪→ H−1/2 (∂Ω)
K−→ H1/2 (Γ) ↪→ L2 (Γ) .

By part (i) of proposition 4, every embedding is an element of S8. By parts ii and iii of pro-
position 4, it follows that C2[v,A,S] is Hilbert–Schmidt. Hence, C[v,A,S] is Hilbert–Schmidt.

11
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Together with lemma 2, it follows that C is continuous. Fréchet differentiability and the for-
mula for the derivative follow from lemma 2 and the chain rule.
Part (ii): if X1, . . . ,X4 are Hilbert spaces, A ∈ L(X1,X2) and B ∈ L(X3,X4), then a

straightforward computation shows that the adjoint of the linear mapping HS(X2,X3)→
HS(X1,X4), T 7→ BT A is given by the mapping HS(X1,X4)→ HS(X2,X3), S 7→
B∗SA∗ and that Re ∈ L(HS(Xj)) is a self-adjoint projection operator. Note that
Cov[s∂Ω] ∈ S4

(
H1/2(∂Ω),H−1/2(∂Ω)

)
from proposition 4. Furthermore, by proposi-

tion 4 and lemma 5, E ∈ HS
(
H−1

0 (Ω0),H1(Ω0)
)
,MS ∈ HS

(
H1(Ω0),H

−1
0 (Ω0)

)
. Hence,

E(MS+Tr∗∂ΩCov[s∂Ω]Tr∂Ω) ∈ S4/3
(
H−1

0 (Ω0)
)
. Now, the assertion follows from lemma 6

and part (ii) of lemma 7.

Introducing so-called forward propagators Hα and backward propagators Hβ by

Hv,A
αv

:= Hv,A
αA

:= Hv,A
αS

:= HβS := TrΓGv,A ∈ L
(
H−1

0 (Ω) ,L2 (Γ)
)
,

Hv,A
βv

:= TrΓGMSG∗
v,A ∈ L

(
H−1

0 (Ω) ,L2 (Γ)
)
,

Hv,A
βA

:= TrΓGv,AMS (∇Gv,A)∗ ∈ L
(
H−1

0 (Ω) ,L2 (Γ)
)
, (15)

the Fréchet derivative and its adjoint in theorem 8 can be reformulated as

C ′ [v,A,S] (∂v,∂A,∂S) =−2Re
(
Hv,A
αv
M∂vH

v,A
βv

∗)
+ 2Re

(
Hv,A
αA
M2i∂AH

v,A
βA

∗)
+Hv,A

αS
M∂SH

v,A
βS

∗
,

C ′ [v,A,S]∗D =


−2Diag

(
Hv,A
αv

∗
Re(D)Hv,A

βv

)
−4iDiag

(
Hv,A
αA

∗
Re(D)Hv,A

βA

)
Diag

(
Hv,A
αS

∗
Re(D)Hv,A

βS

)
 . (16)

These propagators Hα,Hβ have a physical interpretation in helioseismology that will be
discussed in section 7.1.

5. On the algorithmic realization of iterative regularization methods

For notational simplicity, we will use q= (v,A,S) throughout this section. Then we formally
have to solve the operator equation

C [q] = Corr with Corr :=
1
N

N∑
n=1

TrΓψn⊗TrΓψn.

5.1. Avoiding the computation of Corr

Computing Corr from the primary data TrΓψn in a preprocessing step drastically increases the
dimensionality of the data. In helioseismology, the data set with the best resolution consists of
Doppler images of size 4096× 4096. This leads to approximately 1014 independent two-point
correlations, at each frequency. Hence, the surface cross-correlation is a noisy five-dimensional
data set of immense size, which is infeasible to use in inversions directly. Moreover, these two-
point correlations are extremely noisy. In traditional approaches such as time-distance helio-
seismology, one usually reduces the cross-correlation in an a priori step to a smaller number

12
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of physically interpretable quantities with an acceptable signal-to-noise ratio. However, this
leads to a significant loss of information, see [42].

To use the full information content of Corr without the need to ever compute these correl-
ations, we exploit the fact that the adjoint of the Fréchet derivative of the forward operator is
of the form C ′[q]∗D = Diag(Hq

α
∗Re(D)Hq

β), see equation (16). As Re(Corr) = Corr, pulling
the sum outside yields

C ′ [q]∗Corr=
1
N

N∑
n=1

Diag
(
Hq
α
∗TrΓψn⊗Hq

β
∗TrΓψn

)
. (17)

We will show in section 7.1 that traditional helioseismic holography can be interpreted as
the application of C ′[q]∗ to Corr. Since 1

N

∑N
n=1Diag(. . .) can be interpreted as computing

diagonal correlations of the back-propagated signals, equation (17) may be paraphrased as
first back-propagating signals and then correlating them, rather than vice versa.

5.2. Iterative regularization methods without image space vectors

For ill-posed inverse problems, the adjoint of the linearized forward operator is typically a bad
approximation of the inverse. To obtain a quantitative imaging method, we can improve the
approximation in (17) by implementing an iterative regularization method. We will focus on
the iteratively regularized Gauss–Newton method (IRGNM) with inner Conjugate Gradient
iterations, but the discussion below also applies to other commonly used methods such as
Landweber iteration or the Newton-CG method. IRGNM is defined by

δqn = argminq ‖C [qn] + C ′ [qn]q−Corr‖2Y +αn‖q+ qn− q0‖2X
=
(
C ′ [qn]

∗ C ′ [qn] +αnId
)−1 (C ′ [qn]

∗
(Corr−C [qn])+αn (q0 − qn)

)
qn+1 = qn+ δqn. (18)

Here q0 defines the initial guess. Since the image space Y of the forward operator is high
dimensional, direct evaluations of C[q] and C ′[q] must be avoided. However, IRGNM with
inner CG iterations as well as other iterative regularization methods only require the operations
q 7→ C ′[q]∗C[q] and(

C ′ [q]∗ C ′ [q] ∂q
)
(x) =

ˆ
Ω

K(x,y)∂q(y) dy. (19)

