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Abstract
We provide a mathematical formulation and develop a computational 
framework for identifying multiple strains of microorganisms from mixed 
samples of DNA. Our method is applicable in public health domains where 
efficient identification of pathogens is paramount, e.g. for the monitoring of 
disease outbreaks. We formulate strain identification as an inverse problem 
that aims at simultaneously estimating a binary matrix (encoding presence 
or absence of mutations in each strain) and a real-valued vector (representing 
the mixture of strains) such that their product is approximately equal to 
the measured data vector. The problem at hand has a similar structure to 
blind deconvolution, except for the presence of binary constraints, which 
we enforce in our approach. Following a Bayesian approach, we derive a 
posterior density. We present two computational methods for solving the non-
convex maximum a posteriori estimation problem. The first one is a local 
optimization method that is made efficient and scalable by decoupling the 
problem into smaller independent subproblems, whereas the second one 
yields a global minimizer by converting the problem into a convex mixed-
integer quadratic programming problem. The decoupling approach also 
provides an efficient way to integrate over the posterior. This provides useful 
information about the ambiguity of the underdetermined problem and, thus, 

L Mustonen et al

A Bayesian framework for molecular strain identification from mixed diagnostic samples

Printed in the UK

105009

INPEEY

© 2018 IOP Publishing Ltd

34

Inverse Problems

IP

1361-6420

10.1088/1361-6420/aad7cd

Paper

10

1

22

Inverse Problems

IOP

2018

5 Author to whom any correspondence should be addressed.

1361-6420/18/105009+22$33.00  © 2018 IOP Publishing Ltd  Printed in the UK

Inverse Problems 34 (2018) 105009 (22pp) https://doi.org/10.1088/1361-6420/aad7cd

https://orcid.org/0000-0002-8390-2151
https://orcid.org/0000-0003-0803-3299
mailto:lauri.mustonen@emory.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6420/aad7cd&domain=pdf&date_stamp=2018-08-21
publisher-id
doi
https://doi.org/10.1088/1361-6420/aad7cd


2

the uncertainty associated with numerical solutions. We evaluate the potential 
and limitations of our framework in silico using synthetic and experimental 
data with available ground truths.

Keywords: Bayesian inverse problems, mixed-integer programming, 
molecular biology

(Some figures may appear in colour only in the online journal)

1.  Introduction

Many public health programs, such as epidemiological surveillance, rely crucially on tak-
ing and processing biological samples to gather information. Diagnostic samples can often 
contain multiple genetic variants, so-called strains, of the same microorganism (e.g. bacteria, 
viruses, or parasites) resulting from mutations and adaptation. For instance, blood samples 
of malaria patients may exhibit multiple concurrent strains of malaria contracted from bites 
of several parasite-infected mosquitoes or even a single bite of a mosquito carrying multiple 
genetic variants of the parasite [1]. Different strains of pathogens can exhibit different charac-
teristics that directly impact human health, potentially affecting the severity of illness, conta-
giousness, and resistance to classes of drugs [2]. Thus, accurate identification of strains within 
diagnostic samples is critical. Epidemiological applications of strain identification include 
control effort evaluation, such as malaria reduction programs where different strains respond 
to different interventions, and tracing of outbreaks for pathogens that are similar to benign 
microorganisms, such as commensal (harmless) bacteria, or for which hosts may carry mul-
tiple pathogenic strains simultaneously, such as E. coli bacteria.

Unfortunately, strain identification of mixed diagnostic samples—samples with multiple 
strains of a pathogen—remains particularly vexing. The state-of-the-art approaches, detailed 
in the following section, have shortcomings that limit their applicability to these public health 
challenges. Culture-based approaches are resource and labor intensive to be deployed at scale; 
metagenomic approaches thus far lack sufficient discriminatory power within a species, and 
direct polymerase chain reaction (PCR) diagnoses do not provide a sufficient strain-level reso-
lution for epidemiological outbreak investigations or national surveillance programs. A recent 
method of Zhu et al bypasses these problems, but critically depends on perfect knowledge of 
possible strain types—a dictionary—that is unrealistic to assume or generate for epidemio-
logical surveillance in the field [3].

There are two parts to overcome the strain reconstruction challenge for mixed samples: 
defining an appropriate laboratory procedure for converting the sample into a data vector 
and designing algorithms for disambiguating the pathogen strains from that data vector. On 
the laboratory side, our approach uses fast, affordable and widely available biological diag
nostic tools, specifically a combination of DNA barcoding [4] and whole genome multilo-
cus sequence typing (wgMLST) [5–7], to produce short-read amplifications of independent 
genomic targets in the mixed sample. For each mixed sample, the deep sequencing platform 
in the procedure produces a measurement vector of locus-by-locus frequency information, 
denoting the percentage of mutations at every target location, or single-nucleotide polymor-
phism (SNP) site, in the amplified DNA sequences from the sample.

In this work, we tackle the algorithmic side of the strain reconstruction problem using this 
measurement vector as the only input. Specifically, we derive a mathematical formulation and 
computational framework for identifying distinct strains of microorganisms as well as their 
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proportions from mixed diagnostic samples. From the measurement data vector, we infer the 
identity and frequency of the strains with a Bayesian inverse problem approach. We derive an 
expression for the posterior distribution and present numerical methods for computing maxi-
mum a posteriori (MAP) estimates and integrals over the posterior distribution (section 3). 
The problem is underdetermined, and thus we give particular emphasis to quantifying uncer-
tainty in the reconstruction. We evaluate the potential and limitations of our methods in silico 
using numerical examples on both simulated and experimental data (malaria strains) with 
available ground truths (section 4). Our results suggest that strain sequences can be recon-
structed from mixed samples with moderate to high fidelity for a range of input vectors, with 
important caveats that are influenced, e.g. by the input measurement errors and the true strain 
frequencies.

2.  Background

Our approach to strain reconstruction depends on interpreting output from a particular bio-
logical pipeline that is applied to a sample. Before we formalize our algorithms that depend on 
these outputs, we provide some context about their possible application and a brief description 
of and references for possible experimental pipelines.

Traditionally, biological samples were cultured in the laboratory to isolate a single micro-
organism. The isolate was then cultured to obtain a single strain sample of the microorganism, 
which could be analyzed [6]. If a sample was expected to have multiple strains, then multiple 
subcultures were processed to obtain samples of each strain. However, not all microorganisms 
are amenable to artificial culture. Moreover, some subtypes often grow better than others, 
resulting in an unequal representation of the true subtypes in the sample [8]. The number 
of subtypes detected can also be highly influenced by the number of subsamples cultured 
[9]. This relationship can be seen, for example, in samples with low concentrations of minor 
strains, such as drug-resistant bacteria that respond poorer to the culturing process (lower 
fitness) than wild-type bacteria. It is also evident in mixed samples with a high diversity of 
strains, such as samples of the P. falciparum malaria parasite with five or more strains in a 
single sample.

