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Abstract
Even in ideal transformers, the input and output powers are never exactly
equal, thereby causing the familiar ratio between the primary and secondary
currents, namely Ip:Is =Ns:Np, to be slightly incorrect. In this paper, we
explain why this is so and derive the correct ratio, as well as clarifying the
related prevailing concepts. We conclude that a theory of an ideal transformer
without a magnetising current is deficient and self-contradictory. Further,
methods to locate the two black (phase) dots in a transformer symbol are
elucidated. This paper is suitable for those who are pursuing a deeper
understanding on this subject after learning the basics from the literature.

Keywords: ideal transformer, electromagnetic induction, mutual induction,
magnetising current, dot convention transformer, equivalent circuit
transformer

(Some figures may appear in colour only in the online journal)

1. Introduction

The transformer is conventionally considered to be a minor part of a general physics curri-
culum. A thousand-page college physics text devotes not more than three pages to the
discussion of an ideal transformer. Other than doing simple calculations, students are usually
quite confused by it or even misunderstand some key concepts. Sadly, many texts and web
resources commit one or two basic conceptual errors on this subject. For example, some
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muddle up electromotive force with potential difference, thus writing an expression such as
IpVp =IsVs for input power equalling output power (see section 4).

In this paper, we attempt to provide clarifications, where needed, on the prevailing
theory. Our results, which are derived from first principles as far as possible, reveal how
important the so-called magnetising or exciting current is. In fact, this current is essential and
indispensable, but it is discussed in only some of the commonly used texts [8, 9]. Some
authors omit it, possibly because it is difficult for college students. Nonetheless, we try to
present it in a way that is easier to grasp.

College-level knowledge of electromagnetism is a basic prerequisite to an understanding
of this paper. Section 2 provides the basic knowledge, section 3 shows the incompleteness of
the prevailing theory, and section 4 contains the core mathematical derivations. Most of the
concepts are elaborated in sections 2–5 and 8. In section 6, we introduce and explain methods
to position the two black (phase) dots in a transformer symbol. In section 7, an equivalent
circuit of an ideal transformer is put forth.

2. The basics

A transformer is an electromagnetically coupled device consisting of, in a single-phase
device, two unconnected windings wrapped around a laminated soft iron core. What is meant
by an ‘ideal transformer’? The definitions and properties found in the literature are not
completely the same [1–3]. We hope our results are as general as possible, so our analysis is
based on as few assumptions as possible. Here, we define an ideal transformer as one which is
absolutely free from any energy loss with only the following two conditions satisfied. (1)
Both windings are purely inductive, i.e. they have zero internal resistance. The connecting
wires have zero resistance too. (2) Both windings are perfectly coupled such that the same
magnetic flux links them, i.e. there is no flux leakage. The transformer that serves as the
model of our discussion is shown schematically in figure 1. One winding, called the primary,
is connected to a current-independent alternating power source, forming the input circuit. The
other winding, called the secondary, is connected to a load of pure resistance R, forming the
output circuit.

Figure 1. Schematic diagram of a single-phase transformer.
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2.1. Basic equations

Let us denote Np and Ns as the number of turns, Vp and Vs as the induced electromotive forces,
Ip and Is as the currents, and Φp and Φs as the magnetic fluxes, where the subscripts ‘p’ and ‘s’
refer to the primary and secondary windings, respectively. Since we assume that the same flux
interlinks the two windings, we define a common (mutual) flux Φ=Φp =Φs.

Throughout this paper, ‘magnetic field’ refers to the B-field (magnetic induction), and the
magnetic flux through a coil is defined as Φ=B·A,where A is the area vector of the coil (see
section 5).

The physics of the transformer involves two basic laws. One is Faraday’s law of
induction: the electromotive force (emf) induced across the ends of a coil of N turns is V=–
NdΦ/dt, and the other is Kirchhoff’s second law: in a closed loop of a circuit, the sum of the
emfs is equal to the sum of potential differences, i.e. ∑ emfs=∑pds.