We will refer to the integral kernels K of C ′[q]∗ C ′[q] as sensitivity kernels for the normal
equation. In section 7.2 they will be described for various settings of interest in terms of
forward–backward operators

Fα,β :=H∗
αHβ : H−1

0 (Ω)→ H1 (Ω) , (Fα,βψ)(x) =
ˆ
Ω

Fα,β (x,y)ψ (y) dy. (20)

In our numerical tests in helioseismology reported in section 8, the bottleneck concerning
computation time is the evaluation of the Green function involved in the definitions of the
propagatorsHα andHβ . To accelerate these computations, we use separable reference Green’s
functions G0 := Gq0 discussed in appendices A and B and the corresponding integral operator
G0 as well as the algebraic identity

Gq = [Id+G0 (Lq−L0)]
−1G0. (21a)

13
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This identity, with Lq := G−1
q and L0 := G−1

0 , is equivalent to G0 −Gq = G0(Lq−L0)Gq.
The operators Lq,L0 : H1(Ω)→ H−1

0 (Ω) represent the corresponding sesquilinear forms in
equation (4) in the proof of proposition 1 and involve both the differential operator and the
boundary condition. As both the boundary operator B and the leading order differential oper-
ator are independent of the parameters q, they cancel out, and

(Lq−L0)ψ = (v− v0)ψ − 2i (A−A0) ·∇ψ. (21b)

This approach is efficient since the operator G0 can be solved with one-dimensional code
and the operator the calculation of [Id+G0(Lq−L0)] can typically be restricted to a supported
area of Lq−L0. Usually, we compute a pivoted LU-decomposition of Id+G0(Lq−L0) and
solve for a list of input sources G(·,x),x ∈ Γ. Furthermore, we can use low-rank approxima-
tions for G0 based on the expansions in appendix A for solar-like medium and appendix B for
uniform medium.

5.3. Noise and likelihood modeling

In this section, we study the noisemodel in order to step forward to the full likelihoodmodeling
and to create realistic noise. The main noise term is realization noise. Recall that the wavefield
ψ is a realization of a Gaussian random process with covariance operator C[q].

The covariance matrix of Gaussian correlation data can be computed by Isserlis theorem
[43] and is given by fourth-order correlations (e.g. [29, 44, 45]):

E
[
ψ (r1)ψ (r2)ψ (r3)ψ (r4)

]
= E

[
ψ (r1)ψ (r2)

]
E
[
ψ (r3)ψ (r4)

]
+E

[
ψ (r1)ψ (r3)

]
E
[
ψ (r2)ψ (r4)

]
+E [ψ (r1)ψ (r4)]E

[
ψ (r2)ψ (r3)

]
.

The third term vanishes as E [ψ(r1)ψ(r2)] =
´
Ω

´
Ω
G(rrr1,zzz1)G(rrr2,zzz2)E [s(z1)s(z2)] dz1dz2

and E [s(z1)s(z2)] = 0. Hence, we observe

Cov(C(r1,r2) ,C(r3,r4)) = E
[
ψ (r1)ψ (r2)ψ (r3)ψ (r4)

]
−E

[
ψ (r1)ψ (r2)

]
E
[
ψ (r3)ψ (r4)

]
= E

[
ψ (r1)ψ (r3)

]
E
[
ψ (r2)ψ (r4)

]
= C (r1,r3)C (r4,r2) .

Therefore, we can define the data covariance operator by

C4 [q] ∈ L
(
L2 (Γ)×L2 (Γ)

)
, C4 [q] ( f ⊗ g) = C [q] ( f)⊗C [q] (g) . (22)

Hence, if we choose a quadratic log-likelihood approximation, we are formally lead to replace
‖ · ‖2Y in (18) by ‖C4[qn]−1/2 · ‖2Y. However, with this replacement, the iteration (18) would
in general not be well defined and numerically unstable since C4[qn] is not boundedly invert-
ible. Note that the operator C4[qn] is not boundedly invertible. Even if C4[qn] is injective, the
inverse is given by C4[qn]−1 = C[qn]−1 ⊗C[qn]−1, and this cannot be bounded in infinite dimen-
sions since C[qn] is Hilbert–Schmidt. Hence, the mentioned replacement is not well defined
and numerically unstable. Therefore, we choose a bounded, self-adjoint, positive semi-definite
approximation

C [qn]
−1 ≈ Γn ∈ L

(
L2 (Γ)

)
, (23)

14
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e.g. by a truncated eigenvalue decomposition or by Lavrentiev regularization Γn = (βId+
C[qn])−1. Then C4[qn]−1 ≈ Γn⊗Γn and C4[qn]−1/2 ≈ Γ

1/2
n ⊗Γ

1/2
n . The parameter β may

model the presence of measurement and modeling errors in addition to the realization noise
modeled by C4[qn]−1/2. Then the iteration (18) is replaced by

δqn = argminq

∥∥∥(Γ1/2
n ⊗Γ1/2

n

)
C [q] + C ′ [qn]q−Corr

∥∥∥2
Y
+αn‖q+ qn− q0‖2X

=
(
C ′ [qn]

∗
(Γn⊗Γn)C ′ [qn] +αnI

)−1 (C ′ [qn]
∗
(Γn⊗Γn)(Corr−C [qn])+αn (q0 − qn)

)
qn+1 = qn+ δqn.

Note that for numerical efficiency it is very fortunate that the covariance operator C4 of the
correlation data has the separable structure (22). Further note from the second line of the last
equation that we only need Γn, not Γ

1/2
n .

6. Forward problems in local helioseismology

In this section, we discuss applications of the model problem considered in the previous
sections to helioseismology.

6.1. Acoustic oscillations in the Sun

Ω0 will denote the interior of the Sun (typically Ω0 = B(0,R⊙) with R⊙ = 696Mm), whereas
Ω may also include parts of the solar atmosphere. The measurement region we consider is an
open subset Γ of the visible surface ∂Ω0, accounting for the fact that in typical helioseismic
applications, measurements are only available on the near side of the solar surface. Given that
solar oscillations near the solar surface are primarily oriented in the radial direction [46], there
is also a lack of Doppler information near the poles. This phenomenon results in leakage,
causing challenges such as incomplete decoupling of normal modes of oscillation (e.g. [47,
48]). In the subsequent analysis, we will exclusively work in the frequency domain.