Recently developed PCR-based DNA amplification techniques allow one to diagnose path-
ogens directly from original samples, alleviating the need of isolating individual strains in 
culture [2, 6, 7, 10, 11]. These PCR-based techniques are not only considerably faster than 
culture-based diagnosis, but also less expensive. Furthermore, Langley et al have shown that 
PCR-based, culture-independent, diagnostic tests can be more sensitive and are easier to per-
form than traditional, culture-based approaches [12].

Despite the benefits of the PCR techniques, direct PCR-based diagnosis lacks information 
on strains at the level necessary for some important epidemiological studies, such as outbreak 
investigations or national surveillance programs. These applications require more detailed 
microorganism resolution [2, 7] than provided by PCR-based diagnoses, which commonly 
focus on the clinically relevant species- or serotype-level identification.

To gain more information about strains, metagenomic approaches that evaluate all the 
DNA in a sample and screen for microorganisms of interest are being used to distinguish mul-
tiple genetic variants. These techniques, however, generally require ample depth of coverage 
(copies of genomic area of interest) across large sections of the genome, or long, linked reads 
to provide sufficient discrimination of strains for our target epidemiological applications [13].

To uniquely identify the targeted microorganisms within samples, our approach is instead 
to use a combination of DNA barcoding [4] and wgMLST diagnostic tools [4–7] that rely on 
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coverage of specific, often unlinked, genomic targets to increase discriminatory power rela-
tive to metagenomic screening. An observation recently published by Zhu et al [3], which 
we made concurrently and independently in our project, is that the locus-by-locus frequency 
information provided by the deep sequencing programs of the pipeline can be used to distin-
guish between strains in mixed samples. We focus on the analysis of the data created by these 
targeted and unlinked short-read diagnostic techniques for the remainder of this paper.

3.  Methods

Motivated by practical lab pipelines for generating measurement data from mixed diagnostic 
samples, we now detail the algorithmic part of the strain reconstruction problem: translating 
a vector of mutation frequencies at each location into strain genomic sequences and the rela-
tive proportions of each strain within the sample. We begin by specifying the problem, nota-
tion, and assumptions before deriving a Bayesian formulation of the ensuing inverse problem. 
Following recommended guidelines [14, 15], we model all quantities in the forward model as 
random variables, design prior distributions to incorporate prior knowledge, and use Bayes’ 
formula to obtain a posterior distribution. We will explore the posterior in three ways.

	 (i)	�We address MAP estimation as a non-convex mixed-integer optimization problem and 
present an efficient local optimization method based on block coordinate descent to com-
pute local modes of the posterior. The algorithm exploits the separability of the objective 
function and provides both deterministic running time and scalability with respect to the 
number of unknowns.

	(ii)	�We reformulate the MAP estimation problem as a convex binary constrained problem and 
present a method based on existing algorithms for obtaining the largest posterior mode. 
Specifically, the method computes a global minimizer and, unlike the first method, yields 
a certificate of optimality. While we observed that the running time can vary significantly 
between inputs, the method enables one to validate and calibrate the often more efficient 
local optimization method.

	(iii)	�We develop a computationally tractable method to quantify the uncertainty in the recon-
structed strains and their frequencies. In particular, we propose an efficient integration 
technique for the posterior density that leverages the separability in the structure of the 
posterior.

3.1.  Problem specification

Assume at first that the number of strains, denoted by n, is known, and consider measurements 
at m locations in a DNA sequence. At each location and for each strain, a mutation (relative to 
a reference strain) is either present, which can be encoded as 1, or absent, which corresponds 
to 0. This binary vector is called a molecular barcode in the biological literature [4]. Now let 
d ∈ Rm denote the actual measurement data which, for this example, represents the percent
age of mutations at m defined SNP sites in the DNA sequence. If w ∈ Rn is a vector containing 
the relative frequency of each strain and M ∈ {0, 1}m×n is a binary matrix encoding the pres-
ence and absence of mutations, the forward problem can be written as

d = Mw + n,� (1)

where n ∈ Rm represents the inevitable measurement noise. The goal of the inverse problem 
is to infer both M and w  from the measurement data d. In other words, we aim to identify the 
strains and their respective proportions in a given sample.

L Mustonen et alInverse Problems 34 (2018) 105009
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Even in the absence of noise, (1) corresponds to an underdetermined and ill-posed inverse 
problem: There are mn  +  n unknowns but only m knowns. For example, the problem is invar-
iant to permutations of the columns of M and rows in w . On the other hand, with noisy 
measurements, the equation Mw = d does not, in general, have a solution that satisfies the 
prescribed binary constraint for M.

3.1.1.  Multiplicity of infection.  In practical applications, the number of strains n—often 
referred to as the multiplicity of infection (MOI)—is usually unknown and often difficult to 
estimate [1]. We will discuss below how to include the estimation for n in the inverse problem.

3.1.2.  Related problems.  The inverse problem corresponding to (1) arises also in signal pro-
cessing and wireless communications when one tries to reconstruct binary source signals from 
a linear mixture that is formed with unknown mixing weights [16, 17]. More generally, in 
blind source separation the aim is to recover the original (not necessarily binary) signals and 
a mixing matrix when multiple linear combinations are observed [18–20]. Having a matrix 
measurement also leads to a non-negative matrix factorization problem [21], which can be 
equipped with binary constraints as well [22]. Notice that although the number of unknowns 
increases if w  is replaced with a matrix, the number of knowns increases as well and the 
problem actually becomes less underdetermined compared to our case. The inverse problem 
corresponding to (1) bears also similarities with blind deconvolution [23–25] in the sense that 
both the linear operator M (compare to blurring operator) and the vector (compare to image) 
are unknown. A common property for all abovementioned problems is that they are bilinear, 
which for (1) means being linear in M for a fixed w  and linear in w  for a fixed M. On the 
other hand, linear inverse problems in which binary and continuous variables are present arise 
in, e.g. groundwater flow [26].

If the noise n in (1) is zero (or small enough) and if the matrix M contains sufficiently 
many distinct rows, then in most cases the vector w  can be easily solved by sorting the values 
in the measurement d and assigning them to w  while discarding values that are binary combi-
nations of already assigned values [16, 17, 20]. However, in our case, there is no guarantee that 
the matrix contains enough distinct rows for this approach to work. Our measurements also 
contain noise, which is why we take the Bayesian approach for the inverse problem.

