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Abstract
In this paper we describe an investigation into the application of deep learning
methods for low-dose and sparse angle computed tomography using small train-
ing datasets. To motivate our work we review some of the existing approaches
and obtain quantitative results after training them with different amounts of
data. We find that the learned primal-dual method has an outstanding perfor-
mance in terms of reconstruction quality and data efficiency. However, in gen-
eral, end-to-end learned methods have two deficiencies: (a) a lack of classical
guarantees in inverse problems and (b) the lack of generalization after train-
ing with insufficient data. To overcome these problems, we introduce the deep
image prior approach in combination with classical regularization and an initial
reconstruction. The proposed methods achieve the best results in the low-data
regime in three challenging scenarios.

Keywords: inverse problems, deep learning, computed tomography, deep image
prior, neural networks

(Some figures may appear in colour only in the online journal)

1. Introduction

Deep learning approaches to solving ill-posed inverse problems currently achieve state-of-
the-art reconstruction quality. However, they require large amounts of training data, i.e., pairs
of ground truths and measurements, and it is not clear how much is necessary to be able to
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achieve good generalization. For ill-posed inverse problems arising in medical imaging, such
as magnetic resonance imaging (MRI), guided positron emission tomography (PET), magnetic
particle imaging, or computed tomography (CT), obtaining such high amounts of training data
is challenging. In particular, ground truth data is difficult to obtain as it is impossible to take a
photograph of the inside of the human body. What learned methods usually consider as ground
truths are phantoms or high-dose reconstructions obtained with classical methods, such as fil-
tered back-projection (FBP). These methods work well when using a large amount of low-noise
measurements. In MRI, it is possible to obtain these reconstructions, but the data acquisition
process requires a great deal of time. Therefore, one potential benefit of learned approaches in
MRI is the reduction of data acquisition times [30]. In other applications such as CT, it would
be necessary to expose patients to high doses of x-ray radiation to obtain the required training
ground truths.

There is another approach called deep image prior (DIP) [31] that also uses deep neural
networks, for example, a U-Net [45]. However, there is a remarkable difference: the DIP does
not need any learning, i.e., the weights of the network are not trained. This approach seems to
have low applicability because it requires a lot of time for image reconstruction, in contrast to
learned methods. In the applications initially considered, for example, inpainting, denoising,
and super-resolution, it is much easier to obtain or simulate data, which allows for the use of
learned methods, and the DIP does not seem to have an advantage.

In this paper, we aim to explore the application of the DIP together with other deep learning
methods for obtaining CT reconstructions when little training data is available. The struc-
ture of the paper and the main contributions are organized as follows. In section 2, we briefly
describe the CT reconstruction problem. Section 3 provides a summary of related articles and
approaches, together with some background and observations that we use as motivation for
our work. In section 4, we introduce the combination of the DIP with classical regularization
methods and discuss under which assumptions the classical regularization results still hold.
In section 5, we propose a similar approach to the DIP but using an initial reconstruction
given by any end-to-end learned method. Finally, in section 6, we present a benchmark of
the different methods that we have analyzed using varying amounts of data from two standard
datasets.

2. CT

CT is one of the most valuable technologies in modern medical imaging [9]. It allows for a non-
invasive acquisition of the inside of the human body using x-rays. Since the introduction of CT
in the 1970s, technical innovations such as new scan geometries have extended the limits on
speed and resolution. Current research focuses on reducing the amount of potentially harmful
radiation to which a patient is exposed during the scan [9]. These innovations include mak-
ing measurements using lower intensity x-rays or at fewer angles. Both approaches introduce
particular challenges for reconstruction methods that can severely reduce the image quality. In
our work, we compare several reconstruction methods in these low-dose scenarios for a basic
2D parallel beam geometry (cf figure 1).

In this case, the forward operator is given by the 2D Radon transform [43] and models the
attenuation of the x-ray when passing through a body. We can parameterize the path of an x-ray
beam by the distance from the origin s ∈ R and angle ϕ ∈ [0, π]:

Ls,ϕ(t) = sω (ϕ) + tω⊥ (ϕ) , ω (ϕ) := [cos(ϕ), sin(ϕ)]T. (1)

The Radon transform then calculates the integral along the line for parameters s and ϕ:
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Figure 1. Parallel beam geometry.

Ax(s,ϕ) =
∫
R

x
(
Ls,ϕ(t)

)
dt. (2)

According to Beer–Lambert’s law, the result is the logarithm of the ratio of the intensity, I0, at
the x-ray source to the intensity, I1, at the detector

Ax(s,ϕ) = − ln

(
I1 (s,ϕ)
I0 (s,ϕ)

)
= y (s,ϕ) . (3)

Calculating the transform for all pairs (s,ϕ) results in a so-called sinogram, which we also call
an observation. To get a reconstruction x̂ from the sinogram, we have to invert the forward
model. Since the Radon transform is linear and compact, the inverse problem is ill-posed in
the sense of Nashed [39, 40].

3. Related approaches and motivation

In this section, we first review and describe some of the existing data-driven and classical
methods for solving ill-posed inverse problems, that have also been applied to obtain CT
reconstructions. Following this, we review the DIP approach and related works.

In inverse problems one aims at obtaining an unknown quantity, in this case the image of
the interior of the human body, from indirect measurements that frequently contain noise [16,
36, 44]. The problem is modeled by an operator A : X → Y between Banach or Hilbert spaces
X and Y and the measured noisy data or observation:

yδ = Ax† + τ. (4)

The aim is to obtain an approximation x̂ for x† (the true solution), where τ , with ‖τ‖ � δ,
describes the noise in the measurement.