The propagation of acoustic waves in a heterogeneousmedium like the Sun can be described
by the differential equation

−(ω+ iγ+ iu ·∇)
2
ζ− 1

ρ
∇
(
ρc2∇· ζ

)
= F, (24)

where we have ignored gravitational effects and have assumed an adiabatic approximation
[49]. The random source term F describes the stochastic excitation of waves by turbulent
motions and ζ is the Lagrangian wave displacement vector. As usual, we denote with ρ the
density, c the sound speed, γ the damping, and u the flow field. If we furthermore neglect
second order terms in γ,u, equation (24) can be converted into a Helmholtz-like equation
([29], inspired by [50])

Lψ :=−(∆+V)ψ − 2iω
ρ1/2c

ρu ·∇ ψ

ρ1/2c
= s, (25)

where ψ = ρ1/2c2∇· ζ is the scaled wavefield and s= ρ1/2c2∇·F a stochastic source term.
The potential V is defined by

V=
ω2 + 2iωγ−ω2

c

c2
, ω2

c = ρ1/2c2∆
(
ρ−1/2

)
. (26)
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The frequency ωc is recognized as the acoustic cutoff frequency. This cutoff frequency arises
due to the abrupt decline in density near the solar surface and results in the trapping of acoustic
modes with frequencies below the acoustic cutoff frequency. Modes with frequencies surpass-
ing the acoustic cutoff frequency can propagate through the solar atmosphere.

The conditions on c,ρ,γ,u are summarized in assumption 3.

Assumption 3. Suppose that for some B0 ∈ L
(
H1/2(∂Ω),H−1/2(∂Ω)

)
, k ∈ C and some set

Acmin,ρmin,k ⊂W1,∞(Ω,R)×W2,∞(Ω,R)×L∞(Ω, [0,∞))×W∞(div,Ω)×L∞(Ω, [0,∞)) of
admissible parameters c,ρ,γ,u,S containing some reference parameters cref,ρref,γref,uref,Sref
such that the following holds true:

inf
x∈Ω

c⩾ cmin > 0, inf
x∈Ω

ρ⩾ ρmin > 0, (27a)

q= qref for q ∈ {c,ρ,γ,u,S} in Ω \Ω0, (27b)

u= 0, S= 0 in Ω \Ω0, (27c)

div(ρu) = 0 on Ω, (27d)

B : H1/2 (∂Ω)→ H−1/2 (∂Ω)satisfies the conditions (3c)–(3e) (27e)

For the flow field, we incorporate a mass conservation constraint (equation (27d)).
Additionally, we assume that the flow field does not intersect the computational boundary
(equation (27c)). Various boundary conditions, in particular radiation boundary conditions
and learned infinite elements, and their efficacy are extensively discussed in [51–53]. It is
notable that the most popular choices of boundary conditions in helioseismology, such as radi-
ation boundary conditions, Sommerfeld boundary conditions, or free boundary conditions, are
incorporated in assumption (27e).

We define the operator P that transforms the parameters in the wave equation (25) into the
form of equation (2) by

P :Acmin,ρmin,k →Bk, P (c,ρ,γ,u,S) = (v,A,S) , (28)

where

k2 =
ω2 + 2iωγ

c20
− 1

4H2
, A= ω

1
c2
u (29a)

v= k2 − ω2 + 2iγω
c2

+ ρ1/2∆
(
ρ−1/2

)
− 2iω

1
ρ1/2c

ρu ·∇ 1
ρ1/2c

. (29b)

In figure 1, we present the acoustic sound speed, the density, and the scalar potential v as
obtained from the Solar Model S and smoothly extended to the atmosphere. Modeling the
forward problem for the Sun remains challenging due to the substantial density gradients near
the surface, leading to strong variations of the scalar potential v near the solar surface.

Lemma 9. The operator P , defined in equation (28), is well-defined in the sense that for all
parameters (c,ρ,γ,u,S) ∈ Acmin,ρmin,k we haveP(c,ρ,γ,u,S) ∈ Bk, and this map is continuous.

Proof. By equations (29a) and (29b), we have v ∈ L∞(Ω,C), A ∈W∞(div,Ω0), and the map-
ping is continuous. The conditions (3c)–(3e) are obviously satisfied, and (3b) is satisfied by
assumption (27d). For condition (3a), we note that ∇·A= ω∇· ρu

(ρ1/2c)2 =
2ω
ρ1/2cρu ·∇

1
ρ1/2c ,

where we have used (27d). Therefore,
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Figure 1. The left panel shows the sound speed and density obtained from the Solar
Model S [54] in the solar core, the convection zone (CZ), and the radiation zone (RZ).
The right panel shows the potential close to the surface for ω/2π = 3mHz.

divA− Imk2 + Imv=−2γω
c2

⩽ 0.

Because of assumption (27b), c,ρ,∇ρ,γ,u,∇u are fixed at ∂Ω0 and in the exterior.
Therefore, the space of parameter perturbations is

XP :=W1,∞
0 (Ω0,R)×W2,∞

0 (Ω0,R)×L∞0 (Ω0)×W∞
0 (div,Ω0)×L∞ (Ω0)

where W∞
0 (div,Ω0) = {u ∈W∞(div,Ω0) : u ·n= 0 on ∂Ω}.