3.2.  Generalization to multiple classes

We start by considering a generalization of (1) where each site in a strain can represent more 
than two classes of measured values (mutation versus no mutation in the binary case above), 
allowing modeling of SNPs that have multiple alternative options, insertions or deletions of 
genomic content, or multiple linked differences within a target location, to name a few exam-
ples. One immediate use of this generalization is to obtain more detailed strain reconstruction 
consisting of all four nucleotides found in DNA molecules: adenine, guanine, cytosine, and 
thymine. Even with multiple classes, we formulate the generalized problem by using a binary 
matrix and real-valued vectors, and the computational methods will thus remain similar to the 
binary case described above.

As before, let m denote the number of SNP sites (i.e. measurement locations) and n the 
number of strains, and let p � 2 now denote the number of classes each strain can be asso-
ciated with at each measurement location. The measured data represents the frequencies of 
the classes at each location. Because the frequencies sum up to one, the measurement can be 
represented using q := m( p − 1) elements.

L Mustonen et alInverse Problems 34 (2018) 105009
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The measurement d is interpreted as a block vector having m blocks of size ( p − 1). Within 
each block, the first value corresponds to the frequency of the second class, the second value to 
that of the third class, and so on. In this way, the pure binary case p  =  2 will be handled natu-
rally, and in general, the frequency of the first class is just one minus the sum of the frequen-
cies of other classes. The matrix M defining the strains now becomes a binary matrix with m 
blocks of size ( p − 1)× n. One can think of replacing the zeros and ones of the pure binary 
case with vectors 0 ∈ R p−1 and Euclidean ( p − 1)-dimensional unit vectors, respectively. 
As an example, if p  =  4, then a strain is characterized at one measurement location by either 
(0, 0, 0)�, (1, 0, 0)�, (0, 1, 0)�, or (0, 0, 1)�.

3.3.  Deriving the posterior

The observations taken from the sample can be written as a bilinear forward problem

D = MW + N,

where the measurement, D, is a random variable of length q, M is a random variable of size 
q × n with binary entries whose columns represent the different strains, and W is a random 
variable of length n with real entries between 0 and 1 that model the proportions in which dif-
ferent strains are present in the sample. For each realization w  of W we therefore know that ∑n

j=1 wj = 1.
In this work, we assume that the additive noise, N, is a multivariate Gaussian ran-

dom variable with vanishing mean 0 ∈ Rq and a known diagonal covariance matrix 
Γ = diag(γ2

1 , γ2
2 , . . . , γ2

q) ∈ Rq×q. In other words, n in (1) is a realization of N ∼ N (0,Γ). 
This assumption is motivated by its simplicity but can also be justified when the data features a 
relatively high signal to noise ratio. Several other noise models are possible—note that data is 
obtained by a counting process—and will be investigated in future work. With Gaussian noise, 
the likelihood of the observation, d, given some fixed realizations M and w  is

π(d | M, w) =

(
1

2π|Γ|

)q/2

exp

(
−1

2
‖Mw − d‖2

Γ

)
,

where for a vector v ∈ Rq we define ‖v‖2
Γ := v�Γ−1v and denote the determinant of the noise 

covariance by |Γ| =
∏q

i=1 γ
2
i . Note that this simple noise model gives positive probability to 

negative observations, as well as observations where the sum of one block is greater than one, 
although in practice such observations should not exist. In the following, we will drop the 
normalization constant from the probability densities for readability.

We use prior distributions to incorporate a priori knowledge (i.e. knowledge uninformed 
by the data) on the distributions of M and W. In particular, the priors for M and W are assumed 
to be mutually independent so that the joint prior can be written as π(M, w) = π(M)π(w).

The feasible set for the binary matrix M is

ΩM :=
{

M ∈ {0, 1}q×n : M = (M1, . . . , Mm)
�, Mk ∈ Ω̃M , 1 � k � m

}
,

where each block belongs to the set

Ω̃M :=

{
M ∈ {0, 1}( p−1)×n :

p−1∑
i=1

Mi,j � 1, 1 � j � n

}
.

L Mustonen et alInverse Problems 34 (2018) 105009
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In other words, the column sums of each block are at most 1, since a strain cannot be associ-
ated with more than one class at each SNP site. It is easy to see that the cardinality of Ω̃M  is 
|Ω̃M| = pn, and thus |ΩM| = pmn. Henceforth, we will choose the prior distribution of M to be 
uniform, i.e. π(M) ∝ χΩM (M), where χΩM  denotes the characteristic function of the set ΩM . 
However, our numerical methods can be readily generalized to support different distributions. 
For example, in sections 3.4 and 3.6 we could choose any distribution that is separable in the 
sense that

π(M) ∝ χΩM (M) exp

(
−1

2

m∑
k=1

rk(Mk)

)
,

where rk is a function depending only on the kth block of M.
To reduce the ambiguity arising from different permutations of the columns in M, we 

assume in this work that the entries in the vector of proportions W have non-increasing order. 
To be specific, we assume that W is supported in the set

ΩW :=



w ∈ Rn :

n∑
j=1

wj = 1, 1 � w1 � w2 � . . . � wn � 0


 ,

which is a subset of an (n − 1)-dimensional affine hyperplane; see visualizations in figures 1 
and 4 for the case n  =  3. For simplicity, we assume that W is uniformly distributed in ΩW , thus 
the prior density is π(w) ∝ χΩW (w). Again, the setting can be readily generalized for other 
prior distributions. In particular, assuming that W is a truncated Gaussian random variable 
with mean w ∈ ΩW and a positive-definite covariance matrix ΓW ∈ Rn×n, i.e.

π(w) ∝ χΩW (w) exp

(
−1

2
‖w − w‖2

ΓW

)
,

would not add any difficulties in the algorithms that follow.
Having discussed both the likelihood and prior terms, we apply Bayes’ formula

π(M, w | d) =
π(d | M, w) π(M, w)

π(d)

which for our choices for the priors leads to the posterior distribution

π(M, w | d) ∝ exp

(
−1

2
‖Mw − d‖2

Γ

)
χΩM (M) χΩW (w).� (2)

The posterior probability encodes both information provided by the data and by our prior 
knowledge about the biological applications at hand.

3.4.  Block coordinate descent method for MAP estimation

Maximum a posteriori (MAP) estimation aims at finding the largest mode of the posterior 
distribution (2). Taking the negative logarithm of the posterior density and denoting

ϕ(M, w) := ‖Mw − d‖2
Γ

we obtain the constrained minimization problem

min
M,w

ϕ(M, w) subject to M ∈ ΩM , w ∈ ΩW .
� (3)

L Mustonen et alInverse Problems 34 (2018) 105009
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Problem (3) is a mixed-integer nonlinear programming (MINLP) problem due to the binary 
constraints on M and the bilinear term Mw.