When looping around the input circuit, one will encounter the power source (emf ε) and
the primary winding (emf Vp), so there are two emfs (ε and Vp) but no potential difference (the
windings have zero resistance) in the input circuit. Hence,

e + = ( )V 0, 1p

where

=
F– ( )V N

d

dt
. 2p p

In the output loop, there is an induced emf in the secondary winding

=
F– ( )V N

d

dt
, 3s s

and a potential difference across the load

= ( )V I R. 4s s

Equation (1) can be written as ε=–Vp, signifying that the primary induced emf Vp is
always equal and opposite to the source emf ε. When the transformer is operating, an AC
current is drawn from the source to pass through the primary winding. In consequence, the
magnetic flux through the primary winding produced by this current varies with time; an
induced emf Vp across the primary winding is thus produced to counteract and balance the
source emf ε (this cause–effect relationship is shown diagrammatically in figure 5).

One may doubt how a current could appear in a circuit that does not have a net emf to
drive the current. Firstly, the appearance of this current does not violate Ohm’s law V=Ir,
since when the net emf (V ) and resistance (r) are both zero, in principle, current I can be any
value. Secondly, the eventual possible I is that it can fulfill ‘ε=–Vp’ after the processes just
mentioned. Indeed, one objective of this paper is to answer the question ‘what is the primary
current?’ This question is crucial to understanding a transformer. The primary current is
derived in section 4.3.

In addition, if Ipdt is multiplied to both sides of ε=–Vp, where dt is an infinitely short
time interval, we get

e = – ( )I dt V I dt. 5p p p

The minus sign in the last equation helps us to understand the instantaneous transfer of
electrical energy between the source and the primary winding: the source delivers energy, and
at the same time the primary winding consumes energy, and vice-versa.
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2.2. Familiar ratios

Dividing equation (2) by (3), we obtain the voltage ratio

= ( )
V

V

N

N
. 6

p

s

p

s

In the ideal transformer, input power=power output, so

= ( )V I V I , 7p p s s

where Ip is the primary current. Hence, Ip/Is =Vs/Vp. In view of equation (6), we obtain the
current ratio

= ( )
I

I

N

N
. 8

p

s

s

p

These two ratios, equations (6) and (8), are widely known to students, but one of them is
problematic.

3. Something is wrong

Transformers work on alternating currents. Suppose now that the secondary current Is is
momentarily zero. At this moment, Ip = 0 (by the current ratio), and Vs =0 (by Vs =Is R). In
addition, we have dΦ/dt=0 (by Vs =–Ns dΦ/dt), and the core flux Φ, which is produced by
the currents in the two windings, is zero as well because Ip =Is =0.

The satisfaction of Φ=0 and dΦ/dt=0 leads to the fact that, an infinitely short time
later, Φ is still zero, regardless of what the source voltage may change to. There are two
possibilities. The first one is that the two currents, Ip and Is, continue to be zero. If so, the
argument goes back to its starting point Is =0, and then repeats the deductions again. The
argument loops infinitely, reaching an absurd conclusion that Φ is zero at all times. Currents
cannot always be zero, so this never occurs. The other possibility is that the two currents are
nonzero, but their individual magnetic fluxes cancel each other out. However, the current ratio
asserts that the primary and secondary currents are in direct proportion: when one changes,
the other changes by the same factor. It is known that magnetic flux is proportional to current,
so if the primary and secondary fluxes are equal and opposite at a certain moment, they must
always be related in this manner. Unfortunately, we come to the same conclusion: core flux Φ

keeps vanishing although the transformer keeps running.
Of course, this is nonsense because a properly functioning transformer must rely on a

time-changing magnetic flux. There must be something wrong.

4. Solving an ideal transformer

4.1. Powers

What is wrong? The fact is that, even if the transformer is ideal, the instantaneous input and
output powers are not exactly equal. A not-so-correct current ratio has thus been derived. The
fault is rooted in two errors.

Error 1: The input power is not VpIp, it should be εIp, since the source of emf ε is
actually that which delivers electrical energy to the transformer. The voltage Vp=–Np

dΦp/dt is an emf, therefore, by definition, the power VpIp is positive (negative) when the
primary gives (takes) electrical energy. As long as the primary receives electrical energy from
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the source, VpIp is negative, so the power VpIp can only be understood as the negative of the
input power. Some texts and online resources are vague or careless in this respect [3–5].
However, changing the power relationship to

e = ( )I V I 9p s s

does not help much in averting the ‘nonsense conclusion’ in the previous section.
Error 2: The critical problem in equation (9) is that it misses a term corresponding to the

temporal fluctuation of the total core magnetic energy. This term is necessary because the
energy associated with the time-changing core flux must also be derived from the AC source.
For this reason, the power balance must include such a term, for example,

e = + ( )I V I P , 10p s s m

where Pm is the rate of change of the total magnetic energy in the iron core.
Although some magnetic energy resides in the iron core, it is not dissipated via eddy

currents, hysteresis loss, stray fields, etc, since the transformer is assumed to be ideal. The
magnetic energy that is more than the average will return to the source at a later time.
Therefore, we have