Classical approaches to solving inverse problems include linear pseudo inverses given by
filter functions [36] or non-linear regularized inverses given by the variational approach

Tα(yδ) ∈ arg min
x∈D

S(Ax, yδ) + αJ(x), (5)

whereS : Y × Y →R is the data discrepancy, J : X → R ∪ {∞} is the regularizer,D :=D(A) ∩
D(J) and D(A), D(J) are the domains of A and J respectively. Examples of hand-crafted
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regularizers/priors are ‖x‖2, ‖x‖1 and total variation (TV). The value of the regularization
parameter α should be carefully selected. One way to do that, in the presence of a validation
dataset with some ground truth and observation pairs, is to do a line-search and select the α
that yields the best performance on average, assuming there is a uniform noise level. Given
validation data {x†i , yδi }N

i=1, the data-driven parameter choice would be

α̂ := arg max
α∈R+

N∑
i=1

�(Tα(yδi ), x†i ), (6)

where � : X × X → R is some similarity measure, such as peak signal-to-noise ratio (PSNR)
or structural self-similarity (SSIM).

Data-driven regularized inversion methods for solving inverse problems in imaging have
recently had great success in terms of reconstruction quality [6]. Three main classes of meth-
ods are: end-to-end learned methods [1, 3, 8, 21, 28, 46], learned regularizers [34, 37] and
generative networks [2, 7, 13]. For the study described in this paper, we only focus on the
end-to-end learned methods.

3.1. End-to-end learned methods

In this section, we briefly review some of the most successful end-to-end learned methods.
Most of them were implemented and included in our benchmark.

3.1.1. Post-processing. This method aims at improving the quality of the FBP reconstruc-
tions from noisy or few measurements by applying learned post-processing. Recent works
[11, 28, 42, 48] have successfully used a convolutional neural network (CNN), such as the
U-Net [45], to remove artifacts from FBP reconstructions. In mathematical terms, given a
possibly regularized FBP operator TFBP, the reconstruction is computed using a network
Dθ : X → X as

x̂ := [Dθ ◦ TFBP](yδ) (7)

with parameters θ of the network that are learned from data.

3.1.2. Fully learned. Methods of this type aim at directly learning the inversion process
from data while keeping the network architecture as general as possible. This idea was suc-
cessfully applied in MRI by the AUTOMAP architecture [49]. The main building blocks
consist of fully connected layers. Depending on the problem, the number of parameters
can grow quickly with the data dimension. For mapping from sinogram to reconstruction
in the LoDoPaB-CT dataset [32] (see section 6.1), such a layer would have over 1000 ×
513 × 3622 ≈ 67 × 109 parameters. This makes the naive approach infeasible for large CT
data.

He et al [22] introduced an adapted two-part network, called iRadonMap. The first part
reproduces the structure of the FBP. A fully connected layer is applied along s and shared
over the rotation angle dimension ϕ, playing the role of the filtering. For each reconstruction
pixel (i, j) only sinogram values on the sinusoid s = i cos(ϕ) + j sin(ϕ) have to be consid-
ered and are multiplied by learned weights. For the example above, the number of parameters
in this layer reduces to 5132 + 3622 × 1000 ≈ 13 × 107. The second part consists of a post-
processing network. We choose the U-Net architecture for our experiments, which allows for
a direct comparison with the FBP + U-Net approach.
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3.1.3. Learned iterative schemes. Another series of works [1, 3, 20, 21] use CNNs to
improve iterative schemes commonly used in inverse problems for solving (5), such as
gradient descent, proximal gradient descent or hybrid primal-dual algorithms. For example,
the proximal gradient descent is given by the iteration

x(k+1) = φJ, α, λk (x(k) − λkA∗(Ax(k) − yδ)), (8)

for k = 0, . . . , L − 1, where φJ,α,λ : X → X is the proximal operator or projector. In [20], the
authors replace the projector by a CNN that is trained to project perturbed reconstructions to
the set of clean reconstructions. However, this approach is not end-to-end because the network
is first trained to do the projection and then inserted into the iterative scheme.

The idea behind end-to-end learned iterative methods is to unroll these schemes with a
small number of iterations, and replace some operators by CNNs with parameters that are
trained using ground truth and observation data pairs. Each iteration is performed by a convo-
lutional network ψθk that includes the gradients of the data discrepancy and of the regularizer
as input in each iteration. Moreover, the number of iterations is fixed and small, e.g., L = 10.
The reconstruction operator is given by Tθ : Y → X with Tθ(yδ) = x(L) and

x(k+1) = ψθk (x(k), A∗(Ax(k) − yδ),∇J(x(k)))

x(0) = A+(yδ)

for any pseudo inverse A+ of the operator A and θ = (θ0, . . . , θL−1). Alternatively, x(0) could
be just randomly initialized.

Similarly, more sophisticated algorithms, such as hybrid primal-dual algorithms, can be
unrolled and trained in the same fashion. In this work, we used an implementation of the learned
gradient descent [1] and the learned primal-dual method [3].