Solving MINLP problems is known to be challenging as the computational complexity 
grows, in general, exponentially with the number of binary variables [27]. We will use the bi-
linearity of the forward problem and the separability of the posterior to obtain a block coordi-
nate descent method whose computational cost is O(mpn), i.e. the complexity grows linearly 
with the number of measurement locations and exponentially with the number of strains, 
which for the strain disambiguation application is rather small due to biological implausibil-
ity of a host simultaneously harboring dozens of competing pathogen strains. However, the 
method typically converges to a local minimum and may thus be needed to run several times 
to obtain a global minimizer; see also visualization of local minima in figure 1.

The block coordinate descent method decouples the problem (3) into two steps. The gen-
eral idea is to alternate between updating the binary matrix M and the frequency vector w  
while keeping the respective other variable, or block, fixed. This is equivalent to maximizing 
the probabilities π(M | w, d) and π(w | M, d) repeatedly. At the ith iteration, starting from 
(Mi−1, wi−1), we solve the two subproblems

Mi = arg min
M

ϕ(M, wi−1) subject to M ∈ ΩM ,� (4)

wi = arg min
w

ϕ(Mi, w) subject to w ∈ ΩW .� (5)

For p  =  2, this technique is presented in [19, 22, 28], and a similar alternating minimization 
approach has also been successfully employed in blind deconvolution [23].

In the first step, we find an exact solution to the binary-constrained optimization problem 
(4). Naïve solution of this problem would require full enumeration of all pmn possible matri-
ces and would be prohibitively expensive. However, we can decouple the problem along the 
blocks of the matrix, which yields m independent problems

Mi
k = arg min

Mk

∥∥Mkwi−1 − dk
∥∥2
Γk

subject to Mk ∈ Ω̃M ,� (6)

where dk ∈ R p−1 denotes the kth block of the measurement vector for k = 1, 2, . . . , m, and 
Γk ∈ R( p−1)×( p−1) is the corresponding block in the noise covariance matrix. Solving (6) can 
be parallelized, giving rise to additional computational savings. For the small problem sizes 

Figure 1.  Left: minimum target function value as a function of the frequency vector 
w  for the data d given in (15). Right: entropy of π(M | w, d) for the same example, 
computed by (16).
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arising in the motivating public health applications, we use a full enumeration to solve each 
subproblem. Nevertheless, efficient software libraries such as Minotaur [29] and Gurobi [30] 
can be used for larger problem sizes. To summarize, solving (4) can be done in O(mpn) flops, 
i.e. the complexity is linear with respect to the number of measurement locations and expo-
nential in the number of strains.

The solution to (6) can be non-unique for two reasons. First, it may be possible to find 
two different blocks Mk, M′

k ∈ Ω̃M, both minimizing (6), such that Mkwi−1 = M′
kwi−1, or 

equivalently (Mk − M′
k)wi−1 = 0. This leads to the definition of bi-independency [31]: 

The values in w  are bi-independent if c�w �= 0 for all c ∈ {0,−1, 1}n \ {0}. Clearly, for 
almost every w ∈ ΩW the values are bi-independent. Second, there may be two different 
minimizing blocks Mk, M′

k ∈ Ω̃M such that Mkwi−1 �= M′
kwi−1. If p  =  2, this means that 

Mkwi−1 − dk = dk − M′
kwi−1, or equivalently

(Mk + M′
k)w

i−1 = 2dk.� (7)
For dk = 1/2 this holds for every wi−1 ∈ ΩW  if we choose M′

k = 1� − Mk. Otherwise, for 
(7) to hold there must exist c ∈ {0, 1/2, 1}n such that c�wi−1 = dk. If p  >  2, the argument is 
not valid as such, but the general idea is still the same. We conclude that (6) has a unique solu-
tion for almost every (wi−1, dk) ∈ ΩW × R p−1, and naturally (4) inherits a similar property 
as well.

In the second step of the block coordinate descent, we keep the binary matrix fixed and 
solve the convex quadratic programming problem (5) for the frequency vector. Due to the 
equality constraint for w , the solution for (5) is unique if the rank of Mi is at least n  −  1. We 
note that the gradient and Hessian of the objective function ϕ with respect to the continuous 
variable w  are

∇wϕ(M, w) = M�Γ−1 (Mw − d)

and

∇2
wϕ(M, w) = M�Γ−1M,

respectively. The update δw is then obtained by approximately solving the convex quadratic 
program

min
δw

1
2
δw�∇2

wϕ(M
i, wi−1)δw − δw�∇wϕ(Mi, wi−1)

subject to 0 � wi−1 + δw � 1,
n∑

j=1

δwj = 0.

� (8)
To this end, we use a few steps of a standard active set method for quadratic programming; 
see, e.g. [32, ch. 16] for a detailed description.

The block coordinate descent approach for MAP estimation is listed in algorithm 1. Since 
there are only finitely many instances of the problem (5), and the value of the objective func-
tion cannot increase during the iteration, at some point the objective value must stagnate 
[28]. Thus, we repeat the steps (4) and (5) until there is no change in subsequent iterates 
Mi and Mi−1. In practice, one may also want to monitor the change of the frequency vector 
‖wi − wi−1‖ and set a maximum number for the iterations to make sure that the algorithm also 
stops in the case of non-unique solutions for the subproblems.

There is no guarantee that the iteration converges to a global minimum, which is why the 
block coordinate method is run nT ∈ N times with different random initial vectors w0, and the 
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output with the highest probability is selected as the MAP estimate. This is usually a good 
strategy [19, 22, 28]; see also [25], where the dependency of the solution on the starting guess 
was established for the blind deconvolution problem without binary constraints.

In addition to the block-wise non-uniqueness stemming from the subproblems (4) and (5), 
the global minimum may be obtained with multiple elements of Ω := ΩM × ΩW  such that 
both blocks, i.e. the binary matrices and frequency vectors, differ. This can be interpreted 
as a generalization of the permutation invariance which is eliminated by our choice for the 
prior: If Q ∈ Rn×n is a matrix such that MQ ∈ ΩM and Q−1w ∈ ΩW, then clearly (M, w) 
and (MQ, Q−1w) correspond to the same value of the objective function ϕ. The existence of 
such nontrivial Q is discussed in detail in [20]. In short, the uniqueness (up to permutations) 
of the factorization Mw becomes rapidly more likely when the number of distinct rows in M 
increases.

Algorithm 1.  Block coordinate descent for strain identification from mixed samples.

Input: Measurements d ∈ Rq, number of strains n ∈ N, number of classes p � 2, number of tri-
als nT ∈ N, tolerance εw > 0, maximum number of iterations nI ∈ N.
for t = 1, 2, . . . , nT  do

   Draw starting guess w0 uniformly from ΩW  and set, e.g. M0 = −1.
   for i = 1, . . . , nI  do

       Get Mi block-wise by solving (6) for current wi−1.