Lemma 10. For cmin,ρmin > 0 and k ∈ C, the operator P is Fréchet differentiable in the
interior of Acmin,ρmin,k with Fréchet derivative P ′ : XP → XG given by

P ′ [c,ρ,γ,u,S] (∂c,∂ρ,∂γ,∂u,∂S) =

∑
q∈{c,ρ,γ,u} (∂qv)(∂q)∑
q∈{c,u} (∂qA)(∂q)

∂S

 . (30)

For arguments (ṽ, Ã, S̃) ∈ L1(Ω0;C)×L1(Ω0;Rd)×L1(Ω0;R)⊂ X ′, the values of the adjoint

P ′ [c,ρ,γ,u,S]∗
(
ṽ, Ã, S̃

)
=


(∂cv)

∗ ṽ+(∂cA)
∗ Ã

(∂ρv)
∗ ṽ

(∂γv)
∗ ṽ

(∂uv)
∗ ṽ+(∂uA)

∗ Ã
S̃


belong to W−2,1(Ω0,R)×W−1,1(Ω0,R)×L1(Ω0,R)×L1(Ω0,Rd)×L1(Ω0,R)⊂ X ′

P .

Proof. We rephrase the potential v in the form:

v= k2 − ω2 + 2iγω
c2

+ ρ1/2∆
(
ρ−1/2

)
− iω∇·

( u
c2

)
.
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It follows that

[∂cv] (∂c) = 2
ω2 + 2iωγ

c3
· ∂c+ 2iω∇·

( u
c3
∂c

)
=:Mg0c

(∂c)+
(
Mg1c ◦∇

)
(∂c)

[∂γv] (∂γ) =−2iωM 1
c2
(∂γ) =:Mg0γ

(∂γ)

[∂ρv] (∂ρ) =

(
1
2
ρ1/2∆ρ−3/2 − 1

2
ρ−1/2∆ρ−1/2

)
· ∂ρ− 1

2
ρ−1∆∂ρ− ρ1/2∇ρ−3/2 ·∇∂ρ

=:Mg0ρ
(∂ρ)+

(
Mg1ρ ◦∇

)
(∂ρ)+

(
Mg2ρ

◦∆
)
(∂ρ)

[∂uv] (∂u) =−iω∇
(
∂u
c2

)
=:Mg0u (∂u)+

(
Mg1u

◦∇
)
(∂u) , (31)

where

g0c ,g
0
γ ,g

0
ρ ∈ L∞ (Ω0) , g0u ∈ L∞ (Ω0)

d
, g1u ∈W1,∞ (Ω0) ,

g1c ,g
1
ρ ∈W1,∞ (Ω0)

d
, g2ρ ∈W2,∞ (Ω0) .

Furthermore, we have

∂cA=M−ω

c3
u, ∂uA=M ω

c2
, ∂γA= ∂ρA= 0, (32)

The operator P is Fréchet differentiable with Fréchet derivative (30) since the terms ∂qv,∂qA
are well-defined for q ∈ {c,ρ,γ,u}. The claim follows with the mapping properties of
(∂qv)∗,(∂qA)∗.

In analogy to equation (16), we can write the Fréchet derivative in the form:

(C ◦P)
′
[c,ρ,γ,u,S] (∂c,∂ρ,∂γ,∂u,∂S) =

∑
q∈{c,ρ,γ,u,S}

Re
(
Hv,A
αq

Lq (∂q)Hv,A
βq

∗)

(C ◦P)
′
[c,ρ,γ,u,S]∗D =



L∗
c

(
Hv,A
αc

∗
Re(D)Hv,A

βc

)
L∗
ρ

(
Hv,A
αρ

∗
Re(D)Hv,A

βρ

)
L∗
γ

(
Hv,A
αγ

∗
Re(D)Hv,A

βγ

)
L∗
u

(
Hv,A
αu

∗
Re(D)Hv,A

βu

)
L∗
S

(
Hv,A
αS

∗
Re(D)Hv,A

βS

)


. (33)

The operators Lq play the role of local correlation operators. The propagators and local
correlation operators in the flow-free case can be read in table 1.

Note that despite the fact that the adjoint with respect to the standard L2 dual pairings
takes values in negative Sobolev spaces, it is usually not necessary to deal with such functions
(or distributions) numerically in iterative regularization methods. For instance, in Landweber
iteration in Banach spaces, the application of the adjoint is followed by the application of a
duality mapping which takes values in positive Banach spaces. For Hilbert space methods, one
would choose a L2-based Sobolev spaceWs,2 with sufficiently large s and compute the adjoint
with respect to the Ws,2 inner product, which amounts to an evaluation of the adjoint of the
embedding Ws,2 ↪→ L2.
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Table 1. Distributional kernel of back-propagator and local correlation operator for the
different parameters. The functions g0ρ,g

1
ρ,g

2
ρ are defined in equation (31). The coordin-

ates are chosen such that x ∈ Γ and y ∈ Ω. Here, we assume that Cov[s∂Ω] =MB with
B ∈ L∞(∂Ω) and use the notation SΩ := S+Bδ∂Ω.

Quantity q PropagatorHαq PropagatorHβq Local correlation L∗
q

Source strength S G(x,y) G(x,y) Diag

Sound speed c G(x,y)
´
Ω
G(x,z)SΩ(z)G(y,z)dz −2ω2+2iωγ

c3 ·Diag

Density ρ G(x,y)
´
Ω
G(x,z)SΩ(z)G(y,z)dz

(
g0ρ − g1ρ∇+ g2ρ∆

)
·Diag

Wave damping γ G(x,y)
´
Ω
G(x,z)SΩ(z)G(y,z)dz

2iω
c2 ·Diag

Flow component Ai G(x,y) êi ·∇y

( ´
Ω
G(x,z)SΩ(z)G(y,z)dz

ρ1/2(y)c(y)

)
2iω ρ1/2

c ·Diag

6.2. Source model in helioseismology

It remains to discuss the seismic source model in helioseismology. It has been shown in several
settings that the cross-correlation is roughly linked to the imaginary component of the outgoing
Green’s function [30]. In helioseismology, this relation takes the form [49]

C(r1,r2,ω) =
Π(ω)

4iω

(
Gv,A (r1,r2,ω)−Gv,−A (r1,r2,ω)

)
, (34)

where Π(ω) is the source power spectrum. This relation leads to a power spectrum in good
agreement with the observations [49]. As outlined in [49], equation (34) holds true for an out-
going radiation condition and random sources that are appropriately excited across the volume
in proportion to the damping rate

(Cov [s]φ)(r,ω) = Π(ω)
γ (r,ω)
c20 (r)

φ(r,ω) . (35)

Moreover, there are surface integrals that persist for frequencies above the acoustic cutoff
frequency, and these are dependent on the chosen boundary condition.

