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Abstract
Calculations are presented on the trajectory of a golf ball that rolls across the
inclined surface of a golf green. The ball follows a curved path and comes to a
stop at a point displaced at an angle to the initial launch direction. It is shown
that the displaced angle is independent of the launch speed but depends on the
launch angle and the ratio of the incline angle to the coefficient of rolling
friction. The stopping distance is proportional to the launch speed squared. A
simple experiment is described to check the calculations.

Keywords: coefficient of rolling friction, launch speed, launch angle, stopping
distance

1. Introduction

A major problem faced by all golfers is predicting the trajectory of the ball across a sloping
green. The ball usually follows a curved path, although it will follow a straight line path if the
ball is projected straight up or straight down the incline. The problem lies in estimating the
launch speed and angle required for the ball to land either in the hole or to stop at a nearby
spot. Limited assistance is available to golfers in the form of charts that show slope contours
and green speeds, but golfers still need to use their own judgement of the required launch
speed and angle, based on previous experience.

The physics of the problem involves acceleration of the ball down the slope due to the
component of the gravitational force down the slope, plus the opposing friction forces due to
static and rolling friction. Static friction ensures that the bottom of the ball comes to rest on
the green if it rolls without slipping. Rolling friction allows the ball to roll to a stop up or
down the slope if the slope is small enough [1]. The slope is typically less than three degrees
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near the hole. Specific trajectories of a ball rolling on a golf green have been calculated by
Penner [2] and by Dewhurst [3], showing that the ball can curve towards or away from the
hole depending on whether the ball is launched on a downhill or uphill slope respectively.
The same approach is followed in the present paper to extract other results, not previously
described, that apply more generally to the trajectories that are observed. In particular, it is
shown that the ball comes to a stop after curving through an angle that is independent of the
launch speed. Stopping distances are also calculated.

Numerical solutions are needed to determine the trajectories. The problem is similar to that
when calculating trajectories of a ball through the air subject to lift and drag forces, apart from
the fact the ball rolls on a golf green so the trajectory depends on rolling friction rather than
aerodynamic forces. Regardless of whether the ball travels through the air or along the
ground, the trajectory equations involve solutions of coupled nonlinear ordinary differential
equations, so the results are more complicated than those involved in the motion of a ball
projected vertically through the air or motion of a ball straight up or straight down an inclined
surface.

There is an extensive literature on the physics of sport in physics teaching journals,
illustrating physics encountered in undergraduate mechanics courses. The present article
extends that literature to consider the trajectory of a ball rolling on an inclined surface. The
basic physics is the same as that presented to undergraduate students. Newtonian physics
comes to life when it is shown how it is relevant to practical problems of interest to students,
such as those encountered in various sports.

2. Theoretical model

The geometry of the problem is shown in figures 1 and 2. The ball follows a curved path on
an inclined plane tilted in the y direction at an angle θ to the horizontal. The coordinates of the
ball on the inclined plane are x, y, the linear velocity of the center of mass of the ball is v, and
the ball rolls without slipping if v=ω×R where × denotes the vector cross product, R is the
ball radius (directed normal to the inclined plane) and ω is its angular velocity. The com-
ponents of v and ω are related by vy=−Rωx and vx= Rωy as indicated in figure 1. Note that
ωx is negative when vy> 0. For simplicity it is assumed that the ball is launched in a rolling
mode. In practice, a putted ball usually slides for a short distance before it starts rolling [4], so
the solutions given below are strictly only relevant after the ball starts rolling without
slipping.

At any given time, v is inclined at an angle β to the y axis, as shown in figure 2(a). The
gravitational force on the ball in the negative y direction is mg sin q, where m is the ball mass,

Figure 1. Geometry of a green sloping uphill at angle θ in the +y direction.
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and a friction force F acts at angle f to the negative y direction. F represents the combined
effect of rolling friction acting in a direction opposite the direction of v, plus a static friction
force that acts in the positive y direction while the ball is rolling. The normal reaction force on
the ball is zmgN cos ˆq= and it acts at a distance D ahead of the center of mass, as it does
whenever a ball is rolling [1, 2]. The x and y components of D are D D sinx b= and
D D cosy b= , as indicated in figure 2(a).

The angular velocity components vary with time according to the relation
R× F+D ×N= Icmdω/dt, with components

I
t

F R ND
d

d
1

y
x xcm ( )

w
= -

and
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t

F R ND
d

d
, 2x

y ycm ( )w
= -

where Icm= (2/5)mR2 is the moment of inertia of the ball, F F sinx f= and F F cosy f= . Fx

points in the negative x direction and Fy points in the negative y direction, while ωx and ωy are
taken to be positive in a clockwise sense in figures 2(b) and (c).