The above mentioned approaches all rely on a parameterized operator Tθ : Y → X, whose
parameters θ are optimized using a training set of N ground truth samples x†i and their corre-
sponding noisy observations yδi . Usually, the empirical mean squared error is minimized, i.e.,

θ̂ ∈ arg min
θ∈Θ

1
N

N∑
i=1

‖Tθ(yδi ) − x†i ‖2. (9)

After training, the reconstruction x̂ ∈ X from a noisy observation yδ ∈ Y is given by x̂ =
Tθ̂(yδ). The main disadvantage of most of these approaches is that they do not enforce data
consistency. As a consequence, some information in the observation could be ignored, yielding
a result that might lack important features of the image. In medical imaging, this is critical
since it might remove an indication of a lesion. Recent works [4, 19] also show that some
methods, such as those which are fully learned or follow the post-processing approach, are
unstable, which means that tiny perturbations in the ground truth or the measurements may
result in severe artifacts in the reconstructions. These are the main motivations for the approach
we introduce in section 5. Nevertheless, there exist other methods [46] that do enforce data
consistency and may not suffer from these instabilities.

3.2. DIP

The DIP is similar to the generative networks approach and the variational method. How-
ever, instead of having a regularization term J(x), the regularization is incorporated by the
reparametrization x = ϕ(θ, z), where ϕ is a deep generative network, for example a U-Net,
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Figure 2. The figure illustrates the DIP approach. We use a U-Net architecture with 128
channels at every layer. Some layers have additionally the skip channels (coming from
the dashed arrows). We always use either 4 or 0 skip channels.

Figure 3. Intermediate reconstructions of the DIP approach for CT (ellipses dataset,
see section 6.2). At the beginning the coefficients are randomly initialized from a prior
distribution. The method starts reconstructing the image from global to local details.

with randomly initialized weights θ ∈ Θ, and z is a fixed input such as random white noise.
The approach is depicted in figure 2 and consists in solving

θ̂ ∈ arg min
θ∈Θ

‖Aϕ(θ, z) − yδ‖2, x̂ :=ϕ(θ̂, z). (10)

The weights are optimized by a gradient descent method to minimize the data discrepancy of
the output of the network. In the original method, the authors use gradient descent with early
stopping to avoid reproducing noise. This is necessary due to the overparameterization of the
network, which makes it able to reproduce the noise. The regularization is a combination of
early stopping (similar to the Landweber iteration) and the architecture [14]. The drawback is
that it is not clear how to choose when to stop. In the original work, the authors do this using
a validation set and select the number of iterations that performs best on average in terms of
PSNR.

The prior is related to the implicit structural bias of this kind of deep convolutional net-
works. In the original DIP paper [31] and more recently in [10, 24], it is shown that con-
volutional image generators, optimized with gradient descent, fit natural images faster than
noise and learn to construct them from low to high frequencies. This effect is illustrated in
figure 3.
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3.2.1. Related work. The DIP approach has inspired many other researchers to improve it by
combining it with other methods [35, 38, 47], to use it for a wide range of applications [17,
18, 26, 27] and to offer different perspectives and explanations of why it works [10, 12, 14].
In [38], the concept of regularization by denoising (RED) is introduced and it is shown how
the two (DIP and RED) can be merged into a highly effective unsupervised recovery process.
Another series of works also adds explicit priors but on the weights of the network. In [47],
this is done in the form of a multi-variate Gaussian but learning the covariance matrix and the
mean using a small dataset. In [12], a Bayesian perspective on the DIP is introduced by also
incorporating a prior on the weights θ and conducting the posterior inference using stochastic
gradient Langevin dynamics.

So far, the DIP has been used for denoising, inpainting, super-resolution, image decompo-
sition [17], compressed sensing [47], PET [18], MRI [27] among other applications. A similar
idea [26] was also used for structural optimization, which is a popular method for designing
objects such as bridge trusses, airplane wings, and optical devices. Rather than directly opti-
mizing densities on a grid, they instead optimize the parameters of a neural network which
outputs those densities.

3.2.2. Network architecture. In the paper by Ulyanov et al [31], several architectures were
considered, for example, ResNet [23], encoder–decoder (autoencoder) and a U-Net [45].
For inpainting large regions, the Autoencoder with depth = 6 performed best, whereas for
denoising a modified U-Net achieved the best results. The regularization happens mainly
due to the architecture of the network, which reduces the search space but also influences
the optimization process to find more natural images. Therefore, for each application, it
is crucial to choose the appropriate architecture and to tune hyper-parameters, such as the
network’s depth and the number of channels per layer. Optimizing the hyper-parameters is
the most time-consuming part. In figure 4 we show some reconstructions from the ellipses
dataset (see section 6.2) with different hyper-parameter choices. In this case, it seems that
the U-Net without skip connections and depth 5 (encoder–decoder) achieves the best per-
formance. One can see that when the number of channels is too low, the network does not
have enough representation power. Also, if there are no skip channels, the higher the num-
ber of scales (equivalent to the depth), the more the regularization effect. The extraordi-
nary success of this approach demonstrates that the architecture of the network has a sig-
nificant influence on the performance of deep learning approaches that use similar kinds of
networks.

3.2.3. Early-stopping. As mentioned earlier, in [31], it is shown that early stopping has a
positive impact on the reconstruction results. It was observed that in some applications, such
as denoising, the loss decreases rapidly toward natural images, but takes much more time
to go toward noisy images. This empirical observation helps to determine when to stop. In
figure 5, one can observe how the similarity with respect to the ground truth (measured by the
PSNR and the SSIM metrics) reaches a maximum and then deteriorates during the optimization
process.