The relationship between source power and damping rate emerges from the idea of equipar-
tition among distinct acoustic modes [55]. This choice of covariance couples the source
strength with wave attenuation and sound speed. Nevertheless, we consider the source strength
as an additional individual parameter. This source model is included in the discussion of the
previous sections. In helioseismology, the relation (34) is the standard choice to reduce the
computational costs of the operator evaluation. Furthermore, it allows us to evaluate the back-
propagator in table 1 efficiently.

7. Iterative helioseismic holography

In this section, we discuss the application of the approach outlined in section 5 to local heli-
oseismology. We first show that it can be interpreted as an extension of conventional helio-
seismic holography. For this reason, we will refer to this approach as iterative helioseismic
holography. We also discuss relations to other methods in local helioseismology.

In a second subsection, we will describe sensitivity kernels for the normal equation as intro-
duced in (19) for the following three scenarios:
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(i) inversion for the source strength,
(ii) inversion for scalar parameter q ∈ {ρ,c,γ},
(iii) inversion for mass-conserved flow field u.

7.1. Relations to conventional helioseismic holography and other methods

Conventional helioseismic holography is based on the Huygens principle in the sense that the
observed wavefield is described as a superposition of seismic point sources on the wavefront.
This principle allows holography to propagate the correlations of acoustic waves at the solar
surface forward in time (‘ingression’ using Hβ) or backward in time (‘egression’ using Hα)
to a pre-defined target location in the interior in order to image anomalies in the background
medium (e.g. [56]). There exists a close connection to seismic migration in terrestrial seismo-
logy, which re-locates seismic events on the earth’s surface in time and space, based on the
wave equation (e.g. [57, 58]). Furthermore, similar back-propagators are used in conventional
beamforming in aeroacoustics [10, 30].

The Lindsey-Braun holographic image (see [27]) is constructed by the wave propagators
Hα ∈ L

(
H−1

0 (Ω),L2(Γ1)
)
and Hβ ∈ L

(
H−1

0 (Ω),L2(Γ2)
)
such that

φα (x) = (H∗
αψ)(x) =

ˆ
Γ1

Hα (x,r)ψ (r) dr, φβ (x) =
(
H∗
βψ

)
(x) =

ˆ
Γ2

Hβ (x,r)ψ (r) dr,

where Γ1,Γ2 ⊂ Γ are called pupils. In Lindsey–Braun holography the information is extrac-
ted from the so-called egression-ingression correlation for parameters q ∈ {c,ρ,u,γ} and the
egression power for seismic sources

Iα,β (x) =
1
N

N∑
n=1

φnα (x)φ
n
β (x) =

1
N

N∑
n=1

Diag
(
H∗
αψn⊗H∗

βψn
)
(x) , (36)

Eq [Iα,β (x)] =
ˆ
Γ

ˆ
Γ

Hα (r,x)Cv,A,S (r,r1)Hβ (r1,x) drdr1 = Diag(H∗
αC [q]Hβ) , (37)

where ⊗ the standard tensor product, and Cv,A,S is from equation (7).
The comparison of equations (16) and (36) shows that the adjoint of the Fréchet derivative

of the covariance operator is linked to traditional helioseismic holography. Denoting potential
additional dependence of Iα,β on the unknown parameters q through Hα and Hβ by super-
scripts, in terms of conventional holography the Newton step (18) is a regularized solution to

I qnα,β −Eq

[
I qnα,β

]
=

ˆ
Ω0

K qn
α,β (·,y) (δqn)(y) dy,

where K q
α,β are the sensitivity kernel of traditional holography, see (20). We will discuss the

sensitivity kernels in more detail in section 7.2.
In traditional helioseismic holography, one has freedom in the choice of the pupils and back-

propagators. For example, the pupils can be chosen such that the hologram intensity becomes
sensitive to specific flow components [59]. As a further example, Porter–Bojarski holograms,
introduced to the field of helioseismology in [60, 61], make use of the normal derivative at
the surface in addition to the Dirichlet data. In contrast, the backward propagators in iterative
helioseismic holography are determined by the wave equation, and the image is improved by
iteration.

While many techniques in helioseismology including traditional helioseismic holography
are limited to linear scenarios, iterative holography naturally allows to tackle nonlinear
problems.
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Among the commonly used imaging techniques in local helioseismology, holography is the
only method that uses the complete cross-correlation data. As already discussed in section 5.1,
these data are used only in an implicit manner without the (usually infeasible) requirement of
computing or storing the cross-correlation data explicitly. Whereas traditional helioseismic
holography only provides feature maps [16], iterative helioseismic holography additionally
allows to retrieve quantitative information.

7.2. Kernels and resolution

In the following, we compute the sensitivity kernels for the normal equation as defined in
equation (19) which are set up explicitly in our current implementation. It is important to note
that sensitivity kernels are typically 3D × 3D operators and should be avoided in computa-
tions. Nevertheless, in the spherically symmetric case or two-dimensional medium, compu-
tation becomes feasible. Therefore, for the purpose of this paper, we can compute the sensit-
ivity kernels in each iteration and do not study more sophisticated approaches. These kernels
are infinitely smooth for smooth coefficients, but they are well localized. It turns out that the
width of these kernels is of the order of the classical resolution limit of half a wavelength.
This provides an upper bound on the achievable resolution. For simplicity, we will assume a
spherically symmetric background without a flow field.

(i) Inversion for source strength: it follows from theorem 8 that

∂SC [v,A,S] (∂S) = HαSM(∂S)H∗
βS ,

where the multiplication operator is defined in lemma 5, so

(∂SC [v,A,S])∗ ∂SC [v,A,S] (∂S) = Diag(FαS,αSM(∂S)FβS,βS)

with the sensitivity kernel

K(x,y) = Re [FαS,αS (x,y)FβS,βS (y,x)] .