=⟨ ⟩ ( )P 0, 11m

and

e =⟨ ⟩ ⟨ ⟩ ( )I V I , 12p s s

where 〈Pm〉 is the power Pm averaged over a cycle, etc. Some texts state that the input and
output powers are equal in their root-mean-square or averaged values, rather than being
instantaneous, but little or inadequate explanation is provided alongside [6, 7].

4.2. Core flux energy

It is known that when a current I passes through an inductor of inductance L, the magnetic
energy stored in L is E=LI2/2 [12]. Furthermore, the inductance L is defined as LI=NΦ,
hence E=N2Φ2/2L. Without exception, the magnetic energy stored in a transformer core
must have the form ηΦ2/2, where η is a constant depending on (Np, Lp) or/and (Ns, Ls). Later,
we will ascertain what this constant actually is. The term Pm in equation (10) is the rate of
change of the stored magnetic energy, so

h
h=

F
= F

F ( )P
2

d

dt

d

dt
. 13m

2

On the other hand, equations (1) and (2) allow us to express

eF
= ( )

N

d

dt
. 14

P

Before proceeding, we assume, without loss of generality, that the source emf ε varies with
time t in the form

e e w= ( ) ( )tcos , 15o

where εo is the amplitude and ω is the angular frequency. By integrating equation (14) w.r.t. t
with ε given in the last equation, we obtain

e
w

wF = ( ) ( )
N

sin t , 16o

p
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in which the integration constant is zero since Φ must vanish when the amplitude εo is zero.
Substituting equations (14) and (16) into (13) and then Pm into equation (10), and after
rearranging the terms, we get























e
h

w
e w =– ( ) ( )I

N
V Isin t . 17op

p
2 s s

Obviously, the current inside the square brackets in the last equation is identical to the
primary current in equation (9). We denote this current as Ip,L and the current proportional to
sin(ωt) as Ip,M, i.e.

= - ( )I I I , 18p,L p p,M

where

e = ( )I V I , 19p,L s s

and











h
w

e w= ( ) ( )I
N

sin t . 20op,M
p

2

4.3. Currents and core flux

Equation (19) is written as Ip,L/Is =Vs/ε and is simplified by using ε=–Vp and the voltage
ratio, and we derive the correct current ratio,

= – ( )I I N N: : . 21p,L s s p

It must be emphasised that this negative current ratio is consistent with the whole theory (see
section 5). Among the college-level physics texts surveyed by the author, only one derives a
similar negative current ratio [8].

The output is connected to resistor R, so Is =Vs/R=Vp(Ns/Np)/R (by the voltage ratio).
Because Vp =–ε, Is is derived to be









e= – ( )I

R

N

N

1
. 22s

s

p

Next, Ip,L is found by putting the last equation into equation (21),









 e= ( )I

R

N

N

1
. 23p,L

s

p

2

From the last two equations, we see that Is and Ip,L are both zero when the resistor R is set
to infinity (open output circuit); in this case the output circuit is effectively removed and the
transformer is reduced to a pure inductor, in which the primary current should lag behind the
applied emf ε by π/2 with peak values (labelled with subscript ‘o’) related by Ipo =εo/Xp,
where Xp is the reactance of the primary winding [11]. By comparing equation (20) with (15),
Ip,M does lag behind ε by π/2 (identity sin(ωt)=cos(ωt−π/2)). Further, the amplitude of
Ip,M should be εo/Xp, so the factor h wNp

2 in equation (20) is now identified as 1/Xp.
Therefore, we obtain the final form of Ip,M,

Eur. J. Phys. 39 (2018) 035205 C-K Ng

6



 






e
w

p
= - ( )I

X
cos t

2
. 24o

p,M
p

Combining equations (16) and (24), we find

F = ( )
L I

N
, 25

p p,M

p

where Lp =Xp/ω is the inductance of the primary winding. The significance of equation (25)
lies in its assertion that the core flux Φ is solely produced by Ip,M.