4. DIP and classical regularization

In this section we analyze the DIP in combination with classical regularization, i.e., we include
a regularization term J : X → R ∪ {∞}, such as TV. We give necessary assumptions under
which we are able to obtain standard guarantees in inverse problems, such as existence of a
solution, convergence, and convergence rates.
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Figure 4. CT reconstructions after 5000 iterations using the DIP with a U-Net architec-
ture and different scales (depths), channels per layer (the network has the same number
of channels at every layer) and number of skip connections (the first two rows do not use
skip connections, i.e., skip: [0, 0, 0, 0, 0]). In the last row all reconstructions use 5 scales
and 128 channels.

Figure 5. Training loss and true similarity (PSNR and SSIM) of CT reconstructions
using the DIP approach. The training was done over 15 000 iterations and the architecture
is an encoder–decoder (no skip channels) with 5 scales and 128 channels per layer.

In the general case, we consider X and Y to be Banach spaces, and A : X → Y a continuous
linear operator. To simplify notation, we use ϕ(·) instead of ϕ(·, z), since the input to the net-
work is fixed. Additionally, we assume thatΘ is a Banach space, and ϕ : Θ→ X is a continuous
mapping.

8
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The proposed method aims at finding

θδα ∈ arg min
θ∈Θ

S(Aϕ(θ), yδ) + αJ(ϕ(θ)) for α > 0 (11)

to obtain

Tα(yδ) :=ϕ(θδα). (12)

With this approach, we eliminate the need for early stopping, i.e., the need to find an optimal
number of iterations. However, we introduce the problem of finding an optimal α, which is a
classical issue in inverse problems. These problems are similar since both choices depend on
the noise level of the observation data. The higher the noise, the higher the value of α or the
smaller the number of iterations for obtaining optimal results.

If the range of ϕ is Ω := rg(ϕ) = X, i.e.,

∀ x ∈ X : ∃ θ ∈ Θ s.t. ϕ(θ) = x; (13)

this is equivalent to the standard variational approach in equation (5). However, although the
network can fit some noise, it cannot fit, in general, any arbitrary x ∈ X. This depends on
the chosen architecture, and it is mainly because we do not use any fully connected layers.
Nevertheless, the minimization in (11) is similar to the setting in equation (5) if we restrict the
domain of A to be D̃(A) :=D(A) ∩ Ω

Tα(yδ) ∈ arg min
x∈˜D

S(Ax, yδ) + αJ(x), (14)

where D̃ := D̃(A) ∩ D(J). If the following assumptions are satisfied, then all the classical the-
orems, namely well-posedness, stability, convergence, and convergence rates, still hold, see
[25].

Assumption 1. The range of ϕ with respect to θ (parameters of the network), namely Ω, is
closed, i.e., if there is a convergent sequence {xk} ⊂ Ω with limit x̃, it holds x̃ ∈ Ω.

Definition 1. An element x† ∈ D̃ is called a J-minimizing solution if Ax† = y† and ∀ x ∈
D̃ : J(x†) � J(x), where y† is the perfect noiseless data.

Assumption 2. There exists a J-minimizing solution x† ∈ D̃ and J(x†) < ∞.

Assumption 1 guarantees that the restricted domain of A is closed, whereas assumption 2
guarantees that there is a J-minimizing solution in the restricted domain. In appendix A, we
analyze in which cases these conditions hold.

5. DIP with initial reconstruction

In this section, we propose a two-steps approach based on the method from the previous section.
The idea is to take the result from any end-to-end learned method T : Y → X as initial recon-
struction (first step) and further enforce data consistency by optimizing over its deep-neural
parameterization (second step).

Definition 2 (Deep-neural parameterization). Given an untrained network ϕ : Θ× Z →
X and a fixed input z ∈ Z, the deep-neural parameterization of an element x ∈ X with respect
to ϕ and z is

θx ∈ arg min
θ∈Θ

‖ϕ(θ, z) − x‖2. (15)

9
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Figure 6. Graphical illustration of the DIP approach with initial reconstruction. The blue
area refers to an approximation of some part of the space of natural images.

Algorithm 1. DIP with initial reconstruction.

1: x0 ←T (yδ)
2: z ← noise
3: θ0 ∈ arg min

θ
‖ϕ(θ, z) − x0‖2

4: for k ← 0 to K − 1 do
5: ω ∈ ∂L(θk)
6: θk+1 ← θk − ηω
7: end for
8: T̂ (yδ) ← ϕ(θk, z)

The projection onto the range of the network is possible because of the result of assumption
1, i.e., the range is closed. If ϕ is a deep convolutional network, for example, a U-Net, the deep-
neural parameterization has similarities with other signal representations, such as the Wavelets
and Fourier transforms [26]. For image processing, such domains are usually more convenient
than the classical pixel representation.

As shown in figure 6, one way to enforce data consistency is to project the initial recon-
struction into the set where ‖Ax − yδ‖ � δ. The puzzle is that due to the ill-posedness of the
problem, the new solution (red point) will very likely have artifacts. The proposed approach
first obtains the deep-neural parameterization θ0 of the initial reconstruction T (yδ) and then
use it as starting point to minimize

L(θ) := ‖Aϕ(θ, z) − yδ‖2 + αJ(ϕ(θ, z)), (16)

over θ via gradient descent. The iterative process is continued until ‖Aϕ(θ, z) − yδ‖ � δ or

10
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for a given fixed number of iterations K determined by means of a validation dataset. This
approach seems to force the reconstruction to stay close to the set of natural images because
of the structural bias of the deep-neural parameterization. The procedure is listed in algorithm
1 and a graphical representation is shown in figure 6.