The real part comes from the fact that the source strength has to be a real parameter, it is the
adjoint of the embedding of a vector space of real-valued functions into the corresponding
vector space of complex-valued functions. The source forward–backward kernel takes the
form:

FαS,αS (x,y) = FβS,βS (y,x) =
ˆ
Γ

ˆ
Γ

G(z,x)Dn (z,z ′)G(z ′,y) dzdz ′,

whereDn is the integral kernel of Γn in (23). The sensitivity kernel becomes |KαS,αS |2 and
is therefore non-negative. Furthermore, there are almost no sidelobes after averaging over
frequency.

(ii) Inversion for scalar parameters q ∈ {ρ,c,γ}: the operators ∂qv and ∂qA for q ∈ {ρ,c,γ}
are computed in equations (31) and (32). For a flow-free background medium, we have
∂qA= 0 for all scalar parameters q. It follows from theorem 8 that

∂qC [v,A,S] (∂q) =−2Re
[
HαvM(∂qv∂q)H

∗
βv

]
,
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and hence

(∂qC [v,A,S])∗ ∂qC [v,A,S] (∂q)

= 2(∂qv)
∗Diag

[
Fαv,αvM(∂qv∂q)Fβv,βv +Fαv,βvM

(
(∂qv∂q)

∗)Fαv,βv

]
,

where Fαv,αv =
´
Γ

´
Γ
Hαv(z,x)Dn(z,z ′)Hαv(z

′,y)dzdz ′ and analogue for Fαv,αv ,Fβv,βv .
In particular, for q ∈ {c,γ}, we have ∂qv=M(g0q), and the kernel takes the form

K(x,y) = 2Re
[
g0∗q (x)Fαv,αv (x,y)Fβv,βv (y,x)g

0
q (y)

]
+ 2Re

[
g0∗q (x)Fαv,βv (x,y)Fαv,βv (y,x)g

0∗
q (y)

]
.

(38)

(iii) Inversion for mass-conserved flow field u: the flow field sensitivity kernel takes the form

Ki,j (x,y) = 2Re
[
Fαu,αu (x,y)F

i,j
βu,βu

(y,x)+F j
αu,βu (x,y)F

i
αu,βu (y,x)

]
,

for i, j ∈ {r,θ,φ} where Fαu,αu =
´
Γ

´
Γ
Hαu(z,x)Dn(z,z ′)Hαu(z

′,y)dzdz ′ and analogue
the further kernels.

It is remarkable that we are encountering a gradient in the local correlation (∂uLu)∗. In
chapter 4 of [59], enhancements were accomplished by calculating the difference between
two holograms which are spaced apart by half the local wavelength. This can be understood as
an approximation to the gradient in the target direction and is therefore naturally incorporated
in our framework.

In figures 2 and 3, we present the sound speed kernel for a uniform and a solar-like radially
stratified medium for four different target positions. The kernels are computed for spherical
harmonic degrees 0⩽ l< 100 and averaged over 100 evenly spaced frequencies between 2.75–
3.25mHz. Since there are no strong ghost images on the backside, we show only half of the
geometry. The sound speed kernels are very sharp near the target location. Therefore, we can
expect the holograms to catch themain features of the image. It is important to highlight that the
kernels maintain their sharpness even in deep regions within the interior. In addition, this result
holds true for a radial stratification similar to that of the Sun. We observe similar behavior for
the sensitivity kernels for wave damping, density, source strength, and the components of the
flow field. Similar to the sensitivity kernels for the source strength, it is important to note that
there are only small visible sidelobes in the sensitivity kernels for sound speed perturbations.
This is an additional advantage compared to traditional techniques used in helioseismology.

Figure 4 provides a comparison of the width of the sensitivity kernels for the normal
equation and the local half wavelength λ/2. Note that both are of similar size in all cases,
and similar results hold true in angular direction. Therefore, we can expect a resolution of
(at least) λ/2. However, in the case of a solar-like stratification, the sensitivity kernels are
increasing close to the solar surface.

In helioseismology, and particularly in helioseismic holography, a common issue is the
indistinguishability of various sources of perturbations, which complicates the interpretation
of seismic data. The design of a holographic back-propagator holds the promise of separating
different perturbations. In figure 5, we present the sensitivity kernels for a perturbation in
sound speed, a perturbation in damping, and the cross-kernel in a uniform two-dimensional
medium. We show the kernels in a region around the target location. Note that the sound speed
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Figure 2. The sound speed sensitivity kernel K(x, ·) in the r− θ-plane as defined in (38)
for a three-dimensional uniformmediumwith c0 = 200 km s−1 and the l-range is 0⩽ l<
100 for four different target positions x. We have averaged the sensitivity kernels over
100 frequencies in the frequency regime 2.75–3.25mHz and normalized with K(x,x) at
the target location x.

kernel is on one scale bigger than the damping kernel and the cross-kernel. Furthermore, the
cross-kernel exhibits a different shape with positive and negative maxima around the target
location. Therefore, we expect that iterative holography can separate different perturbations in
the background medium.

8. Inversions

In this section, we analyze the performance of iterative holography. The geometry is meshed
with a resolution of ten internal points per local wavelength. Furthermore, we impose a
Sommerfeld boundary condition throughout the inversions.

Throughout the following inversions, we employ a L2-term as the penalty term and intro-
duce a non-negativity constraint for both sound speed and source strength. The regularization
parameter is determined by a power law: αn = α0 · 0.9n, where α0 represents the maximal
eigenvalue of the first iteration. The stopping criterion for the inversions is a version of the
discrepancy principle for the normal equation, with the noise level determined by the trace of
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Figure 3. The sound speed sensitivity kernel K(x, ·) in the r− θ-plane as defined
in (38) in a spherically stratified solar-like background medium and spherical harmonics
degrees 0⩽ l< 100 for four different target positions. We have averaged the sensitivity
kernels over 100 frequencies in the frequency regime 2.75–3.25mHz and normalized
with K(x,x) at the target location x. For better comparisons, we have multiplied the
sensitivity kernels with the sound speed.

the covariance operator C4. In more advanced inversions, stopping rules may be investigated
in the hologram space. We set a limit of at most 50 inner conjugate gradient steps per Newton
step. Furthermore, we opt for a spatial resolution of seven grid points per local wavelength.