With the form of ε given in equation (15), the complete primary current, Ip =Ip,L +Ip,M
can be expressed as

 






e
w

e
w

p
= +( ) – ( )I

R

X

X X
cos t cos t

2
, 26o o

p
s

p p

where Xs is the reactance of the secondary winding. In the last equation, the relation

=( ) ( )N N X X: : 27s p
2

s p

has been used [12]. By comparing the amplitudes of the three currents, Ip,L, Ip,M and Is, we get

=( ) ( )/ /I I I R X N N: : 1: : . 28p,L p,M s Amplitude s p s

Furthermore, the two components, Ip,L and Ip,M in equation (26) can be combined
mathematically to form

w j= ( – ) ( )I I tcos , 29op p

where









j = ( )– R

X
tan 301

s

is the phase angle by which Ip lags behind ε, and Ipo is the Pythagorean addition of the
amplitudes of Ip,L and Ip,M. The equality of averaged powers 〈εIp〉=〈VsIs〉 (equation (12))
can now be written as εrms(Ip)rmscosj=(Vs)rms(Is)rms or εrms(Ip,L)rms =(Vs)rms(Is)rms, where
cosj is known as the power factor [11] and ‘rms’ stands for the root-mean-square value. A
formal mathematical approach to solving the ideal transformer is given in the appendix.

At the end of this section, it is worth taking note of the distinctly different functions of
the two primary currents.

(1) Ip,L: The ‘L’ in the subscript means delivering energy to the load. It does not contribute to
the core flux production (actually its flux is cancelled by that of the secondary current—
see section 5). It accounts for the energy transfer between the energy source and load.
This current is in phase with the source, so the input power εIp,L is non-negative,
matching with the output power I R.s

2

(2) Ip,M: The ‘M’ in the subscript means magnetising the core. This current lags behind the
source by π/2 and is responsible for producing the time-changing core flux Φ. It does not
matter whether the output circuit is loaded with any R or is even unloaded, the flux Φ

must be the same (since ε = −Vp =NpdΦ/dt). In other words, the current causing the
flux, Ip,M, is always present and independent of load R. Because of the π/2 phase lag,
〈Pm〉=〈εIp,M〉=0.
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5. The negative sign

The current ratio of Ip,L to Is (equation (21)) is negative—what does it mean? How does this
negative sign eventually go to Is (equation (22)), instead of Ip,L (equation (23))? Undoubtedly,
this negative sign means the opposite of a direction, but what is this direction? One text states
that the negative current ratio implies that the two currents involved are 180° out of phase [8].
Do Ip,L and Is always flow in opposite directions? No, they may flow in the same or opposite
directions, depending on how the two windings are coiled around and placed in the core (see
figure 4). Actually, this negative sign is related to the positive sense of rotations (PSR) of the
two windings.

Magnetic flux through a coil is defined as the scalar product of the magnetic field passing
through the coil and the area vector of the coil. Whenever an area vector of a coil is chosen,
for example, upward or downward if the coil is horizontally placed, subsequently its PSR is
determined. The method is the right-hand screw rule: when the right thumb points in the
direction of the area vector, the direction the other four fingers then curling around is the PSR
of the coil. Indeed, the sign of the final result calculated from Faraday’s law of induction is
relative to the PSR of the coil [10].

In an ideal transformer, Φp =Φs (the same flux along the core) is assumed, forcing the
area vectors of the two windings to be connected and determined altogether as soon as one is
chosen. For example, for transformers similar to the one shown in figure 1, the magnetic field
directs along the iron core, so satisfying Φp =Φs, and the area vectors of the two windings
must be opposite. But if the two windings are wound on the same side of the core, their area
vectors are parallel.

The negative sign in the current ratio Ip,L : Is=–Ns : Np is interpreted as follows: one of
the two currents flows in the same direction as its PSR, and the other flows in the opposite
direction to its PSR.

But it is not up to the primary’s PSR to make the choice, it has already been pre-
determined in the conventions of physics. In an inductor, we define LI=NΦ, in which the
PSR of the coil is chosen to be the same as the flowing direction of the positive current I
around the coil (hence both I and Φ always have the same sign) for the sake of defining a
positive inductance L. The primary winding of a no-load transformer is essentially an
inductor, so the PSR of the primary winding must likewise be preset. Simply put, a positive
(negative) current in the primary flows in the same (opposite) direction to the primary’s PSR
since the primary’s PSR is so defined. This is the reason why the negative sign in the current
ratio eventually goes to Is. Unlike the primary’s, the secondary’s PSR cannot be established
unless the relative position of the two windings is known. Nonetheless, using the PSR to
determine a direction is somewhat complicated and surely not user-friendly. There is a much
better method.