The new method T̂ : Y → X is similar to other image enhancement approaches. For
example, related methods [15] first compute the wavelet transform (parameterization), and
then repeatedly perform smoothing or shrinking of the coefficients (further optimization).

6. Benchmark setup and results

For the benchmark, we implemented the end-to-end learned methods described in section 3.1.
We trained them on different data sizes and compared them with classical methods, such as
FBP and TV regularization, and with the proposed methods. The datasets we use were recently
released to benchmark deep learning methods for CT reconstruction [32]. They are accessible
through the DIVα� python library [33]. We also provide the code and the trained methods in
the following GitHub repository: https://github.com/oterobaguer/dip-ct-benchmark.

6.1. The LoDoPaB-CT dataset

The low-dose parallel beam (LoDoPaB) CT dataset [32] consists of more than 40 000 two-
dimensional CT images and corresponding simulated low-intensity measurements. Human
chest CT reconstructions from the LIDC/IDRI database [5] are used as virtual ground truth.
Each image has a resolution of 362 × 362 pixels. For the simulation setup, a simple par-
allel beam geometry with 1000 angles and 513 projection beams is used. To simulate low
intensity, Poisson noise is applied to the projection data. The noise amount corresponds to an
x-ray source that on average emits 4096 photons per detector pixel. We use the standard dataset
split defining in total 35 820 training pairs, 3522 validation pairs and 3553 test pairs. In addi-
tion, we analyze another dataset, LoDoPaB (200), obtained by uniformly sampling 200 angles
from the original 1000 without any further modification.

6.2. Ellipses dataset

As a synthetic dataset for imaging problems, random phantoms of combined ellipses are com-
monly used. We use the ’ellipses’ standard dataset from the DIVα� python library (as
provided in version 0.4) [33]. The images have a resolution of 128 × 128 pixels. Measurements
are simulated with a parallel beam geometry with only 30 angles and 183 projection beams.
In addition to the sparse-angle setup, moderate Gaussian noise with a standard deviation of
2.5% of the mean absolute value of the projection data is added to the projection data. In total,
the training set contains 32 000 pairs, while the validation and test set consist of 3200 pairs
each.

6.3. Implementation details

For the DIP with initial reconstruction, we used the learned primal-dual, which has the best
performance among the compared methods (see the results in figure 7). For each data size, we
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Figure 7. Benchmark results of several existing methods and the proposed approaches
(DIP + TV, learned primal-dual + DIP) on the Ellipses, LoDoPaB (200) and LoDoPaB
datasets. The horizontal lines indicate the performance of data-free methods.

chose different hyper-parameters, namely the step-size η, the TV regularization parameter α,
and the number of iterations K, based on the available validation dataset.

Minimizing L(θ) in (16) is not trivial because TV is not differentiable. In our implementa-
tion we use the PyTorch automatic differentiation framework [41] and the ADAM [29] opti-
mizer. For the Ellipses dataset we use the �2-discrepancy term, whereas for LoDoPaB we use
the Poisson loss.

12
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Figure 8. Reconstructions of test samples using the learned primal-dual method trained
with different amounts of data from the ellipses and LoDoPaB datasets. The �2 data error
measures the discrepancy between the noisy observation and the noise-free projection
of the (reconstructed) image.

6.4. Numerical results

We trained all the methods with different dataset sizes. For example, 0.1% on the ellipses
dataset means we trained the model with 0.1% (32 data-pairs) of the available training data and
0.1% (3 data-pairs) of the validation data. Afterward, we tested the performance of the method

13
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Figure 9. Reconstruction obtained with the FBP method, isotropic TV regulariza-
tion and the DIP approach combined with TV, for test samples from the ellipses and
LoDoPaB datasets. The �2 data error measures the discrepancy between the noisy
observation and the noise-free projection of the (reconstructed) image.

on the first 100 samples of the test dataset (in the original order, i.e., not sorted by patient). This
reduced test dataset was used because some of the methods require a lot of time for reconstruc-
tion, and the mean performance on 100 samples already allows for accurate benchmarking.
The results are depicted in figure 7 and more details can be found in appendix B.
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Figure 10. Reconstruction obtained with the FBP method, isotropic TV regularization
and the DIP approach combined with TV, for test samples from the LoDoPaB (200)
dataset. The �2 data error measures the discrepancy between the noisy observation and
the noise-free projection of the (reconstructed) image.

Figure 11. Examples of reconstructions obtained with the DIP + TV approach, the
learned primal-dual method trained with 0.01% and 0.1% of the LoDoPaB (200) dataset
and the DIP + TV approach with initial reconstruction. The �2 data error measures
the discrepancy between the noisy observation and the noise-free projection of the
(reconstructed) image.

As expected, the fully learned method (iRadonMap) requires a large amount of data to
achieve acceptable performance. On the ellipses and LoDoPaB (200) dataset, it outperformed
TV using 100% of the data, whereas on the LoDoPaB dataset, it performed just slightly bet-
ter than the FBP. The learned post-processing (FBP + U-Net) required much less data. It
outperformed TV with only 10% of the ellipses dataset and 0.1% of the LoDoPaB dataset.
On the other hand, we find that the learned primal-dual is very data efficient and achieved
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Figure 12. Examples of reconstructions obtained with the DIP approach combined with
TV, the learned primal-dual method trained with 0.1% and 0.2% of the Ellipses dataset
(32 and 64 resp. data-pairs) and the DIP approach with initial reconstruction. The �2
data error measures the discrepancy between the noisy observation and the noise-free
projection of the (reconstructed) image.
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the best performance. In figure 8, we show some results from the test set for different data
sizes.