       Get wi  by solving (8) for current Mi.

       if Mi = Mi−1 and ‖wi − wi−1‖ < εw then
          Exit the inner loop.
       end if
   end for

   Store local mode: (M̂t, ŵt) = (Mi, wi).
end for

Find the best mode: � = arg min1�t�nT
ϕ(M̂t, ŵt).

Output: MAP estimate (M̂, ŵ) = (M̂�, ŵ�) or (if desired) all modes (M̂1, ŵ1), . . . , (M̂nT , ŵnT ).

The prior distributions for both M and W involve the knowledge about the number of strains 
n, i.e. the MOI. As mentioned, this number may be unknown in many practical applications. 
An alternative to the method described above is to resort to the discrepancy principle with an 
approach that resembles the so-called ‘regularization by discretization’ technique [33, 34]. To 
this end, let (M̂(n), ŵ(n)) denote the MAP estimate for a given n � 1. Now the goal is to find 
n such that the discrepancy between the measurement and the reconstruction is approximately 
equal to the magnitude of noise, which is still assumed to be known. More precisely, we start 
from n  =  1 and keep increasing n until

d(n) := ‖M̂(n)ŵ(n)− d‖2
2 �

q∑
i=1

γ2
i .

Note that d is a non-increasing function if the MAP estimates are global minimizers of the 
objective ϕ.

3.5.  MAP estimation as a convex mixed-integer quadratic program

Although the block coordinate descent method is computationally simple and efficient in find-
ing local minima, there is no guarantee that it yields a global minimum. Even with numerous 

L Mustonen et alInverse Problems 34 (2018) 105009



11

trials, one may end up finding only local minima. However, we can reformulate the problem 
as a mixed-integer quadratic program (MIQP) with a convex objective function and linear 
constraints in addition to the binary restriction on the matrix M. For moderate-sized instances, 
this class of program can be efficiently solved to global optimality by a commercial off-the-
shelf solver such as Gurobi [30] or CPLEX [35].

In short, we reformulate the problem by replacing the bilinear term Mi,jwj with its so-called 
McCormick envelope for i = 1, . . . , q and j = 1, . . . , n. We then use the fact that M is binary 
and every component of w  is bounded between 0 and 1 to prove the equivalence between 
the two formulations. See [36] for a general treatment of this technique and [37, 38] for two 
examples of applications.

To write the McCormick envelopes, we define the auxiliary variables

Zi,j := Mi,jwj, i = 1, . . . , q, j = 1, . . . , n.

Using these new variables, problem (3) can be equivalently written as

min

q∑
i=1

1
γ2

i




n∑
j=1

Zi,j − di




2

subject to Zi,j = Mi,jwj, i = 1, . . . , q, j = 1, . . . , n,
M ∈ ΩM ,
w ∈ ΩW .
� (9)

Notice that in (9) the objective is convex and all the non-convexity comes from the bilinear 
constraints defining Z. Next, we replace each bilinear constraint by a convex envelope given 
by the McCormick’s inequalities [39]:

min

q∑
i=1

1
γ2

i




n∑
j=1

Zi,j − di




2

subject to Zi,j � 0,
Zi,j � Mi,j,
Zi,j � wj,
Zi,j � Mi,j + wj − 1, i = 1, . . . , q, j = 1, . . . , n,
M ∈ ΩM ,
w ∈ ΩW .

�
(10)

We claim that the problems (9) and (10) are equivalent. Since both problems have the same 
objective, it is enough to show that both problems have the same set of feasible solutions. 
Let S1 and S2 denote the set of feasible solutions of problem (9) and problem (10), respec-
tively. By construction, S1 ⊆ S2. Next we show that S1 ⊇ S2. Let (M, w, Z) ∈ S2. Then, for all 
i = 1, . . . , q and j = 1, . . . , n, there are two cases:

	 (i)	�Mi,j = 0: In this case, the McCormick’s inequalities imply that Zi,j = 0 and 0 � wj � 1. 
Thus, Zi,j = Mi,jwj in this case.

	(ii)	�Mi,j = 1: In this case, the McCormick’s inequalities imply that 0 � Zi,j � 1 and Zi,j = wj . 
Thus, Zi,j = Mi,jwj in this case as well.

Therefore, (M, w, Z) ∈ S1, and we conclude that S1 = S2 and hence the problems are 
equivalent.
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Following, e.g. a branch-and-bound strategy, we fix some of the binary-constrained entries 
Mi,j  to be either 0 or 1, and relax the binary restrictions from the remaining entries (see, e.g. 
[27] for a general overview of MINLP solvers). This way (10) becomes a convex quadratic 
program with linear constraints and continuous variables. Solving this relaxed problem is 
straightforward and similar to (8). By alternating the fixed entries in a tree-like fashion and 
comparing the minima of the relaxed problems, we establish upper and lower bounds for the 
problem (10) and thus for the minimum of the original target function ϕ. This tree is traversed 
until a desired gap between the upper and lower bounds is achieved.

3.6.  Integrating the posterior density

Next, we discuss how to compute integrals that include the posterior density (2). This becomes 
useful when one wants to compute conditional moments such as mean or variance of the ran-
dom variables M and W, given the observations D.

Let f be a function that satisfies

f (M, w) =

m∑
k=1

fk(Mk, w),� (11)

that is, fk depends only on the kth block of M in addition to w . Examples of such functions 
include f (M, w) = M and f (M, w) = w , as well as the entrywise powers of M and w . Here 
we present an integration scheme for computing the posterior mean of f. More precisely, we 
consider the integral

E[ f (M, W) | D] =

∫

Ω

f (M, w)π(M, w | d) dMdw

=

∫

ΩW

∑
M∈ΩM

f (M, w)π(M, w | d) dw.
�

(12)

Naïvely summing over all possible binary matrices is impractical even for moderate parameter 
values, since |ΩM| = pmn. Thus, we suggest a more efficient approach that exploits the separa-
bility of the posterior in the same fashion as (6).

First, note that the posterior density can be written as

π(M, w | d) = C exp

(
m∑

i=1

gi(Mi)

)
= C

m∏
i=1

exp (gi(Mi)) ,� (13)

where C is a constant that depends on d and that can be computed by considering the case 
f  =  1, and

gi(Mi) := −1
2
‖Miw − di‖2

Γi
.

Next, the sum in (12) can be decomposed by iterating through the blocks separately, that is,
∑

M∈ΩM

f (M, w)π(M, w | d) =
∑

M1∈Ω̃M

· · ·
∑

Mm∈Ω̃M

f (M, w)π(M, w | d).