The two PSRs are established, satisfying Φp =Φs, so when both winding currents flow
along their PSRs, the fluxes produced are of the same sign; put another way, if only one of the
two currents does so, as the negative current ratio implies, their fluxes are opposite. Thus, the
negative sign in the current ratio suggests an alternative interpretation that seems to be more
understandable and utilisable: in the iron core, the magnetic fluxes (or magnetic fields since
they are relative to the same area vector at the same place) produced by the two currents are
always opposite. This can serve as a simple method to find the direction of the secondary
current (see section 6.2).

Further, the magnetic field inside a solenoid is proportional to the product of the number
of turns and the current. The negative current ratio can be rewritten as NpIp,L =–Ns Is,
implying that the magnitudes of these two opposite fields are equal. They add up to exactly
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zero, a scenario that agrees and confirms our earlier findings. The magnetising (load-inde-
pendent) current Ip,M produces an always-adequate core flux Φ while those produced by Ip,L
and Is cancel each other out.

6. Black dots

In circuit diagrams, occasionally two black dots are seen next to the terminals of a transformer
symbol. One is at the primary, and the other is at the secondary. They are also called phase
dots, indicating which input and output terminals are simultaneously positive or negative
w.r.t. to the other terminal of the same winding [2]. There are three methods to ascertain
where the two black dots should be placed.

Let us consider the transformer shown in figure 2. Suppose, at a certain instant, that the
source emf ε is positive, then the terminal X is therefore positive w.r.t. the earthed terminal G.
In the figure, the PSRs of the two windings, the magnetic fields produced by the two currents
Ip,L and Is at this moment are all shown. With reference to figure 2, the three methods are
explained one-by-one in the following. The underlying physics of the first two has been
elaborated in the previous section, so only their steps with brief reasons are stated.

6.1. By negative current ratio

+ε → X is positive → direction of +Ip,L (in phase with ε) → primary’s PSR (the direction
positive primary current flows) → secondary’s PSR (by ‘same flux along core’) → direction
of Is (by negative current ratio: Ip,L now flows along its PSR, so Is does not) → Y is positive
(the terminal where current leaves from a seat of emf) → place black dots at (X, Y) or (G, Z).

6.2. By flux opposition

+ε → X is positive → direction of +Ip,L (in phase with ε) → magnetic field due to Ip,L (by
right-hand grip rule) → magnetic field due to Is (must be opposite to that of Ip,L) → Is (by
right-hand grip rule)→ Y is positive (the terminal where current leaves from a seat of emf)→
place black dots at (X, Y) or (G, Z).

Figure 2. An ideal transformer with an emf ε applied to its primary winding. Using this
transformer, we explain the methods used to find the direction of the secondary current
and the positions of the black dots.
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6.3. By positive voltage ratio

The third method is to use the in-phase relationship between Vp and Vs (the positive voltage
ratio). This relationship implies their two corresponding electric fields Ep and Es, where

=∮ ·E xd Vp p and =∮ ·E xd Vs s point in the same direction relative to their own
PSR. That is to say, the induced currents (if any) produced by Vp and Vs would flow in the
same direction relative to their own PSR. To avoid confusion, one should be clear that Is is
the induced current of Vs, but neither Ip,L nor Ip,M is the induced current of Vp. The emf Vp has
been cancelled by the source ε, so the induced current of Vp never exists.

To use this method, the two connected PSRs are established by using the condition ‘same
flux along core’ first. By taking two assumed currents following these two PSRs, the in-phase
terminals, for example, those from which the two currents leave are thus determined.

7. Equivalent circuit

Based on the prevailing models [1, 3], we devise and put forth an equivalent circuit of an ideal
transformer. Many major ideas discussed in this paper become obvious with the aid of this
equivalent circuit.