The DIP+TV approach achieved the best results among the data-free methods. On average,
it outperforms TV by 1 dB on all the analyzed datasets. In figures 9 and 10, it can be observed
that TV tends to produce flat regions but also produces high staircase effects on the edges.
On the other hand, the combination with DIP produces more realistic edges. For the first two
smaller data sizes of the ellipses and LoDoPaB (200) datasets, it performs better than all the
end-to-end learned methods.

The DIP + TV with initial reconstruction improved the results on the low-data regime for
the ellipses and LoDoPaB (200) datasets. For the higher data sizes and the LoDoPaB dataset,
it did not yield reconstructions with higher quality than those already obtained by the DIP +
TV or learned primal-dual methods. We believe that this approach is more useful in the case
of having sparse measurements and little training data.

In figures 11 and 12, we show some reconstructions obtained using this method for the
LoDoPab (200) and ellipses datasets. The reconstructions have a better data consistency with
respect to the observed data (�2-discrepancy) and higher quality both visually and in terms
of the PSNR and SSIM measures. Moreover, this approach is in general much faster, even if
we also consider the iterations required to obtain the deep-prior/neural parameterization of the
first reconstruction. These initial iterations are much faster because they only use the identity
operator instead of the Radon transform. For example, for the Ellipses dataset, the DIP +
TV approach needs 8000 iterations to obtain optimal performance in a validation dataset (five
ground truth and observation pairs). On the other hand, by using the initial reconstruction,
it needs 4000 iterations with the identity operator and only 1000 with the Radon transform
operator, which results in a 2× speed factor.

7. Conclusions

In this work, we study the combination of classical regularization, deep-neural parameteri-
zation, and deep learning approaches for CT reconstruction. We benchmark the investigated
methods and evaluate how they behave in low-data regimes. Among the data-free approaches,
the DIP + TV method achieves the best results. However, it is considerably slow and does
not benefit from having a small dataset with reference reconstructions. On the other hand,
the learned primal-dual is very data efficient. However, it lacks data consistency when not
trained with enough data. These issues motivate us to adjust the reconstruction obtained with
the learned primal-dual to match the observed data. We solved the puzzle without introducing
artifacts through a combination of classical regularization and the DIP.

The results presented in this paper offer several baselines for future comparisons with other
approaches. Moreover, the proposed methods could be applied to other imaging modalities.
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Appendix A. DIP and classical regularization

The mapping ϕ : Θ→ X has a neural network structure, with a fixed input z ∈ R
n0 , and can be

expressed as a composition of affine mappings and activation functions:

ϕ = σ(L) ◦ K(L) ◦ · · · ◦ σ(2) ◦ K(2) ◦ σ(1) ◦ K(1), (A.1)

where K(i)(x) :=W (i)x + b(i), W (i) ∈ G(i) ⊆ R
ni×ni−1 , b(i) ∈ B(i) ⊆ R

ni , σ(i) : R→ R (applied
component-wise), and θ = (W (L), b(L), . . . , W(1), b(1)) ∈ G(L) × B(L) · · · × G(1) × B(1) = Θ. In
the following we analyze under which conditions we can guarantee that the range of ϕ (with
respect to Θ) is closed.

Definition 3. An activation function σ : R→ R is valid, if it is continuous, monotone, and
bounded, in the sense there exist c > 0 such that ∀x ∈ X : |σ(x)| � c|x|.

Lemma 1. Let ϕ be a neural network ϕ : Θ→ X with L layers. If Θ is a compact set, and
the activation functions σ(i) are valid, then the range of ϕ is closed.

Proof. In order to prove the result, we show that the range after each layer of the network is
compact.

(a) Let the set V = {Wu : W ∈ G ⊂ R
m×n, u ∈ U ⊂ R

n}, where G and U are compact sets,
i.e., bounded and closed. Since G and U are bounded, it follows that V is bounded.

Let the sequence {W (k)u(k)}, with W (k) ∈ G and u(k) ∈ U, converge to v. Since {W(k)}
and {u(k)} are bounded, there is a subsequence {W (k)ū(k)}, where both {W(k)} and {ū(k)}
converge to W ∈ G and ū ∈ U respectively. It follows that {W (k)ū(k)} converges to Wū,
therefore, v = Wū ∈ V , which shows that V is closed. Thus, V is compact.

(b) From (a), the fact that G(i), B(i) are compact sets, and assuming U(i) ⊂ R
ni−1 is also

compact, it follows that V (i) = {Wu + b : W ∈ G(i), u ∈ U(i), b ∈ B(i) ⊂ R
ni} is compact.

(c) It is easy to show that if the pre-image of a valid activation σ is compact, then its image
is also compact.

In the first layer, U0 = {z}, which is compact; thus, using (a), (b), and (c) it can be shown
by induction that the range of ϕ : Θ→ Ω is closed. �

All activation functions commonly used in the literature, for example, sigmoid, hyperbolic
tangent, and piece-wise linear activations, are valid. The bounds on the weights of the network
can be ensured by clipping the weights after each gradient update.