By substituting the expressions (11) and (13) into this sum, we can write the integrand in (12) 
as
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C
∑

M1∈Ω̃M

· · ·
∑

Mm∈Ω̃M

m∏
i=1

exp (gi(Mi))

m∑
k=1

fk(Mk, w)

=C
m∑

k=1

∑

M1∈Ω̃M

exp (g1(M1)) · · ·
∑

Mm∈Ω̃M

exp (gm(Mm)) fk(Mk, w).

� (14)

For each k in the outermost sum, fk can be put inside the sum that corresponds to the kth block 
of the binary matrix. As a result, the integrand in (12) becomes a sum where each summand 
is a product of sums.

The rapid decay of the exponential function can easily trigger underflows when using float-
ing point arithmetics. Therefore, a numerically more stable version of the integration tech-
nique is outlined in algorithm 2. We see that for each quadrature node w ∈ ΩW, the evaluation 
of the integrand has a computational complexity of O(mpn). For the integral over ΩW , we 
could apply some deterministic quadrature rule if n is small, but in the numerical experiments 
in the next section, we will instead use Monte Carlo method for simplicity [40].

Algorithm 2.  Computing the conditional mean of a function f.

Input: Measurements d ∈ Rq, function f of the separable form (11), quadrature nodes and 
weights {w(s), ζ(s)}S

s=1 ⊂ ΩW × R, number of strains n, number of measurement locations m, 
number of classes p.
for s = 1, . . . , S do
   for k = 1, . . . , m do
       for j = 1, . . . , pn do

          Let M( j) be the jth element of Ω̃M  (in some arbitrary but fixed order)

          Lk,j = − 1
2‖M( j)w(s) − dk‖2

Γk

          Fk,j = fk(M( j), w(s))

       end for
       Uk = maxj Lk,j (for numerical stability)
       Pk =

∑
j exp(Lk,j − Uk)

       Gk =
∑

j Fk,j exp(Lk,j − Uk)

   end for
   Compute sum (14): Js( f ) = G1P2P3 · · ·Pm + P1G2P3 · · ·Pm + . . .+ P1 · · ·Pm−1Gm

   Js(1) =
∏m

k=1 Pk  (corresponds to f  =  1)

   λs =
∑m

k=1 Uk

end for
Compute unnormalized integrals with the quadrature rule:
I( f ) =

∑
s ζsJs( f ) exp(λs −max� λ�)

I(1) =
∑

s ζsJs(1) exp(λs −max� λ�)

Output: Posterior mean of f as I( f )/I(1).

4.  Numerical experiments

We validate our computational techniques using both synthetic and real data with known 
ground truths. In section 4.2 we illustrate the problem of non-uniqueness with some simple 
examples. We then introduce more realistic reconstruction problems in section 4.3 and study 
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how different parameter values affect the accuracy of the reconstruction. Finally, in section 4.4 
we apply our methods to experimental data.

4.1.  Implementation

Our computational experiments are performed using the Julia [41] programming environment. 
We have implemented a module for strain identification that includes the block coordinate 
descent method and the numerical integration technique. For the convex problem formulation, 
we use Gurobi through an interface of the Julia module JuMP [42] to solve the problem with 
a global optimization method. Our implementation is freely available at https://github.com/
lruthotto/StrainRecon.jl/

4.2.  Identifiability

In this section we demonstrate with a few simple examples that the solution to the MAP esti-
mation problem can be either unique or non-unique. The examples are chosen to be small such 
that full enumeration of the binary matrices are possible. That is, the results can be confirmed 
by solving |ΩM| = pmn quadratic programming problems (8). For larger problems this would 
not be feasible. Therefore, we also illustrate how the possible ambiguity can be seen in the 
posterior statistics.

First, let us choose m  =  3 and n  =  p  =  2, and consider the following example that illustrates 
the concept of bi-independency from section 3.4. Let w(1) = (0.6, 0.4)�, w(2) = (0.5, 0.5)�, 
and let M ∈ {0, 1}3×2 be

M =




0 1
1 0
1 1


 .

Note that c�w(2) = 0 for c = (1,−1)�. The data is given by

d(1) = Mw(1) =




0.4
0.6
1.0


 and d(2) = Mw(2) =




0.5
0.5
1.0


 .

One can readily verify that there are no other pairs in Ω that would yield the first data vector 
d(1), therefore the inverse problem has a unique solution. In contrast, d(2) can be obtained by 
choosing w(2) as above and any matrix in ΩM  which has row sums of 1 for the first two rows 
and 2 for the third row. Obviously, there are four such matrices.

We use the integration technique presented in section 3.6 to compute the posterior mean 
(i.e. conditional mean) and standard deviation for the unknowns M and w . Throughout this 
section, we assume that the noise covariance matrix in (2) is Γ = γ2I  for some standard 
deviation γ > 0. For large values of γ we expect to see larger standard deviation in the poste-
rior and the posterior mean is expected to approach the mean of the prior. However, already 

with γ = 10−2 the posterior means M(1)
CM and w(1)

CM corresponding to d(1) are practically indis-

tinguishable from the true values and the posterior standard deviation M(1)
std  is numerically 

zero. On the other hand, the standard deviation w(1)
std  of the frequency vector is approximately 

(0.007, 0.007)�. As a comparison, for n  =  2, the standard deviation of the essentially 1-dimen-
sional uniform distribution on ΩW  is approximately 0.14.
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As already seen above, d(2) has more uncertainty in the reconstruction. This can also be 
verified by computing the posterior moments, since now we obtain

M(2)
CM ≈




0.5 0.5
0.5 0.5

1 1


 and M(2)

std ≈




0.5 0.5
0.5 0.5

0 0


 ,

which are in line with the earlier observations. The frequency vector, however, has less uncer-
tainty in the second case. The posterior mean is close to (0.5, 0.5)�, as expected, and the 

standard deviation is only w(2)
std ≈ (0.004, 0.004)�.

As a next example, we consider the identification problem for (m, n, p) = (4, 3, 2) from 
the data

d = (0.1, 0.3, 0.5, 0.6)�.� (15)

No exact solution for the inverse problem can be found, but four global minima for (3) can be 
obtained. These correspond to two different frequency vectors and four different binary matrices. 
The left side of figure 1 shows minM∈ΩM ϕ(M, w) for different frequency vectors with γ = 10−2. 
The global minima can be seen at w = (0.52, 0.36, 0.12)� and w = (0.56, 0.32, 0.12)�. In 
addition, there is at least one local minimum at w = (0.45, 0.30, 0.25)�, which we occasion-
ally obtain as the output of our block coordinate descent algorithm.