In figure 3, the part inside the dashed line box is the ideal transformer. The primary
circuit is made up of a parallel-combination of a pure inductor and a pure resistor. The former
has a (presumably large) inductance Lp and number of turns Np while the latter has a
resistance

¢ = ( ) ( )/R N N R, 31p s
2

which is also known as the equivalent resistance of the load R [9]. The currents passing
through these two branches are Ip,M and Ip,L, respectively; so their sum gives the primary
current Ip. The equivalent resistor R′ obeys Ohm’s law, so the current Ip,L is always in phase
with the source ε, but the action of the inductor Lp introduces a phase lag of π/2 in Ip,M. The
input voltage Vp and current Ip,L are related by Vp=Ip,LR′. The connection of the inductor in
the circuit is because Ip,M solely produces the core flux linkage NpΦ=LpIp,M with a stored
magnetic energy E=Np

2Φ2/2Lp. Since R′ and Lp are connected in parallel, they do not affect
each other. Obviously, no matter whether the transformer is loaded with any R or is even
unloaded, Ip,M is always present and the same.

Figure 3. Equivalent circuit of an ideal transformer.
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In the equivalent circuit, the secondary side is a separated circuit driven by a source of
emf,

e e¢ =  ( )( )( ) ( )/N N , 32s p

where the two signs are determined as follows: (1) the first (±) takes the positive (negative)
sign when the coils are wound in the same (opposite) sense, and (2) the second (±) takes the
positive (negative) sign when the coils are wound on the same (opposite) side of the core.
Figure 4 provides examples of the four cases. Whenever the overall sign is known, the two
black (phase) dots can be placed accordingly, as shown in figure 4. The direction of the output
current, which is in phase with ε′, agrees with that found by the methods discussed in
section 6. In this equivalent circuit, the PSRs are no longer needed.

When the output circuit is open, R is removed; R′ in the input circuit is removed too.
Then, Ip,L =Is =0 (in agreement with Np Ip,L =–Ns Is) and Ip =Ip,M, so the magnetising
reactance Xp can be determined experimentally by measuring the values of (Vp)rms and (Ip)rms

by AC meters under a no-load condition and using the relation Xp =(Vp)rms/(Ip)rms.
The grey area in figure 3 is a magic black box, which somehow absorbs the power used

up in R′ and creates the same electrical power output in ε′ continuously; the values of R′ and
ε′ ensure this occurs all the time.

8. Discussion and summary

First, let us review some of the main findings in this paper. In section 3, by using a recursive
argument, we show that a theory formulated on the basis of ‘VpIp=VsIs’ is incomplete and
paradoxical (the core flux always vanishes). Unfortunately, this theory is a popular one and is

Figure 4. Examples of the determination of the signs in equation (32). The arrows
around the circles show the coiling directions of the two windings.
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commonly taught in schools. In section 4, we clarify the concepts: the input power should be
εIp, where ε is the emf of the power source, and, above all, the power relationship should be
εIp =VsIs +Pm, where Pm is the rate of change of the total magnetic energy in the iron core.
Starting from this correct power relationship, the ideal transformer is completely solved. The
theory thus built depicts a self-contained and comprehensive picture. The main point is that
there is always a magnetising current (Ip,M) flowing in the primary winding to excite the core
flux; only this current does this job. Irrespective of what the load R is, the core flux is always
present and the same, and is Ip,M. This explains why, in the argument in section 3, a zero-flux
results if Ip,M is not taken into account. Another noteworthy result is the negative current ratio
Ip,L : Is =–Ns : Np (equation (21)), where Ip,L is the primary current other than Ip,M. In
section 5, we explain how the negative sign of this current ratio can be understood in terms of
the PSR of the two windings. Further, this negative current ratio implies that the magnetic
fluxes produced by Ip,L and Is cancel each other out, confirming that the core flux is solely
produced by Ip,M. The two primary currents Ip,M and Ip,L play their own unique roles: the
former magnetises the core and the latter gains electrical energy from the source to the load.

Texts and online resources are used to supplement a condition in the definition of an ideal
transformer, for example, ‘negligible magnetising current is required to set up the flux’ [1],
‘the primary and secondary coils have infinite self-inductances’ [2], or ‘infinitely high core
magnetic permeability’ [3]. The inductance of a coil wrapped around an iron core is pro-
portional to the permeability (μ) of the core material [12], so the ‘core of high permeability’ is
synonymous with the ‘core of large inductance’. Simply put, all these assumptions try to
legitimise the fact that the magnetising current in the theory is ignored. In the following, we
focus on discussing whether the magnetising current is truly negligible.