8.1. Holographic image for source perturbation

We have performed a numerical test for a uniform, flow-free two-dimensional medium
with source region [0.5,0.7]2 and 100 uniformly sampled receivers located on ∂B(0,1) (see
figure 6). We choose a constant sound speed c= 350 km s−1, which corresponds to the
solar sound speed at ≈ 0.38R⊙. The frequency is fixed to be ω/2π = 3mHz, which cor-
responds to the solar 5min oscillations. In the case of uniform medium, the differential
equation simplifies to a Helmholtz equation, such that the Green’s function is analytically
known (see appendix B). Note that Lindsey–Braun holography (Hα =Hβ = G) provides sharp
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Figure 4. The sound speed sensitivity kernels in a spherically stratified background
medium and the l range is 0⩽ l< 100. In the top panels we present the kernels for
a uniform medium with c0 = 200 km s−1 (as in figure 2), and in the second line the ker-
nels for a solar-like medium (as in figure 3). In the first column, we show the kernels
in the radial direction, and in the second column the kernels in the angular direction.
We have averaged the sensitivity kernels over 100 frequencies in the frequency regime
2.75–3.25mHz. Furthermore, we compare thewidth of the sensitivity kernels to the clas-
sical resolution limit of λ/2. For better comparisons, we have multiplied the sensitivity
kernels with the sound speed.

Figure 5. Matrix-valued sensitivity kernel for joint inversion for sound speed c and
damping γ. The left two panels exhibit the diagonal entries, and the right panel the cross-
kernel in a uniform two-dimensional medium in a rectangular box of [0.2R⊙,0.4R⊙]

2.
The target location is indexed by a red cross. The kernels are normalized by the maximal
value of the sound-speed kernel.

feature maps in the case of small wave damping. For stronger wave damping, the quality
of these feature maps deteriorates rapidly. Even without damping, the feature maps are not
quantitative at all.
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Figure 6. Lindsey–Braun holographic image intensities in uniform two-dimensional
medium (Helmholtz equation) for different degrees of damping with 100 equidistant
receivers on ∂B(0,1). The wave number is such that k2 = ω2(1+ iγ)/c2 with con-
stant sound speed c= 350 km s−1 andω/2π = 3mHz corresponding to a wavelength of
≈0.17R⊙. Note the different scalings of the color maps illustrating the non-quantitative
nature of Lindsey–Braun holography.

8.2. Source strength inversion

Due to its linear nature, inversion for source strength is the simplest case. Therefore, it is in
general possible to work with a much finer grid than in the case of parameter identification
problems. We add a strong perturbation in the source region [0,0.5R⊙]

2. The inversion results
at 3mHz are shown in the first row of figure 7 for 10 000 realizations. Note that even very
deep source terms can be inverted using only one frequency. The reconstructions exhibit a
remarkable quality, strongly improving the results by traditional Lindsey-Braun holography
(see figure 6).

8.3. Parameter identification

We add a perturbation in the quadratic region [0.5R⊙,0.7R⊙]
2. Furthermore, we choose 100

evenly spaced frequencies in the frequency range of 2.75− 3.25mHz and assume 1000 real-
izations for each frequency. Note that in helioseismology we have many more frequencies
available.
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Figure 7. Inversions in two-dimensional uniform background with sound speed
c= 350 km s−1. In the first row, we present inversions for the source strength at 3mHz
and 10 000 realizations. In the second row, we present inversions for the sound speed for
100 frequencies evenly spaced in the band 2.75–3.25mHz and 1000 realizations. The
black cross indicates λ/2.

The inversions are shown in the second row of figure 7. The Newton iteration was stopped
after 15 iterations. The resolution of the reconstruction is again below the classical limit of half
a wavelength.We observed qualitatively similar results in the inversions for wave damping and
density.

The total number of Dopplergrams is given by Nω ×Nobs, where Nω is the number of fre-
quencies and Nobs the number of realizations for each frequency. Note that the total size of
Doppler data is fixed by the observation time. We observe that a larger number of frequen-
cies leads to better reconstructions. On the other hand, the computational costs scale roughly
linearly with the number of frequencies. This becomes particularly important for large-scale
forward problems like for the Sun. Therefore, the choice of Nω often is a trade-off between
quality of reconstructions and computation time.

8.4. Flow fields

The inversion is performed in a solar-like three-dimensional medium. The example flow field
is computed by u= curlψ, where ψ is a stream function. This guarantees conservation of mass
and axisymmetry of the flow field. The stream function is chosen similar to models of meridi-
onal circulation profiles in the Sun [62]. In the inversion process, we guarantee conservation of
mass through Lagrange multipliers, as discussed in appendix C. The inversion for a symmetric
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Figure 8. Inversion for the flow field in solar-like three-dimensional background
medium in the r− θ-plane. The inversion is performed with 100 evenly spaced frequen-
cies between 2.75–3.25mHz and 1500 realizations. Due to the symmetry, we show only
one half-space of the flow field.

flow field is presented in figure 8. We inverted with 100 evenly spaced frequencies between
2.75–3.25mHz and assumed 1500 realizations for each frequency. Since meridional flows are
a small perturbation, the iteration is stopped after one iteration. Because of the symmetry,
we show only one half-space of the flow field. Besides the strength of the flow field at larger
depths, there is no difference visible in the eye-norm.

9. Conclusions

We have developed a theoretical framework for quantitative passive imaging problems in heli-
oseismology. It shows that traditional holography can be interpreted as an adjoint imaging
method. Holographic back-propagation can be seen as part of the adjoint of the Fréchet deriv-
ative of the forward operator mapping physical parameters to the covariance operator of the
observations. In contrast to traditional holography, the backward propagators are uniquely
determined by the wave equation, and the holograms can be improved by iteration rather than
clever choices of back-propagators. Iterative helioseismic holography surpasses traditional
helioseismic techniques by the quantitative nature of its imaging capabilities and its ability
to solve nonlinear problems.