Remark 1. An alternative condition to the bound on the weights is to use only valid activa-
tion functions with closed range, for example, ReLU or leaky ReLU. However, it wouldn’t be
possible to use sigmoid or hyperbolic tangent. In our experiments, we observed that having a
sigmoid activation in the last layer of the DIP network performs better than having a ReLU.

Appendix B. Dataset details, hyper-parameters and results

In this appendix, we present all the hyper-parameters tables B3–B10 that were selected for the
method using a validation set. The first two tables B1–B2 depict the number of samples used
for training and validation in each case.

For the data-free baseline approaches, i.e. FBP and TV, we used 100 samples for selecting
the optimal hyper-parameters. In the low-data regime this by far exceeds the number of samples
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Table B1. Amounts of training and validation pairs from the ellipses dataset used for the
benchmark in section 6.

% 0.1 0.2 0.5 1.0 2.0 5.0 10.0 25.0 50.0 100.0

#train 32 64 160 320 640 1600 3200 8000 16 000 32 000
#val 3 6 16 32 64 160 320 800 1600 3200

Table B2. Amounts of training and validation pairs from the LoDoPaB dataset used for
the benchmark in section 6. The last two lines denote the numbers of patients of whom
images are included.

% 0.01 0.1 1.0 10.0 100.0

#train 3 35 358 3582 35 820
#val 1 3 35 352 3522
#patients train 1 1 7 64 632
#patients val 1 1 1 6 60

Table B3. FBP hyper-parameters and results.

Dataset Filter type Low-pass cut-off PSNR (dB) SSIM

Ellipses Hann 0.7051 24.18 0.5939
LoDoPaB (200) Hann 0.5000 28.38 0.6492
LoDoPaB Hann 0.6410 30.37 0.7386

Table B4. TV hyper-parameters and results. The step size is set to 10−3.

Dataset Loss function α PSNR (dB) SSIM

Ellipses �2 7.743 × 10−4 27.84 0.8495
LoDoPaB (200) Poisson 12.63 30.89 0.7563
LoDoPaB Poisson 20.55 32.95 0.8034

Table B5. DIP + TV hyper-parameters and results. For all experiments the number of
channels is set to 128 at every scale. For the output sigmoid activation is used.

Dataset Loss func. Scales Skip channels α step size PSNR (dB) SSIM

Ellipses �2 5 (0, 0, 0, 0, 0) 3.162 × 10−4 1 × 10−3 28.94 0.8855
LoDoPaB (200) Poisson 6 (0, 0, 0, 0, 4, 4) 4.0 5 × 10−4 32.51 0.7803
LoDoPaB Poisson 6 (0, 0, 0, 0, 4, 4) 7.0 5 × 10−4 34.44 0.8143

used by the learned approaches, leading to a slight bias of the comparison in favor of the data-
free baseline approaches. For the DIP + TV we used at most 5 samples for validation and
selection of hyper-parameters.
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Table B6. DIP + TV (with initial reconstruction given by the learned primal-dual
method). For all experiments the number of channels is set to 128 at every scale. For
the output sigmoid activation is used.

Dataset Data size (%) Loss func. Scales Skip channels α PSNR (dB) SSIM

Ellipses 0.1 �2 5 (0, 0, 0, 0, 0) 3.162 × 10−4 29.23 0.8915
0.2 �2 5 (0, 0, 0, 0, 0) 2.154 × 10−4 29.39 0.8911
0.5 �2 5 (0, 0, 0, 0, 0) 2.154 × 10−4 29.85 0.904
1.0 �2 5 (0, 0, 0, 0, 0) 2.154 × 10−4 30.39 0.915
2.0 �2 5 (0, 0, 0, 0, 0) 2.154 × 10−4 30.99 0.9253
5.0 �2 5 (0, 0, 0, 0, 0) 2.154 × 10−4 31.44 0.9285

10.0 �2 5 (0, 0, 0, 0, 0) 1.292 × 10−4 31.78 0.9337
LoDoPaB (200) 0.01 Poisson 6 (0, 0, 0, 0, 4, 4) 4.0 32.52 0.7822

0.1 Poisson 6 (0, 0, 0, 0, 4, 4) 3.0 32.78 0.7821

Table B7. FBP + U-Net. The input FBP reconstruction uses a Hann filter with no addi-
tional low-pass filter. Common hyperparameters: scales = 5, skip channels = 4, linear
output (i.e. no sigmoid activation). The maximum learning rate is set to 10−2 or 10−3

and scheduled with either cosine annealing or one-cycle policy.

Dataset Data size (%) Channels Batch size Epochs PSNR (dB) SSIM

Ellipses 0.1 (32, 32, 64, 64, 128) 16 5000 26.33 0.7895
0.2 (32, 32, 64, 64, 128) 16 5000 26.59 0.8042
0.5 (32, 32, 64, 64, 128) 16 5000 26.80 0.8114
1.0 (32, 32, 64, 64, 128) 16 5000 27.12 0.8321
2.0 (32, 32, 64, 64, 128) 16 2500 27.44 0.8323
5.0 (32, 32, 64, 64, 128) 16 1000 27.97 0.8604

10.0 (64, 64, 128, 128, 256) 16 700 28.49 0.8751
25.0 (64, 64, 128, 128, 256) 16 280 28.80 0.8872
50.0 (64, 64, 128, 128, 256) 16 140 29.10 0.8940

100.0 (64, 64, 128, 128, 256) 16 70 29.36 0.8987
LoDoPaB (200) 0.01 (32, 32, 64, 64, 128) 32 5000 29.33 0.7143