The acceleration of the ball in the x and y directions is given by

m
v

t
F

d

d
sin 3x ( )f= -

Figure 2. The normal reaction force, N, acts at a distance D ahead of the ball center.
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and

m
v
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d

d
sin cos . 4

y ( )q f= - -

Given that vx= Rωy and vy= Rωx, then dvx/dt= Rdωy/dt and dvy/dt= Rdωx/dt, so Fx and Fy

are given from equations (1) and (2) by
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Substitution in equations (3) and (4) then gives the acceleration components
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given that N mg cos q= . The direction of the friction force is given by
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On a horizontal surface where θ= 0, the ball decelerates due to rolling friction, and μR= F/N
is the coefficient of rolling friction. In that case N=mg, F=−μRmg so the ball decelerates
with a=− μRg=−gD/1.4R from equations (7) or (8). Consequently,

D

R1.4
. 10R ( )m =

Equation (9) can also be derived by assuming that the rolling friction force μRmg acts in a
direction opposite v and the static friction force mg2 7 tan( ) q acts in the positive y direction,
as it does when β= 0, F being the vector sum of the two friction forces. Equations (7) and (8)
can be expressed in the form

v

t
g A

v

v

d

d
cos sin 11x

R
x ( )m q b= - = -

and

v
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g
g B A

v
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d
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cos cos 12
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R

y ( )q
m q b= - - = - -

where A g cosRm q= , B g sin 1.4q= , v v sinx b= and v v cosy b= . A and B can be taken
as constants on any given incline, equal to the average values determined from Stimpmeter
readings [2]. The various trajectories on the incline depend on the ratio B/A or on the ratio
θ/μR when θ is small. At any given launch speed and launch angle, the deceleration in the x
direction is proportional to A and the deceleration in the y direction depends on B/A so the
angular displacement from the initial launch direction depends on θ/μR. If the launch speed,
v0, is doubled on a given incline, and if the launch angle remains the same, then vx/v and vy/v
remain the same so dvx/dt and dy/dt remain the same but the ball takes twice as long to come
to a stop and travels four times further. If A and B are increased by the same factor, then the
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deceleration will increase by the same factor in both the x and y directions, so the stopping
distance will decrease by that factor. These effects are illustrated by numerical solutions in the
following section.

Equations (11) and (12) can also be cast in the simpler form

V V

V

d

d
13x x ( )

t
= -

and

V V

V

d

d
, 14

y y ( )
t

l= - -

where Vx= vx/v0, Vy= vy/v0, V= v/v0, 5 7 tan R( )l q m= and g t vcosR 0( )t m q= . In that
case, the only relevant parameters of the model are β(0) and λ, while v0 is a scaling factor.
The dynamic behaviour is therefore not affected by v0, apart from the fact that the stopping
distance and time does depend on v0.

3. Numerical solutions

Numerical solutions of equations (11) and (12) to calculate vx and vy, and then the coordinates
x and y, were obtained by a predictor-corrector method, but other methods are likely to work
just as well. Solutions are shown in figure 3 for a ball launched uphill at an angle β(0)= 80°

Figure 3. Trajectories on an uphill slope when the ball is launched at β(0)= 80° with
(a) θ= 1° and μR = 0.05 or (b) θ= 2° and μR = 0.1.
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to the y axis with initial speed v0= 1.5 or 2.0 m s−1. In figure 3(a), θ= 1° and μR= 0.05. In
figure 3(b), θ= 2° and μR= 0.1. The ball is launched up the incline but it curves back down
the incline before coming to a stop.

In figure 3(a) and also in figure 3(b), the x, y coordinates of the higher speed launch are a
factor of /2 1.5 1.7782( ) = larger than the coordinates of the lower speed launch, meaning
that both trajectories are identical if the x and y coordinates of the low speed trajectory are
multiplied by a factor of 1.778. Consequently, the ball comes to a stop after curving through
the same angle, α, away from the launch angle, as shown in figure 3(a). Figure 3(b) differs
from figure 3(a) in that θ and μR are both twice as large in figure 3(b), with the result that the
x, y coordinates are smaller by a factor of two. The angle α is the same for all four trajectories,
but the stopping distance of the ball is reduced by a factor of two in figure 3(b). Other
numerical results show that at any given launch speed v0 and launch angle β(0), if θ and μR

are both increased by the same factor F then the stopping distance decreases by a factor F but
the angle α is unaffected.

Downhill trajectories are not the same as uphill trajectories but the same general features
are found, apart from the fact that the ball curves in the opposite direction. The y displacement
of the ball is also much larger in the downhill direction, as indicated in figure 4 where the ball
is launched down a 1° incline with the same initial parameters as in figure 3(a).

The break angle, α, depends on the launch angle as well as the θ/μR ratio but is inde-
pendent of the launch speed at any given launch angle. Typical results are shown in figure 5
for uphill and downhill putts at three different launch angles. In practice, θ can vary from zero
to about 3◦ and μR varies from about 0.04 for a fast green to about 0.09 for a slow green, so
θ/μR can vary from zero up to about 75. The break angle is only slightly larger for downhill
putts, despite the fact that the stopping distance is generally much larger. For example,
α= 7.2° in figure 3 and α= 7.5° in figure 4, both with θ/μR= 20 and β(0)= 80°.

4. Stopping distance

The stopping distance, S, is easily calculated on a horizontal surface and is equal to v g2 R0
2 m .