We have demonstrated the performance of iterated holography in inversions for the right
hand side of wave equation (source strength), parameters of the zeroth order term (sound speed,
absorption) and of the first order term (flows). In all three cases, we have achieved reconstruc-
tions with a resolution of slightly less than half of the local wave-length by the iteratively
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regularized Gauss-Newton method, even for strong realization noise. This is well below the
spatial resolution of traditional time-distance helioseismology (see [15]).

Inversions in other more challenging solar setups and for real solar oscillation data are
planned as future work and will be presented elsewhere.

In view of the huge size of solar oscillation data, the main bottleneck that prevents the
immediate application of iterative holography to interesting large-scale problems in helioseis-
mology is computational complexity. The results of this paper encourage further algorithmic
research on iterative regularization methods tailored to passive imaging problems, e.g. by more
efficient treatments of sensitivity kernels and Green’s functions.

An interesting feature of correlations of Gaussian fields is the structure of the realization
noise as described in section 5.3. A thorough mathematical treatment will require further
investigation concerning appropriate stopping rules, consistency, and convergence rates as the
sample size tends to infinity.
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Appendix A. Reference green’s function for the Sun

The Green’s function is usually computed in the frequency domain with background paramet-
ers specified by the spherically symmetric standard Model S [54]. Additionally, we have to fix
the wave attenuation. We choose a frequency-dependent wave attenuation model, motivated
by the Full Width at Half Maximum (FWHM) of wave modes [49, 63, 64]:

γ (r,ω) =
{
γ0 |ω/ω0|5.77 for ω ⩽ 5.3mHz
2π × 125 µHz for ω ⩾ 5.3 mHz

,

where γ0/2π = 4.29µHz and ω0/2π = 3mHz. We extend the computational boundary by
500 km above the solar surface (compare with the density scale height of H= 105 km) and
apply the radiation boundary condition ‘Atmo Non Local’ (see [52]), assuming an exponential
decay of density and constant sound speed in the solar atmosphere.

In a spherical symmetric background, we can decompose theGreen’s function into spherical
harmonics:

G(r1,r2) =
∞∑
l=0

l∑
m=−l

Gl (r1,r2)Ylm (r̂1)Y∗
lm (r̂2) , (A.1)

where the Y lm are spherical harmonics. The functions Gl(r1,r2) satisfy a one-dimensional dif-
ferential equation and are computed with NGsolve [65, 66]. The computation of the Green’s
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function is usually expensive, as the stiffness matrix has to be inverted. The two-step algorithm
of [67] allows us to obtain the full modal Green’s function from two computations only.
Furthermore, this expansion allows us to use a low-rank approximation for the Green’s
function.

Appendix B. Green’s function in uniform medium

We perform numerical toy examples in uniform flow-free two-dimensional and three-
dimensional background mediums and consider a Sommerfeld boundary condition. The dif-
ferential equation (25) reduces to the Helmholtz equation

−
(
∆+ k2

)
ψ = s, (B.1)

where k is constant. In this setting, the Green’s function is well known (e.g. [31]):

G(x,y,k) =
i
4
H1

0 (k|x− y|) , d= 2 (B.2)

G(x,y,k) =
exp(ik|x− y|)
4π |x− y|

, d= 3, (B.3)

where H1
0 is the Hankel function of first kind.

The Green’s functions are weakly singular at x= y. We will approximate the Green’s func-
tions around the singularity using asymptotics:

G(x,y) =
1
2π

ln

(
1

|x− y|

)
+
i
4
− 1

2π
ln

(
k
2

)
− C

2π
+O

(
|x− y|2 ln(1/|x− y|)

)
, d= 2

(B.4)

G(x,y) =
1

4π |x− y|
+

ik
4π

+O(|x− y|) , d= 3, (B.5)

where the constant C denotes the Euler–Mascheroni constant. In inversions of extended prop-
erties like large-scale flows, it is more feasible to work in an angular basis (spherical harmonics
in three dimensions and trigonometric functions in two dimensions). The Green’s functions for
the uniform medium can be described by

G(x,y) = H1
0 (k|x|)J0 (k|y|)+ 2

∞∑
n=1

H1
n (k|x|)Jn (k|y|)cos(nθx,y) , d= 2 (B.6)

G(x,y) = ik
∞∑
n=0

m=n∑
m=−n

h1n (k|x|)Ynm (x̂) jn (k|y|)Y∗
nm (ŷ) , d= 3, (B.7)

for |x|⩾ |y|. Here, Jn,h1n, jn denote the Bessel function, spherical Hankel function, and spher-
ical Bessel function.Moreover, θx,y denotes the angular distance between x and y. Furthermore,
this basis transformation allows a natural implementation of the singularity.We use this expan-
sion in order to use low-rank approximations for the Green’s function.
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Appendix C. Conservation of mass

For flow inversions, considerable improvements are achieved by incorporating mass conser-
vation in the inversion process [68].

An equality constraint Rδuk = 0, where R : X→ Z is a bounded linear operator, can be
incorporated by employing themethod of Lagrangemultiplier. For the iterative Gauss–Newton
method, we solve the normal equation:

δuk = argmin
div(ρδu)=0

‖
(
Γ1/2
n ×Γ1/2

n

)
[C ′ [uk] (δu)− (Corr−C [uk])]‖Y +αk‖δu‖X, (C.1)

with Hilbert spaces X, Y, noise covariance operator Γ defined in (23). The Lagrange function
takes the form L(δuk,µ) := ‖(Γ1/2

n ×Γ
1/2
n ) [C ′[uk](δuk)− (Corr−C[uk])]‖Y +αk‖δuk‖X +

〈µ,αRδuk〉Z with the Lagrange multiplier µ ∈ Z. The saddle point can be found by(
C ′ [uk]

∗
(Γn×Γn)C ′ [uk] +αIdX αR∗

αR 0

)(
δuk
µ

)
=

(
C ′ [uk]

∗
(Γn×Γn)(Corr−C [uk])

0

)
.
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