The posterior mean and standard deviation for the binary matrix M are

MCM ≈




0 0 1
0 1 0

0.5 0.5 0.5
1 0 0.5


 and Mstd ≈




0 0 0
0 0 0

0.5 0.5 0.5
0 0 0.5


 ,

respectively. The uncertainty in the third row results from having the value 0.5 in d (see sec-
tion 3.4), whereas two different values in the lower right corner of M correspond to two dif-
ferent frequency vectors. For the frequency vector we obtain wCM ≈ (0.54, 0.34, 0.12)� and 
wstd ≈ (0.022, 0.021, 0.008)�.

The right hand side of figure 1 shows the entropy of the distribution π(M | w, d), defined 
as a function of the frequency vector w

EM(w) :=
∑

M∈ΩM

π(M | w, d) log2

(
π(M | w, d)

)
.� (16)

The entropy clearly indicates areas of ΩW  where the matrix minimizer of ϕ(M, w) is highly 
non-unique. For example, for w = (0.5, 0.3, 0.2)� there are 12 binary matrices M that result 
in the same minimal value of ϕ(M, w). Note that the entropy (16) can be efficiently computed 
also for larger examples by using the same row-decoupling technique as in (6).

Finally, let us mention that both MAP estimation techniques introduced in sections 3.4 and 
3.5 reliably find a global minimizer in all previous examples, except in the last example where 
a local minimizer is sometimes returned by the block coordinate descent method if nT is small. 
Which of the global minimizers is found depends on the starting points w0 and the implemen-
tation details; for example, how the minimizing matrix in (4) is chosen in case it is not unique.
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4.3.  Accuracy of the MAP estimation

We validate the accuracy of the block coordinate descent method (see algorithm 1) and the 
convex MIQP formulation (see section 3.5) using 10 000 randomly generated data sets with 
different noise levels.

Before quantifying the accuracies of our reconstruction methods, we have to define a 
meaningful distance function between the ground truth (M, w) and the reconstruction (M̂, ŵ), 
or more generally, a distance between any two pairs in Ω. We first note that every misclas-
sification in the binary matrix should have equal impact on the distance, that is, it should not 
matter whether we identify the first class as the third class or the third class as the second class, 
and so on. To ensure this property holds true, both binary matrices are augmented to matrices 
in {0, 1}mp×n by adding the missing first row of each block so that the column sums of each 
block become exactly 1. We denote this modification of a matrix M by τ(M). Another obser-
vation is that the order of the strains does not matter; the requirement that the frequencies are 
in non-increasing order is for computational purposes only. As an extreme example, if we had

(M, w) =

((
1 0
1 0

)
,
(

0.51
0.49

))
, (M̂, ŵ) =

((
0 1
0 1

)
,
(

0.51
0.49

))
,

the strains would be identified perfectly and their frequencies would be reconstructed accu-
rately, so we would expect a small distance. Therefore, we minimize over all possible permu-
tations of the strains before computing the distance.

The distance, or reconstruction error e, can now be defined as

e(M, w, M̂, ŵ) := min
P∈σ(n)

‖τ(M)diag(w)− τ(M̂)diag(ŵ)P‖1,� (17)

where σ(n) is the set of permutation matrices of size n × n and ‖ · ‖1 denotes the entrywise 
1-norm, i.e. the usual �1-norm after vectorization. Enumerating all permutations is feasible in 
our examples due to the small number of strains, n.

Let us study the distribution of the reconstruction error by sampling realizations (M, w) ∈ Ω 
and computing the corresponding MAP estimates (M̂, ŵ) with algorithm 1, where nT  =  20, 
εw = 10−3 and nI  =  10. For given values of m, n, and p, we draw 10 000 independent samples 
from the uniform prior distribution π(M, w) with the additional restriction that the matrix M 
must not contain duplicate columns. Before computing the MAP estimate, the data d = Mw is 
contaminated with independent zero mean Gaussian noise with standard deviation γ > 0. For 
comparison, the reconstructions for the same noisy data are also computed after converting the 
objective function to convex form as described in section 3.5. The resulting MIQP problems 
are solved using Gurobi software with ‘MIPGap’ tolerance parameter set to 10−6.

Figure 2 shows the reconstruction errors e for m  =  10, n ∈ {3, 4}, p ∈ {2, 4} and 
γ ∈ {10−2, 10−3}. For clarity, all reconstruction errors are sorted in ascending order. The 
average distance e between two random samples is shown for each case by a horizontal line. 
The first observation is that both reconstruction methods perform significantly better than 
just randomly drawing the reconstruction, even with uniform priors. We also notice that the 
reconstruction error increases when the number of strains, n, is increased, but decreases when 
the number of classes, p, is increased.

Comparing the two MAP estimation methods, we see that solving the convex MIQP prob-
lem yields smaller statistical error in all cases, compared to the block coordinate descent. For 
example, when (n, p) = (4, 2), the former produces negligible error in almost two thirds of 
the samples, whereas for the latter, fewer than half of the samples are reconstructed with such 
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accuracy. However, it is expected that increasing the number of trials, nT, in algorithm 1 would 
make the block coordinate descent method perform better.

Unsurprisingly, the reconstruction errors become larger when the measurement noise is 
increased. In addition, with γ = 10−2 the difference between the two reconstruction methods 
is less evident than with the smaller noise level.

4.4.  Experimental data and uncertainty quantification

The initial motivation for the strain reconstruction was to tackle the practical challenge of dis-
ambiguating malarial strains. We now apply our algorithms to the open experimental dataset 
previously analyzed by Zhu et al [3]. The dataset is generated from lab-mixed in vitro samples 
of DNA from four laboratory parasite strains (3D7, Dd2, HB3, and 7G8) that are mixed in 27 

Figure 2.  Sorted reconstruction errors for m  =  10 measurement sites and Gaussian 
measurement error with standard deviation γ = 10−2 (green) and γ = 10−3 (black). 
The solid line depicts the block coordinates descent; the dashed line corresponds to 
the convex MIQP. The horizontal dashed line shows the average distance between the 
random samples.
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different proportions. In a process similar to that of section 2, each of the 27 samples is sent to 
the MalariaGEN pipeline6 and genotyped with an Illumina sequencing platform to produce a 
measurement vector. Since the mixture proportions are controlled, the underlying ground truth 
strain barcodes and frequencies (M, w) are known.

Only three of the 27 samples contained n  =  3 strains, specifically PG0395-C, PG0396-C, 
and PG0397-C, and the remaining samples contained either a single strain or two strains. 
PG0395-C is a mixture of three parasite strains in near equal proportion, representing the edge 
case for identifiability where our algorithm has no basis for disambiguation (see discussion on 
bi-dependency in section 3.4).