0.1 (32, 32, 64, 64, 128) 32 5000 31.58 0.7616
1.0 (32, 32, 64, 64, 128) 32 2000 32.60 0.7818

10.0 (32, 32, 64, 64, 128) 32 500 33.19 0.7931
100.0 (32, 32, 64, 64, 128) 32 250 33.55 0.7994

LoDoPaB 0.01 (32, 32, 64, 64, 128) 32 5000 31.36 0.7727
0.1 (32, 32, 64, 64, 128) 32 5000 33.27 0.7982
1.0 (32, 32, 64, 64, 128) 32 2000 34.62 0.8209

10.0 (32, 32, 64, 64, 128) 32 500 35.18 0.8313
100.0 (32, 32, 64, 64, 128) 32 250 35.48 0.8371

For the learned methods, the numbers of epochs listed in the tables denote the maximum
numbers—the model with best mean PSNR on the validation set reached during training is
selected. In some cases we used a learning rate scheduler that improved the training. More
details can be found in https://github.com/oterobaguer/dip-ct-benchmark.
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Table B8. Learned gradient descent. For all experiments the number of iterations is set
to L = 10. The output of the network is linear, i.e. no sigmoid activation is used.

Dataset Data size (%) Channels Batch size Epochs lr PSNR (dB) SSIM

Ellipses 0.1 32 32 5000 10−3 27.81 0.8580
0.2 32 32 5000 10−3 28.40 0.8769
0.5 32 32 5000 10−3 29.15 0.8955
1.0 32 32 5000 10−3 29.55 0.9027
2.0 32 32 2500 10−3 29.70 0.9051
5.0 32 32 1000 10−3 29.84 0.9077

10.0 32 32 500 10−3 29.88 0.9082
25.0 32 32 200 10−3 29.95 0.9094
50.0 32 32 100 10−3 30.07 0.9121

100.0 32 32 50 10−3 30.30 0.9162
LoDoPaB (200) 0.01 32 20 5000 10−4 29.87 0.7151

0.1 32 20 5000 10−5 31.28 0.7473
1.0 32 20 500 10−5 31.83 0.7602

10.0 64 1 200 10−5 32.41 0.7724
100.0 64 1 20 10−5 32.41 0.7724

LoDoPaB 0.01 32 1 5000 10−3 32.70 0.7860
0.1 32 1 5000 10−3 33.81 0.8043
1.0 32 1 500 10−3 34.29 0.8103

10.0 64 1 100 10−4 34.34 0.8115
100.0 64 1 10 10−4 34.36 0.8122

Table B9. Learned primal-dual. For all experiments the number of iterations is set to
L = 10. The output of the network is linear, i.e. no sigmoid activation is used.

Dataset Data size [%] Channels Batch size Epochs lr PSNR [dB] SSIM

Ellipses 0.1 32 5 5000 10−3 28.09 0.8621
0.2 32 5 5000 10−3 28.45 0.8778
0.5 32 5 5000 10−3 29.35 0.8997
1.0 32 5 5000 10−3 30.11 0.9124
2.0 32 5 2500 10−3 30.84 0.9258
5.0 32 5 1000 10−3 31.44 0.9282

10.0 32 5 500 10−3 31.84 0.9360
25.0 32 5 200 10−3 32.15 0.9367
50.0 32 5 100 10−3 32.21 0.9390

100.0 32 5 50 10−3 32.27 0.9403
LoDoPaB (200) 0.01 32 1 5000 10−3 29.65 0.7343

0.1 32 1 5000 10−3 32.48 0.7771
1.0 32 1 500 10−3 33.21 0.7929

10.0 64 1 100 10−4 33.53 0.7990
100.0 64 1 10 10−4 33.64 0.8020

LoDoPaB 0.01 32 1 5000 10−3 32.68 0.7842
0.1 32 1 5000 10−3 34.65 0.8227
1.0 32 1 500 10−3 35.27 0.8303

10.0 64 1 100 10−4 35.63 0.8401
100.0 64 1 10 10−4 35.73 0.8426
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Table B10. iRadonMap. The U-Net part of the network has the same hyperparameters
for all experiments: scales = 5, skip channels = 4, channels = (32, 32, 64, 64, 128). The
learning rate is set to 10−2. Selection of the sigmoid output is based on the validation
performance; the difference on LoDoPaB with and without sigmoid is marginal.

Dataset Data size (%) Batch size Epochs Sigmoid output PSNR (dB) SSIM

Ellipses 0.1 64 1000 � 17.83 0.2309
0.2 64 1000 � 18.35 0.2837
0.5 64 1000 � 21.41 0.5378
1.0 64 1000 � 22.64 0.6312
2.0 64 1000 � 23.62 0.7042
5.0 64 1000 � 24.77 0.7444

10.0 64 1000 � 25.61 0.8051
25.0 64 400 � 26.56 0.8389
50.0 64 200 � 27.36 0.8615

100.0 64 100 � 28.02 0.8766
LoDoPaB (200) 0.01 32 150 � 14.61 0.3529

0.1 32 150 18.77 0.4492
1.0 32 150 24.63 0.6031

10.0 32 150 31.27 0.7569
100.0 32 30 � 32.45 0.7781

LoDoPaB 0.01 2 150 14.82 0.3737
0.1 2 150 17.67 0.4438
1.0 2 150 22.73 0.5361

10.0 2 150 28.69 0.6929
100.0 2 15 � 30.99 0.7486
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