First of all, we need to make clear under what condition(s) the magnetising current Ip,M is
supposedly negligible. From equation (26), we can see that the amplitude of Ip,L is
(εo/R)(Xs/Xp), while that of Ip,M is εo/Xp. When their common denominator Xp is cancelled
out, it is obvious the condition R=Xs makes Ip,L itself too large to outweigh Ip,M. On the
other hand, a larger Xp, the denominator of Ip,M, will make Ip,M itself smaller. When all these
factors are considered at once, the most sufficient condition for the validity of Ip,M=Ip,L is
R=winding reactance, where the winding reactance (X=ωL) refers to the minimum of Xp

and Xs.
Does the condition ‘R=winding reactance’ imply that the magnetising current is very

small and hence justifiably negligible? We have to be very cautious in thinking about this
question. Firstly, the condition ‘R=winding reactance’ only suggests that Ip,M=Ip,L, not
necessarily that any effect produced by Ip,M is small. Secondly, for Ip,M=Ip,L, we can only
say Ip,M is negligible when both Ip,M and Ip,L appear and are compared in the same expression.
For example, Ip,M=Ip,L justifies the complete primary current Ip =Ip,L+Ip,M≈Ip,L and
the approximate correctness of the famous current ratio Ip:Is =Ns:Np (apart from the negative
sign). However, the core flux linkage NpΦ=LpIp,M is irrelevant to Ip,L; it is wholly produced
by Ip,M. Although under the condition Ip,M=Ip,L, we do not see any reason why Ip,M is
negligible here, even if Ip,M is assumed to be zero (when Lp is assumed to be infinite) because
the core flux linkage is the product of Ip,M and Lp. In short, the condition ‘large winding
reactance’ or ‘R=winding reactance’ does not mean that it is legitimate to neglect Ip,M
anywhere in the theory.

Nonetheless, the smaller the magnetising current is, the more ‘ideal’ the transformer is.
Unlike the always-the-same core flux Φ, the stored magnetic energy in core E diminishes
when Ip,M is made to be very small since E=NpΦIp,M/2 [12]. A zero (very small) stored
magnetic energy entitles the transformer to become more apt to be ‘energy lossless’ because it
has no (little) magnetic energy to lose.
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We are faced with a dilemma. A magnetising current excites the core flux, it is absolutely
indispensible; without it, the theory is an intrinsically deficient and self-contradictory zero-
flux theory, but a zero magnetising current does make the transformer more apt to be ideal.
We advocate that the resolution is either (1) to assume a very small but non-zero magnetising
current, or (2) to neglect the magnetising current in the equations but not in the concepts. The
first option would be better in general, while the second one would be especially appropriate
for introductory courses: the well-known equations ‘Vp/Vs=Np/Ns, Ip/Is =Ns/Np, K’ are
taught as usual, but with an additional remark such as ‘the core flux is created neither by Ip
nor Is; it is created by another primary current called the magnetising current K’. If this
notion is told prior to section 3, the conclusion drawn there will no longer be nonsensical. Our
advice would be that care should be taken in interpreting an assumption such as ‘negligible
magnetising current’ or ‘coils of infinite inductances’ in a definition of an ideal transformer.

Finally, to facilitate a quick review, most of the relationships discussed in this paper are
shown collectively in figure 5 with arrows showing their causalities.

Figure 5. Essential concepts in the physics of an ideal transformer.
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Appendix

The mathematics for solving an ideal transformer is outlined below. Considering
equations (1)–(4), and expressing the mutual flux Φp =Φs=αNp Ip +βNs Is, where α and β
are positive constants depending on the geometrical factors of the two windings, we obtain
two coupled ODEs:
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Set Ns =0, effectively removing the secondary winding, in which case the transformer
becomes a pure inductor. Compared with the equation, ε−Lp dIp/dt=0, where Lp is the
inductance of the primary coil, the term aNp

2 is identified as Lp. By symmetry, βNs
2=Ls.

Hence, the two ODEs become
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where n=Np/Ns. Suppose ε=εoexp(–iωt), Ip =Ipoexp(–iωt) and Is =Iso exp(–iωt), where
i=√−1, εo is a real amplitude, and Ipo and Iso are complex amplitudes. It is straightforward
to solve the unknowns, for example, we get
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where Xp =ωLp and Xs=ωLs. After some algebra, Ip is proven to be exactly the same as
equation (26).
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