To illustrate the power of our algorithm in a challenging scenario, we focus on sample 
PG0397-C that contains n  =  3 strains in proportions 1:1:5. We compute d for each of the 

Figure 3.  Ground truth and reconstructed M and w  from using experimental 
measurement of d with m  =  16, p  =  2, n  =  3 and assumed Gaussian random noise with 
zero mean and standard deviation γ = 10−1. The relative strain frequencies are sorted 
from highest to lowest and shown to the right of their corresponding SNP barcodes. 
From top to bottom: M and w  corresponding to the ground truth, two MAP estimates 
from sections 3.4 and 3.5, and the conditional mean and standard deviation.

6 The Malaria Genomic Epidemiology Network: www.malariagen.net/.
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17 420 biallelic SNP sites of the sample by parsing the genomic sequences (reads) output by 
the Illumina sequencer in the VCF (Variant Call Format) format. At each SNP site, we used 
the proportion alternate read/(alternate read  +  reference read) for the d vector component, 
where alternate read and reference read refer to the number of reads that support the alternate 
allele (‘non-reference’) or reference allele present at the given SNP site, respectively.

Field samples often have low parasite copy numbers, and the number of SNP locations with 
recoverable allele frequencies will not necessarily reflect full genome coverage. We choose 
to compare the 16 SNP sites recovered from the Daniels et al [4] 24 SNP barcoding scheme 
in this sample set to allow direct evaluation of the two approaches. In our algorithms, we thus 
set m  =  16 with p  =  2.

The sample standard deviation of the error d − Mw in the data is about 0.05. In our experi-
ment, we assume the noise vector n to be a Gaussian random variable with zero mean and 
standard deviation γ = 10−1. While more elaborate noise models may be used in practice, our 
goal is to demonstrate that a simple noise model works sufficiently well with real data when 
the standard deviation parameter is chosen appropriately.

The strain reconstructions M̂ and ŵ  from the block coordinate descent (nT  =  200, 
εw = 10−3 and nI  =  10) and the convex MIQP formulation are identical, as shown in figure 3. 
The figure also shows the ground truth (M, w), the conditional means and the posterior stand-
ard deviations. As expected with a 1:1:5 mixture, we observe larger standard deviations and 
reconstruction errors in the SNP barcodes of the two less prominent strains using either of 
the MAP estimation methods. This experiment also highlights the problem of identifiability 
mentioned in sections 3.4 and 4.2, as the two less prominent strains have an equal true relative 
frequency of 0.143. In contrast, we see a perfect reconstruction of the SNP barcode associated 
with the most prominent strain which has a true relative frequency of 0.714.

Finally, we also consider varying w  when M is kept fixed at its true value. We generate d 
by using (1) and adding Gaussian noise with zero mean and standard deviation γ = 10−1 or 
γ = 10−2. For both noise levels, the reconstruction errors e(M, w, M̂, ŵ), based on the block 
coordinate descent MAP estimation method (nT  =  200, εw = 10−3 and nI  =  10), are shown 
side by side in figure 4. As expected, larger reconstruction errors can be seen for the noise 
level γ = 10−1 in comparison to the case where the noise level is γ = 10−2. It is worth noting 

Figure 4.  Reconstruction error e (17) from block coordinate descent MAP estimation 
for varying w  given a fixed M and two noise levels. For noise level γ = 10−1, higher 
reconstruction errors are observed in comparison to the same instances of w  for the 
noise level γ = 10−2. Cases where a component of w  can (approximately) be expressed 
as a sum of one or two other components are reflected in higher reconstruction errors for 
the noise level γ = 10−2 at red areas.
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two instances where large reconstruction errors are present for γ = 10−2, namely when one 
component of w  can be expressed as the sum of two other components, as represented by the 
vertical bright area at w1  =  0.5, and when two components are equal, as shown by the bright 
areas near the edges of the depicted triangle. The large reconstruction errors reflect the prob-
lem of bi-dependency as described in section 3.4.

5.  Discussion and conclusion

In this paper, we present a mathematical formulation and computational framework for 
identifying strains of target microorganisms using PCR measurements from mixed samples. 
Extracting information about strains from mixed samples has the potential to reduce bias, 
time-to-results, and laboratory costs, and thus is critical for efficient screening. Our method 
alleviates the need for culturing and isolating pathogens to produce detailed genetic informa-
tion, which makes it attractive for public health applications involving samples composed of 
multiple strains of the same microorganism. Epidemiological surveillance relies on the identi-
fication of microorganisms in samples, however, distinguishing multiple strains in mixed sam-
ples currently requires linking of locations [13] or a prior dictionary of known strains [1, 3]. 
Our methods do not require these limiting assumptions and are thus more broadly applicable.

Our main contribution is the mathematical formulation of strain identification as an inverse 
problem that estimates a binary matrix encoding the strains and a vector modeling their rela-
tive contributions to the measured data. The resulting problem is highly underdetermined and, 
also due to the presence of the binary constraints, challenging to solve. We propose several 
efficient methods inspired by structurally similar problems such as blind source separation 
[16, 19, 20, 28], non-negative matrix factorization [22] and blind deconvolution [23–25] but 
also leveraging result from mixed-integer programming.

Following a Bayesian approach, we derive a posterior density where prior information is 
incorporated to limit the underdetermined nature of the problem. The prior on the frequency 
vector enforces the non-negativity and sum-to-one properties, as well as a decreasing order to 
limit ambiguity. The prior on the strain matrix represents the binary constraints.

We propose efficient computational methods for exploring the posterior distribution. First, 
using block coordinate descent, we approximately solve the nonlinear mixed-integer problem 
arising in MAP estimation from different starting guesses to identify local and global modes. 
We exploit the fact that the optimization problem for the binary matrix decouples across rows 
to obtain a scheme whose complexity is linear with respect to the number of measurements 
and exponential in the number of strains to be recovered. Since the latter is relatively small in 
the target application, we can use full enumeration in this step. Second, we derive a convex 
re-formulation of the problem. This approach is less scalable but provides a lower bound for 
the negative log-likelihood that can be used to certify the optimality. Third, we propose an 
efficient numerical integration technique for estimating the conditional mean and standard 
deviation of the posterior.

As shown in our numerical examples on synthetic and experimental data with available 
ground truths, these methods allow one to discover the ambiguity of the problem at hand 
and capture uncertainty in the solution. Developing more scalable and accurate techniques 
to quantify the uncertainty by sampling from the multimodal posterior is a subject of future 
work.

Our work paves the way for fast and inexpensive species-specific differentiation of strains 
of targeted microorganisms through DNA barcoding and whole genome multilocus sequence 
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typing, enabling epidemiologists and public health officials to conduct more granular tracking 
of pathogens and surveillance of infectious diseases.
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