The stopping distance is also proportional to v0
2 on an inclined green but the variation with θ

and μR is not simply expressed in analytical terms, apart from cases where the ball is launched
straight uphill or straight downhill. In the latter cases, S v g2 sin 1.4R0

2 ( )m q= - , assuming
that θ is negative for a downhill putt.

Figure 4. Trajectories on a one degree downhill slope when the ball is launched at
β(0)= 80°.
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Numerical solutions with v0= 1.0 m s−1 are shown in figure 6 for uphill and downhill
putts on θ= 1° and 2° slopes. The stopping distance, S, is taken as the straight line distance
from the launch point to the stopping point, but the actual distance travelled by the ball along
its curved path is longer. All of the curves in figure 6 can be fit by power laws of the form
S k R

n( )m= but n is different for every curve and varies from 0.73 to 1.75 while k varies
from 0.01 to 0.08. The parameters n and k vary smoothly with β(0) but the relations are
nonlinear. There is therefore no simple rule of thumb that a golfer can use to predict the
stopping distance when θ or β(0) is varied, apart from the fact that the stopping distance
increases as v0 increases, or when μR decreases, or as β(0) decreases when putting downhill or
as β(0) increases and when putting uphill. One useful hint is that the stopping distance when

Figure 5. Break angle, α, for (a) uphill and (b) downhill putts versus θ/μR.

Figure 6. Stopping distance, S, for uphill and downhill putts versus μR when
v0 = 1 m s−1 and (a) θ= 1° and (b) θ= 2°. Uphill putts are shown by solid curves.
Downhill putts are shown by dashed curves. Dot points show the variation of S with μR

on a horizontal surface.
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putting at β(0)= 80° uphill is almost the same as putting on a horizontal surface. Golfers will
know these trends from experience anyway, and green books are readily available showing
laser scanned slope contours for all major golf courses, but even professional golfers still have
problems estimating or executing the appropriate launch speed [5].

A visual summary of results is shown in figure 7 for stopping distances of 3 m on a green
with θ= 2° and μR= 0.05. Trajectories are shown starting at 12 different launch points,
together with the launch speeds required for the ball to stop in the middle of the hole. Left to
right and right to left trajectories are symmetrical, but uphill and downhill trajectories are not.
Similar information is provided by Aimpoint Golf (https://aimpointgolf.com) in the form of
commercially available charts indicating the expected break angles or distances on greens
with a variety of different slopes and different green speeds.

5. Experimental result

In order to check the calculations, an experiment was conducted using a small incline covered
in a towel to simulate a putting green. A golf ball was projected up and across the incline and
its trajectory was determined by filming from above at 300 frames s−1, using Tracker software
to digitise the ball coordinates. The arrangement is shown in figure 8. The ball was launched
by hand so that it would commence rolling without sliding. A typical result is shown in
figure 9, together with a theoretical fit. The ball speed decreased almost to zero at the top of its
trajectory and then accelerated down the incline since the incline angle was larger than that of
a typical golf green. The main point of interest was to determine whether equations (11) and
(12) provide a good description of a rolling ball on an incline.

Figure 7. Trajectories and launch speeds for uphill and downhill putts on a green with
θ= 2° and μR = 0.05, when S= 3.0 m. Dotted lines are straight lines from the launch
point to the hole.
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Values for μR and the slope of the incline were determined from the accelerations aU and
aD straight up and straight down the incline respectively. From equation (12), with β= 0 up
the incline and β= 180° down the incline,

a a
g10 sin

7
15U D ( )q

+ = -

and

a a g2 cos 16U D R ( )m q- = -

The measured value of μR depended on the ball speed, being as large as 0.07 at speeds less
than 0.1 m s−1 and as small as 0.03 at speeds above 0.2 m s−1. A good theoretical fit to the
measured trajectory was obtained with μR= 0.06 when v< 0.2 m s−1 and μR= 0.03 when
v> 0.2 m s−1. There is a small discrepancy between the theoretical and experimental tra-
jectories as the ball starts descending down the incline, presumably due to the variation in μR

Figure 8. Experimental arrangement.

Figure 9. Experimental ball trajectory (shown as dots) on a θ= 5.9° incline. The
smooth curve is a numerical solution of equations (11) and (12).
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with rolling speed. Similar results were obtained at other launch angles and launch speeds.
Other possible golf ball trajectories could be investigated by students using an arrangement
similar to that shown in figure 8 or to investigate the behaviour of other balls on other
surfaces. A result using a billiard ball on a smooth incline is described in reference [6].

6. Conclusion

The motion of a golf ball rolling on a sloping green can be calculated analytically if the ball
decelerates straight up or down the incline. More generally, the ball follows a curved path if it
is projected at other angles. Numerical solutions are presented showing that the ball curves
through an angle that is independent of the initial ball speed and that depends only on the
launch angle and the θ/μR ratio or the equivalent parameter λ. The displacement angle is
slightly different for uphill and downhill launches. The stopping distance is proportional to
the square of the launch speed and increases as μR decreases, as it does on a horizontal
surface, but there appears to be no other simple relation that determines how the stopping
distance depends on the launch angle or the slope or speed of the green.
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